Session

Session 7: Big Picture

Abstract

At present, CubeSat components and buses are generally not appropriate for missions where significant risk of failure, or the inability to quantify risk or confidence, is acceptable. However, in the future we anticipate that CubeSats will be used for missions requiring reliability of 1-3 years for Earth-observing missions and even longer for Planetary, Heliophysics, and Astrophysics missions. Their growing potential utility is driving an interagency effort to improve and quantify CubeSat reliability, and more generally, small satellite mission risk. The Small Satellite Reliability Initiative (SSRI)—an ongoing activity with broad collaborative participation from civil, DoD, and commercial space systems providers and stakeholders—targets this challenge. The Initiative seeks to define implementable and broadly-accepted approaches to achieve reliability and acceptable risk postures associated with several SmallSat mission risk classes—from “do no harm” missions, to those associated with missions whose failure would result in loss or delay of key national objectives. These approaches will maintain, to the extent practical, cost efficiencies associated with small satellite missions and consider constraints associated with supply chain elements, as appropriate.

The SSRI addresses this challenge from two architectural levels—the mission- or system-level, and the component- or subsystem-level. The mission- or system-level scope targets assessment approaches that are efficient and effective, with mitigation strategies that facilitate resiliency to mission or system anomalies while the component- or subsystem-level scope addresses the challenge at lower architectural levels. The initiative does not limit strategies and approaches to proven and traditional methodologies, but is focused on fomenting thought on novel and innovative solutions.

This paper discusses the genesis of and drivers for this initiative, how the public-private collaboration is being executed, findings and recommendations derived to date, and next steps towards broadening small satellite mission potential.

michael_johnson.pdf (1928 kB)
Presentation

Share

COinS
 
Aug 6th, 9:00 AM

Increasing Small Satellite Reliability- A Public-Private Initiative

At present, CubeSat components and buses are generally not appropriate for missions where significant risk of failure, or the inability to quantify risk or confidence, is acceptable. However, in the future we anticipate that CubeSats will be used for missions requiring reliability of 1-3 years for Earth-observing missions and even longer for Planetary, Heliophysics, and Astrophysics missions. Their growing potential utility is driving an interagency effort to improve and quantify CubeSat reliability, and more generally, small satellite mission risk. The Small Satellite Reliability Initiative (SSRI)—an ongoing activity with broad collaborative participation from civil, DoD, and commercial space systems providers and stakeholders—targets this challenge. The Initiative seeks to define implementable and broadly-accepted approaches to achieve reliability and acceptable risk postures associated with several SmallSat mission risk classes—from “do no harm” missions, to those associated with missions whose failure would result in loss or delay of key national objectives. These approaches will maintain, to the extent practical, cost efficiencies associated with small satellite missions and consider constraints associated with supply chain elements, as appropriate.

The SSRI addresses this challenge from two architectural levels—the mission- or system-level, and the component- or subsystem-level. The mission- or system-level scope targets assessment approaches that are efficient and effective, with mitigation strategies that facilitate resiliency to mission or system anomalies while the component- or subsystem-level scope addresses the challenge at lower architectural levels. The initiative does not limit strategies and approaches to proven and traditional methodologies, but is focused on fomenting thought on novel and innovative solutions.

This paper discusses the genesis of and drivers for this initiative, how the public-private collaboration is being executed, findings and recommendations derived to date, and next steps towards broadening small satellite mission potential.