Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles

Document Type

Article

Journal/Book Title/Conference

Applied Environmental Microbiology

Volume

78

Issue

992240

Publication Date

1-1-2012

First Page

1404

Last Page

1410

Abstract

The beneficial bacterium Pseudomonas chlororaphis O6 produces indole-3-acetic acid (IAA), a plant growth regulator. However, the pathway involved in IAA production in this bacterium has not been reported. In this paper we describe the involvement of the indole-3-acetamide (IAM) pathway in IAA production in P. chlororaphis O6 and the effects of CuO and ZnO nanoparticles (NPs). Sublethal levels of CuO and ZnO NPs differentially affected the levels of IAA secreted in medium containing tryptophan as the precursor. After 15 h of growth, CuO NP-exposed cells had metabolized more tryptophan than the control and ZnO NPchallenged cells. The CuO NP-treated cells produced higher IAA levels than control cultures lacking NPs. In contrast, ZnO NPs inhibited IAA production. Mixing of CuO and ZnO NPs resulted in an intermediate level of IAA production relative to the levels in the separate CuO and ZnO NP treatments. The effect of CuO NPs on IAA levels could be duplicated by ions at the concentrations released from the NPs. However, ion release did not account for the inhibition caused by the ZnO NPs. The mechanism underlying changes in IAA levels cannot be accounted for by effects on transcript accumulation from genes encoding a tryptophan permease or the IAM hydrolase in 15-h cultures. These findings raise the issue of whether sublethal doses of NPs would modify the beneficial effects of association between plants and bacteria. © 2012, American Society for Microbiology.

This document is currently not available here.

Share

COinS