Document Type

Article

Journal/Book Title/Conference

Auk

Volume

129

Issue

4

Publisher

Central Ornithology Publication Office

Publication Date

1-1-2012

First Page

600

Last Page

610

Abstract

Greater Sage-Grouse (Centrocercus urophasianus) have declined in distribution and abundance in western North America over the past century. Depredation of nests and predation of chicks can be two of the most influential factors limiting their productivity. Prey species utilize antipredation behaviors, such as predator avoidance, to reduce the risk of predation. Birds in general balance the dual necessity of selecting cover to hide from visual and olfactory predators to enhance prospects of survival and reproductive success, which may also be achieved by selecting habitat with relatively fewer predators. We compared avian predator densities at Greater Sage-Grouse nests and brood locations with those at random locations within available sage-grouse habitat in Wyoming. This comparison allowed us to assess the species' ability to avoid avian predators during nesting and early brood rearing. During 2008–2010, we conducted 10-min point-count surveys at 218 nests, 249 brood locations from 83 broods, and 496 random locations. We found that random locations had higher densities of avian predators compared with nest and brood locations. Greater Sage-Grouse nested in areas where there were lower densities of Common Ravens (Corvus corax), Black-billed Magpies (Pica hudsonia), Golden Eagles (Aquila chrysaetos), and hawks (Buteo spp.) compared with random locations. Additionally, they selected brood-rearing locations with lower densities of those same avian predators and of American Kestrels (Falco sparverius), compared with random locations. By selecting nest and brood-rearing locations with lower avian predator densities, Greater Sage-Grouse may reduce the risk of nest depredation and predation on eggs, chicks, and hens.

Included in

Life Sciences Commons

Share

COinS