Aspen Bibliography

Post-1935 changes in forest vegetation of Grand Canyon National Park, Arizona, USA: Part 2—Mixed conifer, spruce-fir, and quaking aspen forests

John L. Vankat

Abstract

This study examined changes in never-harvested mixed conifer (MCF), spruce-fir (SFF), and quaking aspen forests (QAF) in Grand Canyon National Park (GCNP), Arizona, USA based on repeat sampling of two sets of vegetation study plots, one originally sampled in 1935 and the other in 1984. The 1935 plots are the earliest-known, sample-intensive, quantitative documentation of forest vegetation over a Southwest USA landscape. Findings documented that previously described increases in densities and basal areas attributed to fire exclusion were followed by decreases in 1935–2004 and 1984–2005. Decreases in MCF were attributable primarily to quaking aspen (Populus tremuloides) and white fir (Abies concolor), but there were differences between dry-mesic and moist-mesic MCF subtypes. Decreases in SFF were attributable to quaking aspen, spruce (Picea engelmannii + Picea pungens), and subalpine fir (Abies lasiocarpa). Decreases in QAF resulted from the loss of quaking aspen during succession. Changes in ponderosa pine forest (PPF) are described in a parallel paper (Vankat, J.L., 2011. Post-1935 changes in forest vegetation of Grand Canyon National Park, Arizona, USA: part 1 – ponderosa pine forest. Forest Ecology and Management 261, 309–325). Graphical synthesis of historical and modern MCF data sets for GCNP indicated tree densities and basal areas increased from the late 19th to the mid 20th century and then decreased to the 21st century. Changes began earlier, occurred more rapidly, and/or were larger at higher elevation. Plot data showed that basal area decreased earlier and/or more rapidly than density and that decreases from 1935 to 2004 resulted in convergence among MCF, SFF, and PPF. If GCNP coniferous forests are trending toward conditions present before fire exclusion, this implies density and basal area were more similar among these forests in the late 19th century than in 1935. Changes in MCF and SFF can be placed in a general framework of forest accretion, inflection, and recession in which increases in tree density and basal area are followed by an inflection point and decreases. Accretion was triggered by the exogenous factor of fire exclusion, and inflection and recession apparently were driven by the endogenous factor of density-dependent mortality combined with exogenous factors such as climate. Although the decreases in density and basal area could be unique to GCNP, it is likely that the historical study plots provided a unique opportunity to quantitatively determine forest trends since 1935. This documentation of post-1935 decreases in MCF and SFF densities and basal areas indicates a shift in perspective on Southwestern forests is needed.