The Influence of Metal Substrates on the Electronic States of Metal Overlayers

P. A. Dowben
Syracuse University

M. Onellion
University of Wisconsin

Y. J. Kime
Syracuse University

Follow this and additional works at: https://digitalcommons.usu.edu/microscopy
Part of the *Biology Commons*

Recommended Citation
Available at: https://digitalcommons.usu.edu/microscopy/vol2/iss1/17
THE INFLUENCE OF METAL SUBSTRATES ON THE ELECTRONIC STATES OF METAL OVERLAYERS

P. A. Dowben*, M. Onellion**, and Y. J. Kime*

*Department of Physics, Syracuse University, Syracuse, New York, 13244-1130
**Department of Physics, University of Wisconsin, Madison, Wisconsin, 53706

(Received for publication March 13, 1987, and in revised form August 26, 1987)

Abstract

The aim of this paper is to provide an introduction to the electronic structure of very thin film (one to ten monolayers) overlayers using examples from studies of Hg overlayers on Ag(100) and Fe thin film overlayers. Interfacial states as a result of the interaction of the substrate and overlayer, as well as the new electronic states of the overlayer caused by the new crystallographic structure can modify the overlayer metal electronic structure. Additional changes in the overlayer electronic structure arise from the reduced dimensionality (2 dimensionality as opposed to 3 dimensionality) of the thin film. We discuss the photoemission techniques for determining the electronic structures of thin metal overlayers. Layer by layer growth of the overlayer is important for such studies as is knowledge of the overlayer structure. We have summarized our current understanding of metal overlayers in tables and attempt to demonstrate that further progress in combining structural and photoemission studies is necessary for better fundamental understanding of metal overlayers.

Key Words: Angle resolved photoemission, band structure, metal thin films, Frank-van der Merwe growth, interface states, 2-dimensional band structure.

Address for correspondence:
P. A. Dowben
Dept. of Physics, Syracuse University
Syracuse, New York 13244-1130
Phone No. (315)423-2408

Introduction

Metal overlayers have been investigated since the late 1800's for use in a variety of applications, e.g., for incandescent light bulbs. Within the last several years researchers have begun investigating very thin metal overlayers, one to ten monolayers thick. Several reviews [1-9] exist describing various aspects of this effort, to which the reader is referred. The present review focuses on the influence of the metal substrate, in particular the influence of the substrate on the thin film overlayer electronic structure. We concentrate on two particular metal overlayer systems: Hg on Ag(100) and Fe overlayers on different substrates. Following a brief discussion of overlayer film growth and of angle resolved photoemission, the Hg on Ag(100) results are used to illustrate several key results that may be generalized for many overlayer systems. Since one of the most exciting frontiers of metal overlayers is in the area of magnetic systems, a concise summary of this aspect of electronic structure is presented, with iron overlayers used to exemplify the most important features of the endeavour.

Often epitaxial crystal structures can be grown on convenient substrates, in a well controlled and well characterized manner. The resulting overlayer thin film may have unusual lattice spacings and/or crystal structure. The opportunity to create new materials is one advantage that metal-metal heterostructures have over other bimetallic (or indeed any multi-component metal) systems such as alloys. Alloys are difficult to characterise and alloy surfaces, in particular the surfaces of weakly clustering alloys (as opposed to strongly ordered alloys), are very difficult to characterise, while the selvedge (surface region) of all alloys remains largely uncharacterised [10-12]. Thin film metal overlayers, by comparison, are relatively easy to characterise structurally.

Metal Overlayer Film Growth

In studying the effects of various substrates on metal overlayers, Frank-van der Merwe (layer by layer) growth is desired so as to easily model the substrate/overlayer system. For one to ten monolayer overlayer films, confirming...
the growth mode in itself is a formidable problem. Most commonly, overlayer growth is investigated using low energy electron diffraction (LEED) [13-86] and less commonly reflection high energy electron diffraction (RHEED) [58,87-104]. Techniques that have also been used to characterize thin film growth include transmission electron microscopy and diffraction methods applied to thin films detached from their substrates or at grazing incidence to the thin film and substrate [7,105-114]. Overlayer thin films can be characterized for thin films grown in situ in the ultra high vacuum (UHV) microscope [75,115-121] or by using surface extended X-ray absorption fine structure (SEXAFS) [24,122]. In addition, forward scattering [123-136] in X-ray photoemission (XPS) and Auger electron spectroscopy (AES) may provide a new method for acquiring additional information on the structure of thin film overlayers.

Different types of increases in the AES and XPS elemental signals with overlayer deposition can also be used to supplement LEED and RHEED and can prove to be a good indication of layer by layer growth as described elsewhere [7]. Not only do the changes in characteristic elemental signals as the thin film grows from one layer to the next become indicative of layer by layer growth, but the simple scattering of AES electrons by defects [137] can cause line shape changes. This results in periodic AES signal oscillations resulting from the waxing and waning of the step densities with layer by layer growth [106,138-140]. The core level binding energies can also be of considerable assistance in characterizing the thin film metal overlayer [17,37,62,141-148] either from inspection of the binding energy shift or from application of a Born-Haber cycle through the use of an "equivalent cores approximation" (Reference 148 and the references therein).

Due to the difficulties of achieving conclusive structural information, many studies of the overlayer thin film electronic properties to date have only inferred the film structure and morphology. This is widely recognized as an unfortunate situation, and several research groups will shortly have the capabilities to investigate both electronic and structural properties. Studies of the electronic structure of metal on metal overlayers are very suspect when undertaken without careful analysis of the overlayer structure and growth mode. LEED patterns alone, such as those shown in Figure 1 for Ag overlayers of Ag(100), are insufficient indication of the growth mode and the microstructure of the surface.

When layer by layer growth occurs [5-7,149-157] there is epitaxial or pseudomorphic growth only up to some critical thickness \(h_c \) as a result of the lattice misfit strain. For overlayer growth beyond the critical metal film thickness \(h_c \), interfacial dislocations become incorporated in the film during the growth process. This results in a decrease in the lattice misfit strain as the metal overlayer becomes thicker. This situation is applicable only to small lattice misfits \(f_0 \). For cubic crystals, \(f_0 \) is defined as:

\[
f_0 = \frac{(a_s-a_f)}{a_s}
\]

(1)

where \(a_s \) and \(a_f \) are the bulk lattice parameters of the substrate and overlayer metals, respectively. When large misfits are present, the continuation of the substrate lattice does not occur in the metal overlayer (no pseudomorphism). Interfacial dislocations are immediately present after growth begins if \(f_0 \) is much larger or smaller than zero. With interfacial dislocations present at all stages of growth for the thin film overlayer, the inter-

\[Figure 1. LEED patterns of Hg overlayers of Ag(100). The top pattern shows the p(1x1) structure (identical to the substrate) that occurs following an exposure of 6 langmuirs (6x10^{-6} torr seconds) of Hg to Ag(100) at 87 K. This corresponds to the deposition of two monolayers of Hg on Ag(100). The bottom LEED pattern shows the p(1x4) overlayer formed by depositing five monolayers of Hg on Ag(100) at 87 K (15 langmuirs exposure).\]
facial strain decreases as 1/h, where h is the
overlayer thickness. Assuming there is no alloy­
ing, interdiffusion or other changes at the
interface, Frank-van der Merwe growth \[\text{[5,150-153]}\]
implies that:

\[
\Delta \epsilon = \sigma_g + \sigma_i - \sigma_s \leq 0 \quad \text{(2)}
\]

\[
\sigma_g > \sigma_f + \sigma_i \quad \text{(3)}
\]

where \(\sigma_g\) and \(\sigma_s\) are the specific free energies of
the film and substrate, respectively, while \(\sigma_i\) is
the specific free interfacial energy. Markov and
Kaischew \[\text{[155-156]}\] have modified equations 2 and
3 but some of their conclusions about the
conditions for layer by layer growth have been
questioned by Bauer and van der Merwe \[\text{[157]}\].

In practice, for pseudomorphic growth in the
Frank-van der Merwe growth mode, the lattice mis­
matches should be less than 9\% \[\text{[149]}\]. This does
not mean, of course, that with large lattice mis­
matches ordered monolayer thin films cannot be
deposited on a crystalline substrate, only that
the ordered structure of the overlayer is not
identical to that of the substrate. Such ordered
overlayers are commonly observed as indicated in
Table 1.

Often it is very difficult to distinguish
between the initial stages of Frank-van der Merwe
growth modes and Stranski-Krastanov growth
(growth of three dimensional islands and crystals
on a thin metal film that initially grew layer by
layer). Initial layer by layer growth does not
imply this growth mode continues to all thick­
nesses. Furthermore, interdiffusion may some­
times be confused with layer by layer
growth \[\text{[29]}\].

Angle-Resolved Photoemission

Angle-resolved photoemission is the dominant
technique for determining an overlayer electronic
band structure. The photoemission process
consists of the absorption of one photon and the
subsequent ejection and detection of the photo­
electron from the photoionized atom. Because the
photoemission final state includes an ion (an
excited state), several complexities arise
including screening, final state effects and many
body effects. In most examples of photoemission
the simple picture just described is valid. The
intensity (or counts) of the detected
photoelectrons, at a given photon energy, is
plotted against electron kinetic energy for a
given photon energy. This energy distribution
curve (EDC) provides a rough picture of the
density of states for a particular photon
incidence angle and electron emission angle.

Neglecting the complexities of the photoemission
process, in general, the kinetic energy of the
photoelectron is given by:

\[
E_{\text{kin}} = h\nu - \phi - E_B \quad \text{(4)}
\]

where \(h\nu\) is the photon energy, \(\phi\) is the work
function, and \(E_B\) is the binding energy of the
electron relative to the Fermi energy.

Highly polarized light can be useful in
determining the orientation and symmetry of an
electronic state by using dipole selection and
symmetry rules \[\text{[158-162]}\]. By varying the inci­
dence angle of the light \(\theta_i\) and the orientation
of the vector potential \(\mathbf{A}\) with respect to the
surface crystal lattice (azimuthal orientation)
as well as the emission angle of the photo­
electron \(\theta_e\) (as indicated in Figure 2), one can
often elucidate the symmetry of a particular
state. For example, the character of orbitals
excited for two different orientations of the electric vector \(\mathbf{E}\) (or vector potential \(\mathbf{A}\)) with
respect to the surface normal is indicated in
Table 2 for a four fold \(\text{[C}_{4v}\) symmetric surface
(e.g., the \(100\) plane of an f.c.c. or
b.c.c. crystal). The symmetry of the initial
state of the electron, as summarized in Table 3,
must be the same as that of the dipole operator
(the perturbed Hamiltonian) that causes the
transition (photoemission). It is clear that
incidence and emission angular resolution results
in selection \[\text{[161,163]}\] of the initial and final
state symmetries as shown in Table 3. Not only
must the initial state be of the same symmetry as
the dipole operator but the final state as well.

\[
E_{\text{kin}} = \frac{p_z^2}{(2m)} = \frac{k^2 \hbar^2}{(8\pi^2 m)} \quad \text{(5)}
\]

The experimental band structure is mapped
out by collecting electrons at different emission
angles and points in k-space (where \(k\) is the wave
number of the photoelectron). The binding
energies of the photoemission features are
plotted as a function of \(k\). The free electron
bands are generally regarded as parabolic (on an

\[
\Delta \epsilon = \sigma_f + \sigma_i - \sigma_s \leq 0 \quad \text{(2)}
\]

\[
\sigma_g > \sigma_f + \sigma_i \quad \text{(3)}
\]
<table>
<thead>
<tr>
<th>Metal/metal:</th>
<th>coverage splitting</th>
<th>exchange structure:</th>
<th>overlayers lattice structure:</th>
<th>interface change states:</th>
<th>new growth states:</th>
<th>Work function changes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag/Cu(100)</td>
<td>1 ml</td>
<td>c(10x2)</td>
<td>e(10x2)</td>
<td>-1.7%</td>
<td>yes</td>
<td>FvdM58, SK106</td>
</tr>
<tr>
<td>Ag/Cu(111)</td>
<td>1-10 ml</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ag/Pt(100)</td>
<td>1-2 ml</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ag/Pt(997)</td>
<td>1-2 ml</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ag/Rh(100)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ag/W(211)</td>
<td>1 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>-1.3%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Au/Ag(111)</td>
<td>1-4 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>-1.8%</td>
<td>yes</td>
<td>FvdM58</td>
</tr>
<tr>
<td>Au/Pt(100)</td>
<td>1-2 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>+5.0%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Au/Pt(111)</td>
<td>1-2 ml</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Au/Pt(997)</td>
<td>1-2 ml</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Au/Ru(0001)</td>
<td>1-3 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>-0.1%</td>
<td>yes</td>
<td>FvdM58</td>
</tr>
<tr>
<td>Au/W(211)</td>
<td>1 ml</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Au/W(110)</td>
<td>1 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>-5.2%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Au/W(211)</td>
<td>1 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>-5.2%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Bi/Cu(100)</td>
<td>1-3 ml</td>
<td>complex</td>
<td>-</td>
<td>+2.9%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Co/Cu(100)</td>
<td>1-3 ml 1.0 ev23</td>
<td>p(1x1)</td>
<td>-</td>
<td>-2.0%</td>
<td>yes</td>
<td>FvdM58</td>
</tr>
<tr>
<td>Co/Cu(111)</td>
<td>1 ml 0.7 ev221,222</td>
<td>p(1x1)</td>
<td>-</td>
<td>-2.0%</td>
<td>yes</td>
<td>FvdM58</td>
</tr>
<tr>
<td>Co/GaAs(110)</td>
<td>100 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>-2.4%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Cr/Au(100)</td>
<td>1-15 ml</td>
<td>(1x1)</td>
<td>0%</td>
<td>yes</td>
<td>yes</td>
<td>SK26</td>
</tr>
<tr>
<td>Cu/Al(111)</td>
<td>1 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>+3%</td>
<td>yes</td>
<td>FvdM77</td>
</tr>
<tr>
<td>Cu/Zn(110)</td>
<td>1 ml</td>
<td>complex</td>
<td>-</td>
<td>-8.0%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Cu/Al(110)</td>
<td>2 ml</td>
<td>complex</td>
<td>-</td>
<td>-0.5%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Cu/Bi(110)</td>
<td>1 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>+2.6%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Cu/Bi(110)</td>
<td>100 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>+2.6%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Cu/Pd(110)</td>
<td>1-2 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>+7.6%</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Cu/Pd(110)</td>
<td>2 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>+7.4%</td>
<td>yes</td>
<td>Sk26</td>
</tr>
<tr>
<td>Cu/Pd(110)</td>
<td>100 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>+7.4%</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Cu/Pt(111)</td>
<td>1-10 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>+7.4%</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Cu/Ru(100)</td>
<td>1 ml</td>
<td>p(1x1)</td>
<td>-</td>
<td>+3.7%</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Cu/Ru(0001)</td>
<td>3-4 ml</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>Sk251</td>
</tr>
<tr>
<td>Fe/Ag(100)</td>
<td>1 ml none</td>
<td>p(1x1)</td>
<td>+1140 to -0.8%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM39</td>
</tr>
<tr>
<td>Fe/Ag(100)</td>
<td>2-3 ml none</td>
<td>p(1x1)</td>
<td>+1140 to -0.8%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM39</td>
</tr>
<tr>
<td>Fe/Ag(100)</td>
<td>3-5 ml 0.3 ev40</td>
<td>p(1x1)</td>
<td>+1140 to -0.8%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM39</td>
</tr>
<tr>
<td>Fe/Cu(100)</td>
<td>1 ml 2.65 ev41</td>
<td>p(1x1)</td>
<td>+3.1%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM39</td>
</tr>
<tr>
<td>Fe/Cu(100)</td>
<td>2 ml 2.65 ev41</td>
<td>p(1x1)</td>
<td>+3.1%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM39</td>
</tr>
<tr>
<td>Fe/Cu(100)</td>
<td>1-17 ml none</td>
<td>p(1x1)</td>
<td>+3.1%</td>
<td>none</td>
<td>yes</td>
<td>FvdM39, 44</td>
</tr>
<tr>
<td>Fe/CoAs(110)</td>
<td>310 ml 2.0 ev112</td>
<td>p(1x1)</td>
<td>-1.38%</td>
<td>yes</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Fe/F(110)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>FvdM39</td>
</tr>
<tr>
<td>Fe/F(110)</td>
<td>1 ml (0.6 ev)46</td>
<td>p(1x1)</td>
<td>+10.5%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM39</td>
</tr>
<tr>
<td>Fe/F(110)</td>
<td>2 ml (0.5 ev)46</td>
<td>p(1x1)</td>
<td>+10.5%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM39</td>
</tr>
<tr>
<td>Fe/F(110)</td>
<td>5 ml (0.3 ev)46</td>
<td>p(1x1)</td>
<td>+10.5%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM39</td>
</tr>
<tr>
<td>Hg/Au(100)</td>
<td>1 ml</td>
<td>p(1x1)</td>
<td>-3.8%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM89</td>
</tr>
<tr>
<td>Hg/Au(100)</td>
<td>2 ml</td>
<td>p(1x1)</td>
<td>-3.8%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM89</td>
</tr>
<tr>
<td>Hg/Au(100)</td>
<td>5 ml</td>
<td>p(4x1)</td>
<td>-3.8%</td>
<td>yes</td>
<td>yes</td>
<td>FvdM89</td>
</tr>
<tr>
<td>Hg/Bi(poly)</td>
<td><1 ml</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Hg/Cu(100)</td>
<td>1 ml</td>
<td>c(2x2)</td>
<td>+20.2%</td>
<td>none</td>
<td>no</td>
<td>FvdM45</td>
</tr>
<tr>
<td>Hg/Pt(100)</td>
<td>1 ml</td>
<td>p(1x1)</td>
<td>-4.6%</td>
<td>no</td>
<td>FvdM61</td>
<td></td>
</tr>
<tr>
<td>Hg/Pt(100)</td>
<td>1 ml</td>
<td>p(1x1)</td>
<td>+17.1%</td>
<td>none</td>
<td>FvdM50</td>
<td></td>
</tr>
<tr>
<td>Hg/Pt(100)</td>
<td>1 ml</td>
<td>p(1x1)</td>
<td>+5.2%</td>
<td>yes</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hg/Pt(100)</td>
<td><5 ml none</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hg/Pt(100)</td>
<td>1-2 ml 0.3 ev227</td>
<td>p(1x1)</td>
<td>-2.6%</td>
<td>-</td>
<td>FvdM54</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. A compilation of data for selected metal overlayers on metal substrates. The orientation of the substrate is indicated by a Miller index. The coverage of the overlayer is provided in monolayers (where known), as is the coincidence lattice, with respect to the substrate. Lattice change indicates the percent expansion or compression of the overlayer adatoms with respect to the nearest neighbor spacings of the bulk metal. The exchange splitting is the splitting of the minority and majority spin states of the magnetic overlayer, and in some cases has been estimated from the splitting of the d-band observed in photoemission and thus may not be an accurate assessment of the exchange splitting. Growth modes of the overlayer are denoted by FvdM for layer by layer growth while layer by layer growth followed by island formation is indicated by SK. The work function change is positive if increasing and negative if decreasing. Both the exchange splitting and work function change are provided in units of eV.

<table>
<thead>
<tr>
<th>Metal/metal:</th>
<th>coverage:</th>
<th>exchange splitting:</th>
<th>overlayer lattice structure:</th>
<th>interface states:</th>
<th>new states:</th>
<th>growth mode:</th>
<th>Work function changes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni/Cu(100)</td>
<td>>3 ml</td>
<td>p(x1):54,107</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SK54</td>
<td>-</td>
</tr>
<tr>
<td>Ni/Cu(111)</td>
<td><5 ml</td>
<td>p(x1):55-56,65-86</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FvdM55-56,87-88</td>
<td>-</td>
</tr>
<tr>
<td>Ni/In(poly)</td>
<td><2.5 ml</td>
<td>none226</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni/Mg(poly)</td>
<td><2.5 ml</td>
<td>none226</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni/PbH</td>
<td><2 ml</td>
<td>none224</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni/Re(0001)</td>
<td><2.5 ml</td>
<td>none230</td>
<td>p(x1):230</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni/Sn(poly)</td>
<td><2.5 ml</td>
<td>none226</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni/W(110)</td>
<td><1 ml</td>
<td>p(x1):57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SK57</td>
<td>-0.7657</td>
</tr>
<tr>
<td>Ni/W(211)</td>
<td><1 ml</td>
<td>p(x1):57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SK57</td>
<td>-0.65</td>
</tr>
<tr>
<td>Pb/Ag(111)</td>
<td>1-3 ml</td>
<td>(\sqrt{3}x\sqrt{3})58-59,75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FvdM58</td>
<td>-</td>
</tr>
<tr>
<td>Pb/Ag(111)</td>
<td>>3 ml</td>
<td>complex58,75</td>
<td>0%</td>
<td>-</td>
<td>-</td>
<td>FvdM58</td>
<td>-</td>
</tr>
<tr>
<td>Pb/Al(110)</td>
<td>1-2 ml</td>
<td>c(2x2):60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FvdM60</td>
<td>-</td>
</tr>
<tr>
<td>Pb/Al(111)</td>
<td>1 ml</td>
<td>c(2x2):61,63</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SK62</td>
<td>-0.162</td>
</tr>
<tr>
<td>Pb/Cu(110)</td>
<td>1 ml</td>
<td>p(5x1):63,64,113</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FvdM58</td>
<td>-</td>
</tr>
<tr>
<td>Pb/Cu(111)</td>
<td>1 ml</td>
<td>p(4x2):64,65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FvdM58</td>
<td>-</td>
</tr>
<tr>
<td>Pb/Ni(111)</td>
<td><1 ml</td>
<td>p(x1):57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SK57</td>
<td>-0.762</td>
</tr>
<tr>
<td>Pb/Plt(111)</td>
<td><1 ml</td>
<td>(3x3):66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pb/W(110)</td>
<td><1 ml</td>
<td>p(x1):57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SK57</td>
<td>-0.65</td>
</tr>
<tr>
<td>Pb/W(110)</td>
<td><1 ml</td>
<td>p(x1):57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SK57</td>
<td>-0.75</td>
</tr>
<tr>
<td>Pb/Ag(100)</td>
<td><1 ml</td>
<td>p(x1):68</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FvdM58</td>
<td>-</td>
</tr>
<tr>
<td>Pb/Ag(111)</td>
<td><1 ml</td>
<td>p(x1):68</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FvdM58</td>
<td>-</td>
</tr>
<tr>
<td>Pb/Al(111)</td>
<td><1 ml</td>
<td>p(x1):69</td>
<td>+4%</td>
<td>yes69</td>
<td>yes59</td>
<td>FvdM59</td>
<td>-</td>
</tr>
<tr>
<td>Pb/Cu(111)</td>
<td><1 ml</td>
<td>p(x1):70</td>
<td>-7.1%</td>
<td>no70</td>
<td>no70</td>
<td>-</td>
<td>+0.670</td>
</tr>
<tr>
<td>Pb/Nb(111)</td>
<td><1 ml</td>
<td>p(x1):71</td>
<td>+3.9%</td>
<td>yes71</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pb/W(100)</td>
<td><1 ml</td>
<td>complex72</td>
<td>+2.2%</td>
<td>-</td>
<td>-</td>
<td>FvdM67</td>
<td>+0.372</td>
</tr>
<tr>
<td>Pb/W(110)</td>
<td>>1 ml</td>
<td>complex72</td>
<td>+2.2%</td>
<td>-</td>
<td>-</td>
<td>SK72</td>
<td>-</td>
</tr>
<tr>
<td>Sn/Al(100)</td>
<td><1 ml</td>
<td>c(2x2):60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FvdM60</td>
<td>+0.62</td>
</tr>
<tr>
<td>Sn/Al(111)</td>
<td><1 ml</td>
<td>c(2x2):60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FvdM62</td>
<td>-0.62</td>
</tr>
<tr>
<td>Sn/Ag(111)</td>
<td><1 ml</td>
<td>(\sqrt{3}x\sqrt{3})56</td>
<td>+95to109%</td>
<td>yes62</td>
<td>yes59</td>
<td>FvdM59</td>
<td>-</td>
</tr>
<tr>
<td>Sn/Ag(111)</td>
<td>>10 ml</td>
<td>complex56</td>
<td>1.9%</td>
<td>-</td>
<td>-</td>
<td>FvdM59</td>
<td>-</td>
</tr>
<tr>
<td>Tl/Ag(111)</td>
<td><10 ml</td>
<td>complex56</td>
<td>1.9%</td>
<td>-</td>
<td>-</td>
<td>FvdM59</td>
<td>-</td>
</tr>
<tr>
<td>Tl/Ag(111)</td>
<td>>10 ml</td>
<td>complex56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FvdM59</td>
<td>-</td>
</tr>
<tr>
<td>Tl/Cu(111)</td>
<td><1 ml</td>
<td>(\sqrt{3}x\sqrt{3})58</td>
<td>0%</td>
<td>-</td>
<td>-</td>
<td>SK58</td>
<td>-</td>
</tr>
<tr>
<td>Tl/Cu(111)</td>
<td>>10 ml</td>
<td>complex56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SK58</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1. A compilation of data for selected metal overlayers on metal substrates. The orientation of the substrate is indicated by a Miller index. The coverage of the overlayer is provided in monolayers (where known), as is the coincidence lattice, with respect to the substrate. Lattice change indicates the percent expansion or compression of the overlayer adatoms with respect to the nearest neighbor spacings of the bulk metal. The exchange splitting is the splitting of the minority and majority spin states of the magnetic overlayer, and in some cases has been estimated from the splitting of the d-band observed in photoemission and thus may not be an accurate assessment of the exchange splitting. Growth modes of the overlayer are denoted by FvdM for layer by layer growth while layer by layer growth followed by island formation is indicated by SK. The work function change is positive if increasing and negative if decreasing. Both the exchange splitting and work function change are provided in units of eV.

The component of the wave vector of the electron parallel to the surface \(k_{\parallel} \) is given by:

\[
k_{\parallel} = \left(\frac{8\pi^2 n^2 h^2}{m^2} \right) \sin^2 \theta \]

where \(\theta \) is the emission angle and \(E_{\text{kin}} \) is the kinetic energy of the electron. Because of the

\[\sum = k_{\parallel}^2 = k_{\parallel}^2 + k_{\text{perp}}^2 \] (6)
Dowben, Onellion and Kime

Table Two Dipole Selection Rules for Photoemission for Normal Emission (T) and the High Symmetry Lines of a Square Brillouin Zone (SBZ)

<table>
<thead>
<tr>
<th>Component of the vector potential A</th>
<th>(C_{\gamma})</th>
<th>(T)</th>
<th>(C_{1h})</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A perpendicular to the surface</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td>(p_x)</td>
<td>(p_z)</td>
<td>(p_z)</td>
<td>(p_z)</td>
</tr>
<tr>
<td></td>
<td>(d_{3z^2-r^2})</td>
<td>(d_{3z^2-r^2})</td>
<td>(d_{3z^2-r^2})</td>
<td>(d_{3z^2-r^2})</td>
</tr>
<tr>
<td></td>
<td>((\Delta_1))</td>
<td>(d_{xy})</td>
<td>(d_{x^2-y^2})</td>
<td>(d_{x^2-y^2})</td>
</tr>
<tr>
<td>A parallel with the surface</td>
<td>p_x</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>electron detection plane (even)</td>
<td>p_y</td>
<td>p_z</td>
<td>p_z</td>
<td>p_z</td>
</tr>
<tr>
<td>geometry)</td>
<td>d_{xz}</td>
<td>d_{xz}</td>
<td>d_{xz}</td>
<td>d_{xz}</td>
</tr>
<tr>
<td></td>
<td>((\Delta_5))</td>
<td>d_{x^2-y^2}</td>
<td>d_{x^2-y^2}</td>
<td>d_{x^2-y^2}</td>
</tr>
<tr>
<td>A parallel with the surface and perpendicular to the electron detection plane (odd geometry)</td>
<td>p_x-y</td>
<td>p_y</td>
<td>d_{xz-yz}</td>
<td>d_{xy}</td>
</tr>
<tr>
<td></td>
<td>d_{xz}</td>
<td>d_{xz}</td>
<td>d_{xz}</td>
<td>d_{xz}</td>
</tr>
<tr>
<td></td>
<td>((\Delta_5))</td>
<td>d_{x^2-y^2}</td>
<td>d_{x^2-y^2}</td>
<td>d_{x^2-y^2}</td>
</tr>
</tbody>
</table>

The relationship between the orientation of the vector potential of the incident light, the photoelectron collection geometry and the states observed in angle resolved photoemission. Note that the symmetry points are given for the surface Brillouin zone of a four fold symmetric surface such as a (100) face of a b.c.c. or f.c.c. crystal. The nomenclature of the symmetry points and lines are indicated in Figure 3.

The relationship between \(k_{\parallel} \) and \(k_{\perp} \), both surface and bulk band structures can be mapped out using angle resolved photoemission.

Since the parallel momentum of the photoelectron is conserved, the location of the initial state in the surface Brillouin zone can be deduced unambiguously. To determine a location in the bulk Brillouin zone, the effective potential of the atom (the inner potential) must be inferred. In other words, when the photoelectron crosses the interface between the solid and vacuum, \(k_{\parallel} \) is conserved but \(k_{\perp} \) is changed. Thus while \(k_{\perp} \) may be conserved within a three dimensional crystal, it is not conserved in the photoemission process, and equation 4 must be modified to include a term for the inner potential.

Investigators use the \(k_{\parallel} \) conservation to distinguish between overlayer and substrate electronic states (though layer compounds fall into a special category having effectively only two dimensional band structures [166-167]). For a very thin (1-2 monolayer) film an overlayer electronic state cannot disperse with \(k_{\perp} \). The overlayer state will disperse symmetrically about the high symmetry points of the surface Brillouin zone. Figure 2 illustrates how the surface and bulk band structures are mapped out along the high symmetry lines illustrated in Figure 3. The bands are typically denoted by their group representations (as indicated in Table 3).

A further complication for the unwary experimentalist is diffraction effects. The crystal lattice furnishes momentum in quantities of the reciprocal lattice vector \(G \). Photoemission processes of crystals not only result in optical band transitions but also Umklapp processes as a consequence of diffraction against the crystal lattice through a reciprocal lattice vector \(G \). Umklapp processes [168-170] and diffraction effects [171-172] can often lead to confusion and difficulty in mapping out the band structure. In particular, diffraction effects can superficially obscure the band structure. For Ni(100), diffraction effects [171] lead to EDC's at particular photon energies that do not.
Table 3. Character Tables and Group Representations for States at High Symmetry Points and Lines of a C\textsubscript{4v} Surface.

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>2σ\textsubscript{v}</th>
<th>C\textsubscript{2}</th>
<th>2σ\textsubscript{d}</th>
<th>(\bar{\Gamma}) top & center</th>
<th>(\bar{\Gamma}) center center</th>
</tr>
</thead>
<tbody>
<tr>
<td>A\textsubscript{1}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1, z, 3z2-r2</td>
<td>xy</td>
</tr>
<tr>
<td>A\textsubscript{2}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>3z2-r2</td>
<td>x2-y2</td>
</tr>
<tr>
<td>B\textsubscript{1}</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>xy</td>
<td>1 z, 3z2-r2</td>
</tr>
<tr>
<td>B\textsubscript{2}</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>x2-y2</td>
<td>(y, x), (yz, xz)</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>(x, y), (xz, yz)</td>
</tr>
</tbody>
</table>

Table 3. The group representations and character tables for the high symmetry points and lines for the surface Brillouin zone of a four fold (C\textsubscript{4v} symmetric surface). The nomenclature for the various positions in k-space is given in Figure 3.
Dowben, Onellion and Kime

Figure 3. The high symmetry points and lines of the surface Brillouin zones of a c_4v or four fold symmetric surface (top) and a c_6v or six fold symmetric surface (bottom).

represent the initial state.

In order to extract the greatest possible amount of information using angle-resolved photoemission and to most directly test model systems and theoretical predictions, it is crucial to grow well-ordered single crystal overlayers. This means that layer by layer growth of the thin metal film overlayer on a crystalline substrate is essential. Other spectroscopies, such as angle integrated photoemission, or characteristic energy loss, while not as sensitive to the microstructure of the lattice, also provide far less information about the electronic structure.

While photoemission tends to be regarded as a single electron excitation process, it may often be a many body process. Screeing of the hole state by other electrons and scattering processes can affect the wave function of the outgoing electron. If the photon energy is sufficient to excite shallow core levels, this can result in strong resonances and satellite photoemission features that also are not indicative of an "initial state" density of states [173-182]. Such satellite photoemission features can be quite intense and are quite abundant in metals like nickel [175].

It is difficult to obtain definitive information regarding the magnetism from photoemission studies of the valence bands due to many body effects and other possible causes for splittings of valence bands. Though splittings of the d-band may be a result of the magnetic exchange splitting (for example the splitting of the d-band of iron), [183-190] the situation with regard to magnetism is much more unambiguous when the electron spin polarization is measured. Nonetheless, such experiments must be carefully done as the spin polarized electron final state may be the result of a many electron excitation that includes spin exchange or spin flip, [191] though some experimental studies may be used as an argument against "magnetic depolarization" effects [192-194]. Currently, the best experiments combine a magnetization measurement such as magneto-optic Kerr effect or surface magneto-optic Kerr effect (MOKE or SMOKE) [195-199] with angle resolved photoemission. Spin polarized angle resolved photoemission can also be used as a probe of the surface magnetic properties [40,46,112,176,196,200-202]. This technique combines angle resolved photoemission with a Mott detector [203] or some other electron spin detector [204]. Angle-resolved photoemission is, nonetheless, a powerful tool, particularly when combined with other surface science tools. The difficulties in making unambiguous assignments of photoemission features and uncertainties as to the degree of order and structure of the metal-metal heterostructures have often resulted in confusion and disarray within the discipline of electronic structure determinations of metal on metal overlayers. This field has nonetheless attracted a great deal of interest and considerable effort has been expended in this area as indicated in Table 1.

The Influence of Crystal Structure Upon the Overlayer Metal Electronic Structure

As indicated in the previous section, the band structure must be consistent with the crystal lattice. If a thin metal film overlayer grows pseudomorphically, then the band structure of the overlayer alters to be consistent with the new lattice. For example, Hg adsorbs on Ag(100) at 87 K epitaxially and adopts the f.c.c. lattice of the substrate [48,49]. Furthermore, with the deposition of Hg on Ag(100) at 89 K and ambient pressure of Hg less than 10^-8 torr, the Hg overlayer does not amalgamate or interdiffuse with the substrate. For one and two monolayers of Hg adsorbed on the Ag(100) surface, a two dimensional band structure develops in odd geometry from the Hg Sd-like states. This experimentally determined band structure is shown in Figure 4.

The 1x1 Hg lattice (indicated by the LEED patterns in Figure 1) for one and two monolayers of Hg on Ag(100) is an artificial and metastable structure. The square lattice is not the natural...
(rhombohedral) crystal lattice of bulk mercury for which the nearest neighbor lattice constant is 3.004 Å [205,206]. This is 3.8% greater than the 2.889 Å lattice constant of the Ag(100) substrate. Weaire [207,208] and Heine and Weaire [209] point out that the Hg crystal structures exhibit an instability of the f.c.c. structure with respect to rhombohedral distortion and metastability with respect to tetragonal distortion. The energy of the f.c.c. Hg lattice is only slightly higher (0.01 eV/atom) than that of the rhombohedral lattice of bulk Hg, as shown by Worster and March [210]. Thus it is not surprising that Hg grows epitaxially on Ag(100) for one and two monolayers. Mercury adlayers also adopt the p(1x1) structure on W(100) [52] and Fe(100) [51].

One of the unusual aspects of this band structure is the band that disperses from 7.2 eV binding energy at Γ (normal emission) to 7.6 eV at X (the surface Brillouin zone edge). This new feature (as shown in Figure 5) is not observed with photoemission from solid Hg [211,212] or the gaseous vapor [212,213]. The results from investigations of the Hg adsorption on Ni(100) [214] and an Au polycrystalline surface [215] as well as solid Hg indicates that a thin Hg overlayer should induce two features due to the shallow 5d_{5/2} and 5d_{3/2} core levels. As shallow core levels these features should exhibit little or no dispersion. For one and two monolayers of Hg on Ag(100) at 87 K, the bands at 8.0±0.2 eV and 9.8±0.1 eV may be ascribed to states of character largely originating from the 5d_{5/2} and 5d_{3/2} spin orbit split doublet, respectively.

Figure 4. The experimental band structure of the Hg induced bands in odd geometry (odd symmetry with respect to the mirror plane) for one and two monolayers of Hg on Ag(100) at 87 K. Both thin film overlayers adopt the p(1x1) structure of the substrate. (o) indicates data for hv=36 eV and (x) indicates data for hv=50 eV.

Figure 5. EDC's of the clean Ag(100) surface and following the deposition of one and two monolayers of Hg on Ag(100) at 87 K. For all spectra the photoelectrons are collected normal to the surface and the vector potential of the incident light is parallel to the surface and along Γ-X. The photon energy is 50 eV. The "split off" Hg 5d_{5/2} like orbital is indicated by an arrow.
The further splitting of the 5dγ/2-like bands has also been observed with Hg adsorption on W(100) [216] and has been attributed to crystal field splitting [217] using arguments similar to those proposed by Herbst [218]. It has been shown, however, that this new feature for Hg on Ag(100) at 7.2±0.1 eV binding energy is not due to crystal field splitting but rather is a consequence of the band structure formed by the Hg overlayer [48,49]. The new feature appears only with coverages approaching one monolayer, and is consistent with a band structure formed from the hybridization of adjacent Hg atomic orbitals. The new feature is fully consistent with a two dimensional band structure in odd geometry, conserving k_{\parallel} and remaining invariant to changes in k_{\perp}.

The square lattice alone cannot be responsible for the formation of the new Hg induced band at 7.2 to 7.6 eV binding energy. One and two monolayers adsorb on W(100), [51] Ni(100), [50], Cu(100) and Ag(100) also form a square lattice. Yet the new feature appears only with adsorption on W(100) [216] and Ag(100), although in the case of W(100) nothing is known about the dispersion of this feature. For the mercury overlayer on W(100) [51] and Ag(100), the nearest neighbor Hg-Hg atomic spacing is a 5.2% expansion and a 3.8% compression of the bulk Hg lattice spacing respectively. For Hg overlayers on Ni(100) [50] and Cu(100) the Hg-Hg atomic spacing is a 17.1% and 20.2% expansion of the bulk nearest neighbor spacing. Thus we can conclude that if the overlayer atoms are too far apart, hybridization between adjacent adatoms becomes very weak and the new band does not appear.

The hybridization of adjacent Hg atomic orbitals to form bands is not surprising in view of the close proximity of the Hg atoms in the overlayer lattice. A split off d-band has been observed with crystalline Zn [219], a similar metal.

Another indication that long range crystallographic order is essential for forming the new Hg band comes from investigation of disordered Hg overlayers. By adsorbing Hg on Ag(100) at 30 K, an adlayer of mercury is deposited with considerable disorder. This overlayer fails to exhibit the new band at 7.2 eV binding energy (for normal emission) as shown in Figure 6. Melting of the two dimensional adlayer produces a similar effect (also shown in Figure 6), as well as changing the density of states between the Hg 5d bands and the Ag 5d bands. The loss of long range order does not result merely in an averaging of the density of states throughout k-space as one would expect, but changes the total density of states. A simple broadening of the band structure of the two dimensional Hg p(1x1) lattice with long range order will not reproduce the result of Figure 6.

In summarizing this section we can clearly see that metal on metal overlayers provide opportunities to explore not only the influence of crystal structure and reduced dimensionality upon band structure, but the consequences of altering lattice constants upon band structure.

Figure 6. The EDC's of one monolayer of Hg on Ag(100) following adsorption at 30 K (A), after annealing the surface to above the Hg overlayer melting transition (B) and requenching the surface, and above the Hg overlayer melting transition (C). Note the appearance of a new feature after annealing (little arrow) and the change in the density of states between the Hg 5d bands and Ag 5d bands. (M. Onellion, J. L. Erskine, and P. A. Dowben).

Interface States

While silver is quite an inert metal, the close proximity of the even symmetry d-band states of silver with the Hg shallow core levels suggests that some mixing of the 5d states for the two metals will occur at the interface. Consequently, unusual electronic states are expected to form at the interface of Hg thin film deposited on Ag(100).

The emission angle dependence of the Hg-induced features for one and two monolayers of Hg, in even geometry, is quite different from that observed for odd geometry (described in the previous section). This has substantial implications, including that the band structure in even geometry is quite different from the band structure in odd geometry.
As indicated in Figure 7, in even geometry, the third Hg 5d feature present at 7.2±0.1 eV binding energy at \(E \) (normal emission) is not observed away from \(E \) (for emission angles away from the normal) for one ordered f.c.c. monolayer of Hg on Ag(100) at 89 K. For two monolayers of Hg this third 5d feature is observed at \(E \) and away from \(E \) but in contrast to odd geometry where this feature disperses symmetrically about \(\bar{X} \), the feature in even geometry does disperse but not symmetrically about \(\bar{X} \). Furthermore, in even geometry, the binding energy of this band changes with photon energy in the vicinity of \(\bar{X} \).

There are further differences between even and odd geometry for two monolayers of f.c.c. Hg on Ag(100) at 89 K. Clean Ag(100) has a \(\sigma \) symmetry band near \(\bar{X} \) that disperses above the Fermi energy along the \(\bar{F}-\bar{X} \) line in even geometry. For two monolayers of Hg, this feature remains; in addition there is a satellite feature with 1.2 eV greater binding energy which disperses in a similar fashion to the Ag(100) band. As indicated in Figure 8, as with the Ag(100) band, this Hg induced band does not disperse symmetrically about \(\bar{X} \) nor does this band remain independent of photon energy.

The Hg induced band structure in even geometry for two monolayers of Hg on Ag(100) is unusual and inconsistent with a two dimensional band structure. Two bands induced by Hg (as indicated above) do not disperse symmetrically about \(\bar{X} \) and undergo dispersion that is strongly influenced by changes in photon energy. This demonstrates that these bands are not conserving the 2-dimensionality of state and appear to have the characteristics associated with bulk band structure. Two monolayers of Hg remain, nonetheless, of a thickness that is best described as a two dimensional overlayer. Thus the bulk-like band structure characteristics of the two monolayer Hg film on Ag(100) are suggestive of hybridization and the influence of the Ag(100) electronic states upon the Hg overlayer band structure.

We obtained photoemission spectra for clean Ag(100) and following the deposition of one and two monolayers of Hg. The majority of Ag derived photoemission features disperse in a similar fashion for clean Ag(100) and following the sub-

![Figure 7](image_url)

Figure 7. The experimental band structure for the Hg induced features in even geometry (even symmetry with respect to the mirror plane) for one and two monolayers of Hg on Ag(100) at 87 K. (o) indicates data taken with \(h\nu=36 \) eV and (x) indicates data taken with \(h\nu=50 \) eV. Note that there is a photon energy dependence of the bands.

![Figure 8](image_url)

Figure 8. The experimental band structure for two monolayers of Hg in the \(p(1\times 1) \) structure on Ag(100) at 87 K. (x) indicates data points taken at \(h\nu=36 \) eV while (O) indicates data taken at \(h\nu=50 \) eV. The solid (—) lines indicate the clean Ag(100) bands derived experimentally while the dot-dashed lines indicate a theoretical \(\Delta_1 \) from Reference [48, 256, 257]. The (/ / / /) lines indicate Hg bands with some bulk like characteristics while the dashed lines (—) indicate Hg induced bands that preserve two dimensionality of state.
sequent deposition of one and two monolayers of Hg. Nonetheless, the Ag(100) bands are perturbed slightly, particularly in the vicinity of Γ. These results also indicate that the Ag(100) electronic states are mixing with or are perturbed by the Hg electronic states.

The bulk-like band structure behavior of the Hg bands reflects the bulk band structure of the relevant Ag(100) bands. As discussed elsewhere, the 5d Hg bands of Ag symmetry are hybridizing with Ag(100) bands of Ag symmetry, creating this interfacial electronic structure away from Γ in even geometry. Since Ag symmetry states cannot be observed in odd geometry (Table 1) this mixing of Ag and Hg states does not occur in odd geometry. Thus despite the very weak chemical interactions between the Hg overlayer and the Ag(100) surface, the overlayer and the substratated electronic states do mix to form a distinct interfacial band structure away from Γ in even geometry.

The Influence of Structure on Thin Film Magnetism

Thin film ferromagnetism has begun to attract considerable interest, both theoretical and experimental. There are several fundamental questions that motivate the study of magnetism. The classic problems that pertain to the influence of the number of nearest neighbors, nearest neighbor spacings, and the density of states at the Fermi energy upon magnetism can be investigated anew for thin films because of the reduced dimensionality and potentially unusual crystal structures. In addition, the presence of a surface/interface permits the experimentalist to explore the effect of surface/interface states upon magnetism. With thin film metal overlayers, many examples of different classes of magnetic materials can be systematically investigated. Finally the effect of temperature upon thin film magnetism has only just begun to be studied.

A number of studies have been conducted to investigate thin (less than three monolayers) films of ferromagnetic materials. It is known that impurity incorporation, compound formation, and interdiffusion can influence the magnetism of a thin film, in addition to the effects of the film thickness, nearest neighbor spacings, coordination of the overlayer atoms and the influence of the substrate. Unfortunately, some investigations of thin film magnetism were not able to obtain structural information hammering efforts to interpret their results. For all thin films, magnetic and non-magnetic alike, as the thin film thickness increases, the film develops the magnetic properties of the bulk.

As the film thickness increases, not only does the elemental magnetic thin film begin to develop the ferromagnetic properties of the bulk material, but the orientation of easy magnetization vector has been observed to change. This change in the orientation of the magnetization vector has been observed with Fe films deposited on W(100) and on GaAs(100). Indeed, the surface crystal structure and anisotropy of the magnetism may result in unusual orientations of the magnetization vector though little work has been done in this area.

Theoretical predictions indicate that the ferromagnetic properties of the principal ferromagnets, iron, cobalt and nickel, depend strongly upon crystal structure and lattice spacing. There is a pronounced difference between the ferromagnetism of f.c.c. and b.c.c. iron and nickel and between b.c.c. or f.c.c. cobalt and its natural h.c.p. lattice. There is, therefore, considerable appeal in investigating f.c.c. iron (or b.c.c. nickel) with a wide variety of lattice constants. Single crystal substrates provide ideal templates for growing iron, nickel or cobalt in unusual crystal structures. Iron has recently been shown to adopt the f.c.c. structure of a Cu(100) substrate when deposited as a thin film overlayer. As yet there is no conclusive evidence as to whether the iron overlayer on Cu(100) is ferromagnetic. The situation is complicated by the Fe-Fe nearest neighbor spacing. Iron on Cu(100) has a nearest neighbor spacing close to the boundary between ferromagnetic and paramagnetic order. Studies are in progress in several laboratories to investigate this system.

The magnetization of a thin film overlayer can also influence the structure of the thin film. Thin Co films deposition on Cu(100) adopt the f.c.c. lattice of the substrate but because this is not the natural h.c.p. lattice of bulk ferromagnetic cobalt, the thin film reconstructs into a c(2x2) superlattice. Similar reconstructions have been commonly observed for Mo(100) and W(100). For Cr(100), Mo(100), and W(100) there is a high density of surface states near the Fermi energy that dominates the surface properties of these metals. As with the cobalt thin film on Cu(100), a charge density wave induces a periodic reconstruction of the surface into a c(2x2) superlattice as a result of nesting of the Fermi surface of Mo(100) and W(100). It is the result, such as the one observed for cobalt thin films, that points to the strong interrelationship between magnetism and electronic structure.

The photoemission derived density of states alone can provide some indication of the thin film magnetism (though not unequivocally). The exchange splitting of the majority and minority spin states appears in the EDC, typically as a "split" d-band. As the exchange coupling between d-electrons becomes more pronounced the d-band can often be resolved into two distinct features in a magnetic thin film. Such a "split" d-band does not, however, conclusively establish magnetic order.

The substrate can have a profound influence on the magnetic properties of a thin film overlayer not only by forcing the thin film overlayer into new structures, but also by inducing a magnetic moment. Many materials not commonly thought of as magnetic can become magnetic when deposited on an appropriate substrate. Several systems are currently candidates for such behavior, including vanadium on Ag(100) and palladium deposited on Ni(111).

Dowben, Onellion and Kime
Hg overlayers on Ag(100) adopt the f.c.c lattice of the substrate, with the Hg adatom orbitals hybridizing to form a two dimensional band structure for very thin (less than three monolayers) films. The hybridization of Hg bands with the Ag(100) bulk states creates states that are an admixture of Hg and Ag states. The resulting interfacial states may extend several atomic diameters (in the direction normal to the interface) in each direction away from the interface. The two dimensional electronic structure of the Hg overlayer and the interface states include electronic structure that is not part of the electronic structure of either bulk Hg or Ag. Similar developments in the electronic structure are expected for many other metal thin film overlayers.

The pioneering work in this area has, unfortunately, not included all the structural studies that appear necessary for a good understanding of thin film overlayer magnetism and electronic structure. To obtain reliable information about magnetism and electronic structure requires a number of spectroscopies and characterization probes not commonly available together on a single experimental system. Nonetheless, the investigation of metallic thin film overlayers, now increasingly includes the characterization of the thin film electronic and magnetic properties. Electronic structure has been implicated in a number of fundamental properties of bimetallic systems, and future work is in progress to correlate electronic structure with catalytic reactivity, as well as magnetism.

The electronic structure of thin film overlayers also appears to have a profound influence on properties normally thought to be atomic in nature such as the photoemission cross-section of the 5d{2}/2 Hg orbital have been observed [182,241] that have no counterpart in the relative photoemission cross-section of gaseous mercury [213,242-250]. The distinctive features of the relative photoemission cross-section of thin films of Hg have recently been shown to be dependent upon the structure of the thin film. New effects of structure and possibly electronic structure such as this will be increasingly explored in future investigations.

Acknowledgments

This work was supported, in part, by the Basic Energy Sciences Division of the U.S. Department of Energy under grant Nos. DE-FG02-84ER45139 and DE-FG02-87ER45319. We would like to thank the staff of the Synchrotron Radiation Center of the University of Wisconsin, Madison. This facility is supported by grant No. DMR-80-20164 from the N.S.F. This work has been further aided by technical support and assistance from Shikha Varma, J.L. Erskine, and M.A. Thompson.

References

THE INFLUENCE OF METAL SUBSTRATES ON THE ELECTRONIC STATES OF METAL OVERLAYERS

[61] Hoeler W, Moritz W (1986) LEED analysis of a 98.5% pure Ag monolayer on copper (100). Surf. Sci. 175, 63-77.

The Influence of Metal Substrates on the Electronic States of Metal Overlayers

[193] Busch G, Campagna M, Pierce DT, Siegmund HC (1972) Photon energy dependence of spin...

Dowben, Onellion and Kime

