Characterization of Root Exudates From Crested Wheatgrass (Agropyron cristatum)

A. Henry
Utah State University

J. Chard
Utah State University

B. Doucette
Utah State University

J. Norton
Utah State University

Bruce Bugbee
Utah State University, bruce.bugbee@usu.edu

R. Hess
INEEL

See next page for additional authors

Follow this and additional works at: http://digitalcommons.usu.edu/cpl_phytoremediation

Part of the Plant Sciences Commons

Recommended Citation
http://digitalcommons.usu.edu/cpl_phytoremediation/1

This Presentation is brought to you for free and open access by the Research at DigitalCommons@USU. It has been accepted for inclusion in Phytoremediation by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
Characterization of root exudates from crested wheatgrass (Agropyron cristatum)
Exudates are important to phytoremediation

- Co-metabolism
- Increased plant uptake
- Altered soil mobility
Objectives

1. Develop cultural system to grow healthy plants
2. Develop procedures for aseptic culture of:
 a. Seeds
 b. Plants
3. Develop procedures to manipulate exudation with: \(\text{K}^+, \text{NH}_4^+, \text{O}_2, \text{H}_2\text{O} \)
4. Develop procedures to quantify exudates
 a. TOC
 b. GC-MS, HPLC, ion chromatography
Plant Growth Containers

- sterile nutrient solution
- septum
- side-arm
- fine
- Ottawa sand
- coarse
- silicone stoppers
- glass wool wick
- amber collection vial
- amber collection vial
Growing healthy plants: Materials and Methods

• **Nutrient solution:** standard hydroponic solution, no chelate

• **Growth medium:** Ottawa sand

• **Photoperiod:** 16 hours
Techniques for sterilizing seeds

20% Clorox for 60 minutes

Rinse and plate on media for 3-5 days
Assessing microbial contamination in the columns
Days Since Planting

% Sterile Plants

In growth chamber
Plants are now grown in a laminar flow hood.
Increasing Exudation

- Changing NH$_4^+$:NO$_3^-$ ratio
- K$^+$ stress: 5 \rightarrow 1 mM K$^+$
- Drought stress
- Hypoxia: flooding
Quantifying exudates: Total Organic Carbon

TOC in Leachate (ppm)

- Unplanted (n = 3)
- Small (n = 4)
- Medium (n = 8)
- Large (n = 9)
Carbon (µg) detected per 0.3 g glass wool

- Unwashed glass wool
- Washing
- Unwashed silanized glass wool
- Washing
- Washed glass wool
- Washed silanized glass wool
Quantifying exudates: GC-MS, HPLC, ion chromatography

- Organic acids
- Amino Acids
- Sugars
- Phenolics
- Enzymes
- Flavonoids
- Vitamins
Scaling to the field: Quantifying exudates in terms of growth rate
Transpiration Data ➔ Growth Rate

Relative growth rate

$y = 0.053e^{0.077x}$
RGR

\[\mu g \text{ C exuded} \times g \text{ new growth}^{-1} \text{ day}^{-1} \]

Root: shoot

\[\mu g \text{ C exuded} \times g \text{ new root growth}^{-1} \text{ day}^{-1} \]
Acknowledgement

Bruce Bugbee
Julie Chard
Bill Doucette
Jenny Norton

Malinda Hamilton
Richard Hess
Carl Palmer