Session

Technical Session X: The Technology Frontier-- Advanced Technologies, Subsystems, and components for Small Satellites: Section I

Abstract

The increasing capabilities and low cost of microsatellites makes them ideal tools for new and advanced space science missions, including their possible use as interplanetary exploration probes. There are many issues that have to be resolved when it comes to employing microspacecraft on such missions. One problem is how to maintain a reliable communications link with the microspacecraft over long, interplanetary distances. Solutions to this problem include either improving the spacecraft transceiver/antenna, using a very large antenna on the ground, or using an array of small antennas on the ground. When looking at the feasibility and costs of these alternatives, it is shown that an array seems to be an ideal solution to the problem. By using several digital signal processing techniques, it should be possible to array a group of commercial-grade amateur ground stations together to synthesize a large-aperture antenna capable of communicating over interplanetary distances while keeping the costs low enough to be sustained by a microspace program. Future hardware experiments will be performed to confirm.

SSC03-X-8.pdf (776 kB)
Presentation Slides

Share

COinS
 
Aug 14th, 10:15 AM

A Feasibility Study of Techniques for Interplanetary Microspacecraft Communications

The increasing capabilities and low cost of microsatellites makes them ideal tools for new and advanced space science missions, including their possible use as interplanetary exploration probes. There are many issues that have to be resolved when it comes to employing microspacecraft on such missions. One problem is how to maintain a reliable communications link with the microspacecraft over long, interplanetary distances. Solutions to this problem include either improving the spacecraft transceiver/antenna, using a very large antenna on the ground, or using an array of small antennas on the ground. When looking at the feasibility and costs of these alternatives, it is shown that an array seems to be an ideal solution to the problem. By using several digital signal processing techniques, it should be possible to array a group of commercial-grade amateur ground stations together to synthesize a large-aperture antenna capable of communicating over interplanetary distances while keeping the costs low enough to be sustained by a microspace program. Future hardware experiments will be performed to confirm.