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ABSTRACT  

 

Characterization of the Long-distance Dispersal Kernel of White-tailed Deer and 

Evaluating its Impact on Chronic Wasting Disease Spread in Wisconsin 

by 

Mennatallah Gouda, Master of Science  

Utah State University, 2023 

Major Professor: Dr. James Powell  

Department: Mathematics and Statistics 

Chronic Wasting Disease (CWD) is a fatal untreatable neurodegenerative disease 

that infects cervids. It is highly contagious and caused by abnormal malfunction and 

assembly of the normal cellular prion proteins (PrPC) into aggregation-prone prions 

(PrPSc). Centers for Disease Control and prevention (CDC) report that the prevalence of 

CWD in free-ranging deer in the US is still relatively low. However, in several states the 

infection rates exceed 1 deer in 10. Cervids may uptake CWD prions from direct 

interaction with infected individuals or from the environment. Infected individuals shed 

prions into the environment through feces, urine, saliva or carcass, and long-distance 

dispersal of infected deer poses a danger of spreading CWD to new regions.  

We propose an Integrodifference Model (IDE) to capture CWD dynamics and the 

consequences of long-distance dispersal behavior of White-Tailed Deer (WTD, Odocoileus 

virginianus). Currently there are no dispersal kernels available to describe the long-

distance dispersal behavior of WTD juveniles. Our aim is to characterize long-distance 

dispersal of WTD juveniles and assess how it may affect CWD spread. We introduce a 

long-distance dispersal model, based on diffusion-settling seed transport by vertebrates, 

accommodating a variety of hypothetical dispersal behaviors of WTD. Four kernels were 
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obtained by solving 2D diffusion-settling Partial Differential Equation (PDE) models and 

approximating using Laplace’s method. We parameterized the kernels with GPS collar 

data collected in Wisconsin, US. Using a Maximum Likelihood Estimation (MLE) 

approach, we fitted the model parameters, and assessed model fits using the Bayesian 

Information Criterion (BIC).  

A Holling type III settling rate function resulted in the most supported long-

distance dispersal kernel reflecting deer preference to not settle down soon after they start 

dispersal. Sensitivity of results was determined using nonparametric bootstrapping and 

the impact of long-distance dispersal on CWD spread was quantified using the IDE model. 

Our results show that long-distance dispersal can magnify the CWD spread by a factor of 

4. Therefore, controlling the total population density and fraction of long-distance 

dispersers will assist CWD management facilities in managing disease spread. 

    (87 Pages) 
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PUBLIC ABSTRACT 

 

Characterization of the Long-distance Dispersal Kernel of White-tailed Deer and 

Evaluating its Impact on Chronic Wasting Disease Spread in Wisconsin 

Mennatallah Gouda 

 

Chronic Wasting Disease (CWD) is a fatal, untreatable neurodegenerative disease that 

infects deer and related species. It is highly contagious and caused by abnormal 

malfunction and assembly of normal cellular proteins into aggregation-prone proteins. The 

Centers for Disease Control and prevention report that the prevalence of CWD in free-

ranging deer in the US is still relatively low. However, in several states the infection rates 

exceed 1 deer in 10. Deer may uptake CWD from direct interaction with infected 

individuals or from the environment. Infected individuals shed CWD into the environment 

through feces, urine, saliva or carcasses, and long-distance dispersal of infected deer poses 

a danger of spreading CWD to new regions. We propose a mathematical model to capture 

CWD dynamics and the consequences of long-distance dispersal behavior of White-Tailed 

Deer (WTD), since there are no dispersal models available to describe the long-distance 

dispersal behavior of WTD juveniles. Our aim is to characterize long-distance dispersal of 

WTD juveniles and assess how it may affect CWD spread. We introduce a long-distance 

dispersal model, based on models of seed transport which accommodate a variety of 

hypothetical WTD dispersal behaviors. Four dispersal models were obtained by finding 

the approximate solutions of the seed transport models tweaked to mimic deer dispersal 

and settling behavior. We used GPS collar data collected in Wisconsin, US to test the 

accuracy of the models we developed. By calculating the prediction errors made by the 

models, we adjusted the model parameters, and assessed the competency of models relative 

to each other. Sensitivity of results was estimated by changing the data randomly to 
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account for the effect of changing data on the results. The settling rate function that 

resulted in the most supported long-distance dispersal kernel reflects deer preference to 

not settle down soon after they start dispersal. Then, the impact of long-distance dispersal 

on CWD spread was quantified using the mathematical model for CWD dynamics we 

proposed earlier. Our results show that long-distance dispersal can magnify the CWD 

spread by a factor of 4. Therefore, controlling the total population density and fraction of 

long-distance dispersers will assist CWD management facilities in managing disease 

spread. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Chronic Wasting Disease (CWD) 

1.1.1 CWD Biomedical Background  

CWD is a fatal disease that infects cervids like elk (Cervus canadensis), deer (Odocoileus 

species in North America), caribou/reindeer (Rangifer tarandus) and moose (Alces alces). 

It is classified as one of the prion diseases or Transmissible Spongiform Encephalopathies 

(TSEs). TSEs are transmissible, untreatable rare neurodegenerative diseases that result 

in neuronal loss and inflammation deficiency (National Institute of Allergy and Infectious 

Diseases [NIH], 2019 & CDC, 2021). TSEs other than CWD include scrapie in goats and 

sheep, Bovine Spongiform Encephalopathy (BSE) in cattle (commonly known as “mad 

cow disease”) and classic Creutzfeldt-Jakob disease (CJD) and variant Creutzfeldt-Jakob 

disease (vCJD) in humans (United States Department of Agriculture, 2020). 

 TSEs are caused by abnormal malfunction and assembly of the normal cellular 

prion proteins (PrPC) into aggregation-prone prions (PrPSc). This can happen through 

spontaneous misfolding, a genetic mutation, or exposure to a prion from an external source 

(Wright et al., 2018). During this conversion, the PrPC, rich in α-helices changes into the 

insoluble conformer PrPSc, rich in β-helices (Eghiaian et al., 2004). TSEs are contagious 

in the sense that a diseased prion protein induces the abnormal folding of normal proteins 

so that they become diseased as well. Prions are most abundant in the brain, causing fatal 

brain damage. Since prions may be shed in the environment, they represent a biological 

hazard that threatens susceptible host populations. (NIH, 2019 & CDC, 2021).  

Chronic Wasting Disease Alliance (CWDA, 2019) and Georgia Department of 

Natural Resources (GDNSR, 2022) note that CWD disease exhibits prolonged periods in 

the incubation stage. Moreover, infected animals show various behavioral changes and 
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poor body condition. For example, they may lose coordination, walk in a repetitive 

pattern, and have wide-based stance. Also, they may develop slight head tremors, prefer 

to be near water sources, experience somnolent periods, and have droopy head and/or 

ears. In addition, their food consumption becomes lower, resulting in body weakness. In 

the last stages of the disease, they commonly show excessive drinking, salivation, drooling, 

and urination (CWDA, 2019; GDNSR, 2022). Unfortunately, science hasn’t discovered a 

treatment or vaccine for CWD yet, and all CWD-positive animals inevitably die in the 

terminal stage of the disease (Virginia Department of Wildlife Resources [VDWR], 2022). 

1.1.2 CWD prevalence 

The CDC reports that the prevalence of CWD in free-ranging deer in the US is 

still relatively low. On the other hand, in several states the infection rates exceed 1 deer 

in 10. In some counties of Wisconsin and Colorado, localized infection rates have reached 

more than 25%. In Wisconsin, 37 counties have observed CWD positive deer. Moreover, 

among captive deer, the infection rates are reported to reach 79%. Until June 2022, 391 

counties in 29 states in the US had CWD in free-ranging herds (Figure 1) (CDC, 2022). 

This poses an increasing threat to herd management, as Edmunds et al. (2016) have shown 

the deer infected with CWD were 4.5 times more prone to death each year in comparison 

with uninfected deer. Moreover, Jennelle et al. (2014) reported that CWD prevalence is 

higher among males and increases with age.  

1.1.3 CWD transmission 

CWD can be transmitted in cervids both directly and indirectly. Direct 

transmission could happen during interaction among conspecifics in reproduction, 

nurturing or competition. Environmental transmission of the disease could happen in 

various ways. Cervids may uptake prions from the environment via ingestion or inhalation. 

After infection with CWD prions, infected individuals shed CWD prions into the 

environment through feces, urine, or saliva. Moreover, when CWD-positive deer die, their 
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carcass decomposes into the environment or could be unsafely disposed to create a “hot 

spot” for infection (Haley et al., 2009; Jacobson et al., 2009; Tamgüney et al., 2009; 

Tamgüney et al., 2012). Tamgüney et al. (2009) showed that infected mule deer do not 

shed prions for around three months after infection. Then, they spend approximately nine 

months shedding the disease but show no symptoms. After that, they spend three more 

months both symptomatic and shedding till death (Tamgüney et al., 2009). Miller et al. 

(2004) and the VDWR (2022) stated that the prions remain infectious for at least 2 years 

in the environment, and likely they persist for longer. However, the infectious period of 

CWD prions has not been exactly quantified. This is because CWD prions are acted upon 

by several environmental factors like plant uptake, transport in the soil column, prion 

inactivation and attachment to particle surfaces, any at which alters prion distribution in 

space, bioavailability, and infectivity (Haley et al., 2009; Jacobson et al., 2009; Tamgüney 

et al., 2009; Tamgüney et al., 2012). The critical dose for environmental exposure was 

reported to be as low as 300 ng of homogenized infected CWD brain administered orally 

to White-Tailed Deer (WTD) a single dose; however, a dosage of 100 ng aliquots three 

times a week did not cause infection (Denkers et al., 2020).   

1.1.4 CWD course of infection 

The overall CWD course of infection has been hard to estimate in nature since the 

exposure time is not given. So, to estimate the duration from exposure to death as the 

end stage for CWD, Williams and Miller (2002) have infected mule deer orally with the 

disease. Their findings state that minimum incubation period was around 15 months, and 

23 months for the average time taken from exposure to death. Moreover, they reported 

that the overall course of disease could exceed 25 months in CWD-positive deer (Williams 

and Miller, 2002). However, these estimates are not the most accurate as they were done 

in 2002 before the development and approval of immunohistochemistry (IHC) assays and 

Enzyme-Linked Immunosorbent Assay (ELISA) diagnostic methods for CWD prions 

detection (United States Department of Agriculture, 2020). Coming to a resolution, 
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CWDA (2019) and GDNSR (2022) stated that the clinical course of CWD (period of time 

from onset of symptoms) can range from few days to almost a year. They highlighted that 

most of the infected animals survive only a few weeks to several months from the start of 

clinical onset of the disease.  

 

Figure 1. Counties witnessed CWD by June 2022. Adapted from CDC, retrieved from 

Occurrence | Chronic Wasting Disease (CWD) | Prion Disease | CDC. 

1.2 W isconsin State history with CWD 

Among many US states with endemic CWD, Wisconsin has perhaps the most 

extensive documented CWD history. The first CWD cases in Wisconsin were detected in 

three WTD on February 28th, 2002, in the Mt. Horeb area of Iowa and Dane counties 

(CWDA, 2002). Since that time sampling has been performed yearly to test for CWD in 

various counties throughout the state (Figure 2) (Wisconsin Department of Natural 

Resources, 2022). Hence, CWD prevalence, history, extensive background research, and 

data availability in Wisconsin makes it an optimum place to investigate into CWD spread 

dynamics.  

https://www.cdc.gov/prions/cwd/occurrence.html#:~:text=Nationwide%2C%20the%20overall%20occurrence%20of,in%204)%20have%20been%20reported.
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Figure 2. Incidence of CWD in Wisconsin in sampled population from 2002 to 2022. 

Adapted from Wisconsin Department of Natural Resources, by J. Pritzl & T. Marien, 

2022, retrieved from Deer Statistics (wi.gov). 

1.3 Role of long-distance dispersal in CWD spread  

Long-distance deer dispersal away from home ranges in the CWD-positive portions 

of Wisconsin poses a danger of spreading CWD to new regions. Therefore, dispersal 

behavior of WTD is a key factor affecting how fast the disease will spread and how it will 

affect wildlife. According to the study done by Skuldt et al. (2008) in south-central 

Wisconsin, adult female WTD rarely exhibit dispersal. Most (80-97%) juvenile females 

stay in their natal home ranges. On the other hand, 46-80% of juvenile males as well as a 

nontrivial fraction of juvenile females travel to new home ranges. Deer of other ages and 

sexes rarely dispersed transiently among different home ranges. However, regardless of sex 

and age, deer may go for short, temporary walkabouts away from their home ranges. 

Migration is not common in south-central Wisconsin; however, any chance for movement 

poses a threat of increasing CWD incidence rate (Skuldt et al., 2008). 

Long-distance dispersal is a density-dependent event; dispersal may take place to 

avoid inbreeding and intraspecific competition. Adult females exhibit intersexual 

https://dnr.wi.gov/wideermetrics/DeerStats.aspx?R=Disease#:~:text=CWD%20was%20first%20detected%20in,southwest%20of%20Madison%2C%20tested%20positive.
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aggressive behavior towards male juveniles, leading to higher probabilities of male juvenile 

dispersal than females. Mature female WTD produce fawns in spring, and therefore 

dispersal probability increases in the spring season. Additionally, during the fall breeding 

season, intrasexual aggression takes place among male deer, leading to elevated dispersal 

probability (Gilbertson et al., 2022). 

 

Figure 3. Schematic diagram of CWD transmission among deer population. Vertical 

transmission refers to transferring the disease from the mother deer to the newborn 

juvenile. Horizontal transmission takes place through interaction of adult deer with their 

conspecifics either in cooperation or competition. Susceptible adult deer may get infected 

but remain asymptomatic; infectious asymptomatic deer may have more energy to spread 

disease than symptomatic. All infected deer contribute to shedding CWD prions into the 

environment, posing a serious biological hazard for deer population. 

1.4 M athematical literature review 

Mathematical modelling is a powerful tool to interpret the complexity of biological 

systems and predict the effects of changing one or more variables. Modelling long-distance 

dispersal of deer juveniles in this study aims at estimating the risk of dispersing far from 

home on CWD spread. Much efforts have been dedicated to modelling CWD transmission 

from both deterministic and stochastic approaches. For example, a stochastic modelling 

approach was adopted by Belsare & Stewart (2020) through developing a customizable 

agent-based modelling framework (OvCWD) for CWD spatial spread. Their model links 

WTD demography to CWD transmission accounts for heterogeneity and nonrandomness 

in the disease dynamics (Belsare & Stewart, 2020).  
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Miller et al. (2006) developed seven deterministic models for CWD transmission, 

neglecting spatial spread. They accounted for a simple direct transmission Susceptible-

Infected (SI) model and added complexity to it to include a latency period (2nd model), 

or an incubation period (3rd model). Moreover, they developed a Susceptible-Infected-

Hazard (SIH) model for indirect transmission through uptake or shedding of CWD prions 

into the environment, and two models combining direct and indirect transmission (one of 

which includes a latency period). The seventh model described maternal transmission but 

this one failed to mimic the epidemiology of the disease. Then, they tested the models 

against two CWD outbreak data in captive mule deer. Their results reveal that the 

indirect transmission of CWD hypothesis is 3.8 times more supported than the direct 

transmission one. However, they did not evaluate the effect of dispersal, especially for long 

distances, on CWD transmission (Miller et al., 2006). 

Garlick et al. (2011) examined dispersal of CWD using a PDE model, derived a 

homogenization technique, and applied it to an ecological diffusion model of CWD to 

assess the effect of habitat on CWD spread. Their method proved to be much simpler 

than the multidimensional homogenization method. They considered a spatial model in 

mule deer based on a SIH model. The assumptions they have made included that the 

disease have not exceeded the initial stage, transmitted by direct contact with infected 

individuals, and is consistently fatal. Moreover, they assumed that the density of normal 

death cases is equal to the density of newborns, and sex, age, and season are independent 

of CWD spread. Their findings show that CWD increases at high-density natural deer 

habitats like riparian areas and forests. Moreover, their model shows less density of 

infected individuals in regions suitable for frequent dispersal behavior like rocky, barren 

regions and developed open spaces (Garlick et al., 2011). 

Moreover, Garlick et al. (2014) used a homogenization approach with a more 

complex model of CWD ecological diffusion to link the local deer movement behavior to 

CWD spatial spread. Their approach shows low computational cost to simulate disease 
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spread. They included in their model deer dispersal and estimated motility coefficients 

from GPS collar data in mule deer. Also, they included the fidelity of mother deer to 

winter and summer periods, as well as the more tendency of male deer to disperse than 

females in the breading season. Their CWD model incorporated sex differences, 

environmental hazard of shed CWD prions, and ecological diffusion (Garlick et al., 2014). 

1.5 Integrodifference equation model  

Garlick et al. (2011, 2014) examined dispersal of CWD using a PDE model with 

SIH, derived a homogenization technique, and applied it for an ecological diffusion model 

of CWD to assess the effect of habitat and local dispersal on CWD spread. However, their 

models could not capture long-distance dispersal because the natural time scale for PDE 

SIH models is years while long-distance dispersal events take place in weeks. Long-distance 

dispersal events are not very frequent in juvenile deer and occur in seasonal pulses. It is 

hard to model those events mechanistically in a PDE SIH model, due to the difference in 

time scales between infection (years) and long-distance dispersal (days/weeks). On the 

other hand, Integro-Difference Equation (IDE) models consider the impacts of relevant 

events over a year. Hence, IDE models are a convenient choice to model CWD dynamics 

and the consequences of seasonal long-distance dispersal behavior of WTD, since dispersal 

events are resolved as discrete applications of probability kernels in space. Furthermore, 

it aligns with the fact that the infectious period of CWD (time from developing the disease 

till death) in WTD is approximately one year, roughly the time between big dispersal 

events and the maturation of juveniles.  

We propose a simplified model for dispersal impacts on CWD spread:  

𝑆𝑛+1 = (𝜌𝐾𝐿 + (1 − 𝜌)𝐾𝑆) ∗ [𝐹(𝐼𝑛, 𝐻𝑛)𝑆𝑛] + 𝐵𝑛      (1) 

𝐼𝑛+1 = (𝜌𝐾𝐿 + (1 − 𝜌)𝐾𝑆) ∗ [(1 −  𝐹(𝐼𝑛, 𝐻𝑛))𝑆𝑛]     (2) 

𝐻𝑛+1 = 𝑒−𝜂𝐻𝑛 + 𝛾𝐼𝑛        (3)  
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Here the variables 𝑆𝑛, 𝐼𝑛, and 𝐻𝑛 represent the density of susceptible deer, infected deer, 

and the concentration of environmental prion hazard in the 𝑛th year. The function 𝐹𝑛 

denotes the probability of susceptible deer escaping infection in the 𝑛th year. The variable 

𝐵𝑛 indicates the density of newborn fawns. The parameters 𝜂 represents the decay rate of 

prion, and 𝛾 represents the rate of shedding prions by infected deer into the environment. 

The parameter 𝜌 represents the proportion of long-distance dispersing juveniles in the 

population, assuming that adult deer do not disperse for long distances. The long-distance 

and short-distance dispersal kernels 𝐾𝐿, and 𝐾𝑆 are probability density functions 

representing the distribution of deer in space after long-distance and short-distance 

dispersals respectively relevant to their starting positions. The convolution of a kernel and 

a population density, 𝐾 ∗ 𝑆 or 𝐾 ∗ 𝐼, accounts for the potential dispersion of deer over a 

year.  

Currently there are no dispersal kernels available which mechanistically describe 

the long-distance dispersal behavior of WTD juveniles, 𝐾𝐿. This study aims to characterize 

long-distance dispersal of WTD juveniles and assess how it may affect CWD spread. We 

introduce a long-distance dispersal model, based on diffusion-settling seed transport by 

vertebrates, which can accommodate a variety of hypothetical dispersal behaviors of 

WTD. Four kernels were obtained by solving the 2D diffusion-settling PDE models in 

integral form and then approximating using Laplace’s method. We parameterized the four 

kernels with GPS collar data collected in Wisconsin, US. Data was filtered to remove 

unrealistic velocity spikes and extract long-distance dispersals from the uneven time 

sampling.  Next, using a MLE approach, we fitted parameters for each model and assessed 

model fits using the BIC. We also tested models for separate female and male dispersal. 

Sensitivity of results was determined using nonparametric bootstrapping. Lastly, the 

impact of long-distance dispersal on CWD spread was quantified using the IDE model (1-

3). 
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CHAPTER II 

 METHODS 

 

2.1    Proposed PDE models for dispersal 

We adopted the following PDE model in 2D based on a seed transport and settling by 

vertebrates model introduced by Neupane & Powell (2015) to describe long-distance deer 

dispersal. For 𝑟 = |𝒙 − 𝒚| where 𝒚 is the initial position, 

𝑃𝑡(𝑟, 𝑡) = 𝐷𝛻2𝑃(𝑟, 𝑡) − ℎ(𝑡)𝑃(𝑟, 𝑡),      𝑃(𝑟, 0) = 𝛿(𝑟)    (4) 

𝑆𝑡(𝑟, 𝑡) = ℎ(𝑡)𝑃(𝑟, 𝑡),                               𝑆(𝑟, 0) = 0     (5) 

𝐾(𝑟) = lim
𝑡→∞

𝑆(𝑟, 𝑡)         (6) 

Here the variables 𝑃(𝑟, 𝑡) and 𝑆(𝑟, 𝑡) represent the density of long-distance dispersing 

juveniles, and juveniles which have settled in a new range, respectively. The long-distance 

dispersal kernel 𝐾(𝑟) is the end result after all dispersers have settled. Dispersers are 

assumed to move randomly with diffusion constant 𝐷 and settling rate ℎ(𝑡) over time. 

The Dirac delta function, 𝛿(𝑟), denotes the initial population density and indicates that 

the initial starting position of dispersers is known. Formulae for ℎ are discussed below. 

The change over time in the dispersing deer density increases by diffusion of deer in 2D 

space 𝐷𝛻2𝑃(𝑟, 𝑡) and decreases with their settling ℎ(𝑡)𝑃(𝑟, 𝑡). Moreover, the change in 

settling deer density increases with time directly with the density of settling deer.  

We introduce constant, Holling type II, III, and a new, strictly increasing type IV 

settling rate functions that represent different behavioral assumptions about juvenile 

WTD dispersal. Four different forms of the settling rate ℎ(𝑡) were proposed as follows:  

 ℎ1(𝑡) = 𝑎𝑏, ℎ2(𝑡) =  
𝑎𝑏𝑡

𝑎+𝑡
, ℎ3(𝑡) =  

𝑎𝑏𝑡2

𝑎2+𝑡2
, ℎ4(𝑡) =  

𝑏𝑡2

𝑎+𝑡
 .   (7) 

Here the parameters 𝑎 and 𝑎𝑏 are half asymptotic dispersal time and the asymptotic 

settling rate respectively. These functions capture differing behaviors of dispersing deer. 

For example, deer may settle down reflecting a constant settling rate function. This 



11 

 

 
 

 

assumes they have same tendency to settle down disregarding the amount of time they 

have been dispersing for. However, a Holling type II function assumes a more realistic 

scenario, assuming the probability of settling at the beginning of dispersal is zero and then 

increases gradually to a plateau at sufficiently enough time for deer to settle down. The 

type III Holling response function represents sigmoidal rates of setting to accommodate 

the fact that deer are less likely to settle close to their home ranges. Both behaviors align 

with adult females kicking male juveniles out so that they cannot settle down soon after 

they started dispersing. As they travel far enough, their tendency to settle down increases 

till it reaches a maximum settling tendency that doesn’t depend on time anymore. 

However, the latter behavior assumes that deer do not get exhausted to the extent that 

they must settle down. Hence, a type IV settling function assumes that deer seldom settle 

down any time close to the dispersal starting time. However, when they spend long enough 

time dispersing, their tendency to settle down increases very rapidly to infinity.  

2.2 Solving the PDE dispersal models 

The PDE system (4-5) was solved analytically in integral form to get the general formula 

of a kernel. We introduce an integrating factor, 

𝑃 = 𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑢(𝑟, 𝑡),       (8) 

which gives  𝑢𝑡 = 𝐷∇2𝑢, 𝑢(𝑟, 0) = 𝛿(𝑟).       (9) 

Using the fundamental solution of the diffusion equation, we get: 

  𝑢 =
1

4𝜋𝐷𝑡
𝑒
−𝑟2

4𝐷𝑡,         (10) 

and this in (8) gives      

𝑃 =
1

4𝜋𝐷𝑡
𝑒−∫ ℎ(𝑠)𝑑𝑠

𝑡
0

−
𝑟2

4𝐷𝑡.       (11) 

Then, we have a solution for 𝑆 in integral form, 
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𝑆(𝑟, 𝑡) = ∫
ℎ(𝜏)

4𝜋𝐷𝜏
𝑒−∫ ℎ(𝑠)𝑑𝑠

𝜏
0 −

𝑟2

4𝐷𝜏  𝑑𝜏
𝑡

0
      (12) 

Hence, a kernel would be:  

𝐾(𝑟) = lim
𝑡→∞

𝑆(𝑟, 𝑡) = ∫
ℎ(𝜏)

4𝜋𝐷𝜏
𝑒−∫ ℎ(𝑠)𝑑𝑠

𝜏
0

−
𝑟2

4𝐷𝜏  𝑑𝜏
∞

0
     (13) 

Using (13), the kernels 𝐾2, 𝐾3, and 𝐾4 were derived. 

2.2.1 Constant settling rate function PDE model 

The kernel 𝐾1 was previously derived by Neupane and Powell (2021) as a Bessel function,  

𝐾1 =
1

2𝜋𝛼2
𝐾0 (

𝑟

𝛼
)        (14)   

where 𝛼 = √
𝐷

𝑎𝑏
, and 𝐾0 is the modified Bessel function of the second kind. 

2.2.2 Variable settling rate function PDE models  

The kernels 𝐾2, 𝐾3, and 𝐾4, resulting from the variable settling rate functions ℎ2, ℎ3, and 

ℎ4, are analytically approximated in their integral forms using Laplace’s method. 

2.2.2.1 Introducing Laplace’s method  

For the kernels 𝐾2, 𝐾3, and 𝐾4, we employed the steepest descent method which is an 

extension to Laplace’s method to approximate the kernel integral (Logan, 2013). The 

method approximates integrals of the form 

𝐼(𝜆) = ∫ 𝑓(𝑡)𝑒𝜆𝑔(𝑡)𝑑𝑡,   𝜆 ≫ 1
𝑏

𝑎
,      (15) 

assuming that 𝑓 is continuous and 𝑔 is sufficiently smooth with a unique maximum at the 

point 𝑡 =  𝑚 ∈ (𝑎, 𝑏), where 𝑔′(𝑚)  =  0, 𝑔″(𝑚)  <  0. This is because the main 

contribution to the value of the integral is expected to originate from the maximum of 𝑔. 

For large 𝜆, we get the following approximation for 𝐼: 

𝐼(𝜆) ~ 𝑓(𝑚)𝑒𝜆𝑔(𝑚)√
−2𝜋

𝜆𝑔``(𝑚)
+ 𝑂(𝜆−

3

2)     (16)   
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2.2.2.2   Using Laplace’s method to approximate the kernels  

2.2.2.2.1 Approximating 𝑲𝟐 

Substituting ℎ2(𝑡) into (8) and using 𝐷 =
𝑐2

𝑎𝑏
, we have 

𝐾2(𝑥) = ∫
𝑎𝑏2(

𝑡

𝑎
+1)

𝛽−1

4𝜋𝑐2
𝑒
𝑎𝑏(−𝑡−

𝑥2

4𝑐2𝑡
)
  𝑑𝑡

∞

0
,                            (17)          

where 𝛽 = 𝑎2𝑏. Letting 𝜆 = 𝑎𝑏, and identifying              

𝑓(𝑡) =
𝑎𝑏2(

𝑡

𝑎
+1)

𝛽−1

4𝜋𝑐2
  and  𝑔(𝑡) = −𝑡 −

𝑥2

4𝑐2𝑡
 ,    (18) 

we find the critical point is 𝑚 =
𝑥

2𝑐
 (details in appendix A). Application of Laplace’s 

method then gives           

𝐾2 ≈ 𝑐2√
𝑟

(𝑎𝑐)5
(1 +

𝑟

2𝑎𝑐
)
𝑎2𝑏−1

𝑒−
𝑎2𝑏 𝑟

𝑎𝑐 .      (19) 

Here 𝑐2 is the constant of normalization, which must be calculated numerically in two-

dimensional space.  

2.2.2.2.2 Approximating 𝑲𝟑 

Substituting ℎ3(𝑡) into (8) and using 𝐷 =
𝑐2

𝑎𝑏
, we have 

𝐾3(𝑥) = ∫
𝑏2𝑡

4𝜋𝑐2(
𝑡2

𝑎2
+1)

𝑒
𝑎𝑏(−𝑡+𝑎 tan−1(

𝑡

𝑎
)−

𝑥2

4𝑐2𝑡
)
  𝑑𝑡

∞

0
     (20) 

Letting 𝜆 = 𝑎𝑏, and identifying    

 𝑓(𝑡) =
𝑏2𝑡

4𝜋𝑐2(
𝑡2

𝑎2
+1)

 and 𝑔(𝑡) = −𝑡 + 𝑎 tan−1 (
𝑡

𝑎
) −

𝑥2

4𝑐2𝑡
,  (21)  

we find the critical point is 𝑚 =
𝑟

√8𝑎𝑐
√1 +

√𝑟2+16(𝑎𝑐)2

𝑟
 (details in appendix A). 

Application of Laplace’s method then gives  

𝐾3 = 𝑐3√
𝜏

𝜏2+2
𝑒
𝑎𝑏(−𝜏+tan−1(𝜏)−

𝑟2

4(𝑎𝑐)2𝜏
) 1

(𝑎𝑐)2
 ,     (22) 

where 𝜏 =
𝑚

𝑎
.  Here 𝑐3 is the constant of normalization, which must be calculated 

numerically in two-dimensional space.  
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2.2.2.2.3 Approximating 𝑲𝟒 

Substituting ℎ4(𝑡) into (8) and using 𝐷 =
𝑐2

𝑎𝑏
, we have 

𝐾4(𝑥) = ∫
𝑏2𝑡(

𝑡

𝑎
+1)−𝛽−1

4𝜋𝑐2
𝑒
𝑎𝑏(−

𝑡2

2𝑎
+𝑡−

𝑥2

4𝑐2𝑡
)
𝑑𝑡

∞

0
      (23)  

where 𝛽 = 𝑎2𝑏. Letting 𝜆 = 𝑎𝑏, and identifying    

𝑓(𝑡) =
𝑏2𝑡(

𝑡

𝑎
+1)

−𝑎2𝑏−1

4𝜋𝑐2
 and 𝑔(𝑡) = −

𝑡2

2𝑎
+ 𝑡 −

𝑥2

4𝑐2𝑡
,    (24)   

we find the critical point is 𝑚 = 
𝑎

𝐴+𝐵
, where 

𝐴 =  √2
(𝑎𝑐)2

𝑟2
(1 + √1 +

16

27

(𝑎𝑐)2

𝑟2
)

3

 and 𝐵 =  √2
(𝑎𝑐)2

𝑟2
(1 − √1 +

16

27

(𝑎𝑐)2

𝑟2
)

3

 (25) 

(details in appendix A). Application of Laplace’s method then gives  

𝐾4 = 𝑐4𝜏
(1+𝜏)−(𝑎

2𝑏+1)

√1+
𝑟2

2(𝑎𝑐)2𝜏3

𝑒
𝛽(−

1

2
𝜏2+𝜏−

𝑟2

4(𝑎𝑐)2𝜏
) 1

(𝑎𝑐)2
,    (26)  

where 𝜏 =
𝑚

𝑎
.  Here 𝑐4 is the constant of normalization, which must be calculated 

numerically in two-dimensional space.  

2.3 Data 

The data used for this project was provided by the Wisconsin Department of Natural 

Resources (WDNR), collaboratively with more than 300 landowners, more than a 

thousand (1,157) WTD individuals were GPS collared from 2017 to 2020 in Dane, Grant, 

and Iowa counties in southwestern Wisconsin. The data was provided with potential 

erroneous readings screened out using dilution of precision and ruling out location changes 

due to GPS errors. 

The data consists of time series of positions of deer juveniles, timestamp in Julian 

days at each position, difference between two consequent positions: difference between 

two consequent y positions: dy, juveniles’ age, sex, collar ID, collar start and end dates, 

reason for removing the collar, x and y coordinates of mortality position if applicable, and 

simple cause of death like car accident, harvest, … etc. if applicable. In addition, the data 
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was partitioned into male, female, 8-months-old, and 20-months-old deer. Moreover, 

dispersals were classified based on season of dispersal either spring or fall. Combinations 

of all these six categories were made to reveal the effects of sex, age, and dispersal season 

on the dispersal behavior. 

2.4 Long-distance dispersal filtering   

Long-distance dispersals are defined as the cumulative distance travelled from one home 

range to the other. To prepare for testing the proposed kernels against the long-distance 

dispersals from GPS collar data, we needed to extract the long-distance dispersals first. 

However, the datapoints were unevenly distributed in time, and this caused the 

cumulative distance and cumulative velocity curves to have sharp spikes up and down. 

Moreover, we needed to define home ranges to be able to calculate distances in between 

them. This required us to eliminate false home ranges to get a correct resolution on what 

the long distances are. Hence, extraction of long-distance dispersals was performed in two 

stages: Fourier smoothing, and filtering based on period and distance of dispersal. 

2.4.1 Fourier smoothing 

The Fast Fourier Transform (FFT) was used to remove transient spikes and identify 

sustained average velocities associated with long-distance dispersal. The velocities were 

smoothed based on frequencies with periods longer than 11 days. A subsequent velocity 

threshold of 300 m/day was set to eliminate movement not associated with travel in 

between home ranges. The 11 days and 300 m/day estimations were based on optimization 

of area under the receiver-operator curve. Potential home ranges were distinguished as 

intervals during which average velocity did not exceed the migration threshold. 

2.4.2 Space and time filtering  

After determining the potential home ranges, the starting and ending positions of potential 

long-distance dispersal movements were calculated based on displacement. Then, we 

ignored intervals when deer spent less than two weeks to avoid false dispersals as deer 

might be having a rest during travelling, not a settling into a new home range. In another 
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scenario those relocations could be interpreted as transient walkabouts from and to their 

home ranges, not long-distance dispersals due. Moreover, we ignored relocations that did 

not exceed twice the standard deviation of the average population home range, to avoid 

overlapping home ranges. This latter condition sets the boundaries of each home range in 

such a way that it could not be confused with a later home range.   

2.5 Parameter fitting  

2.5.1 M aximum Likelihood Estimation  

We used Negative Log Likelihood (NLL) to estimate the parameters 𝛼 and 𝛽 in the four 

kernels. Let the observed dispersal distances be denoted by {𝑟𝑗} 𝑗=1
𝑛 , then the likelihood of 

model 𝑖 is:  

𝐿𝑖 = 𝛱𝑗(𝐾𝑖(𝑟𝑗; 𝛼, 𝛽)𝑟𝑗∆𝑟),        (26) 

The NLL for each model was then       

𝑁𝐿𝐿𝑖 = −∑ log(𝐾𝑖(𝑟𝑗; 𝛼, 𝛽)𝑟𝑗∆𝑟)
𝑁
𝑗=1 .      (27) 

This was the objective function for minimalization using MATLAB’s fminsearch.    

2.6 M odel competition & uncertainty quantification  

2.6.1 Bayesian Information Criterion competition  

BIC measure is used to estimate the competency of a model. The lower the BIC of a 

model, the better the model fit to the data, penalized by model complexity. Differences in 

BIC values assess how a model performs in comparison to another model. We used ∆BIC 

values to distinguish the best of all four hypothesized models for long-distance dispersal. 

Moreover, as the total juvenile population was subdivided into male and female juveniles 

of age 8 months, and age 20 months dispersing in spring and fall, the ∆BIC values were 

calculated for each category to select the kernel showing the best fit for it. Furthermore, 

we used BIC to determine which is most competitive between having one model for the 

whole juvenile dataset or using separate models for males and females, as we expected 

that male dispersal behavior favors a different dispersal model than females.  
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BIC values were calculated for all four models using  

𝐵𝐼𝐶 = 2 ∗ 𝑁𝐿𝐿 + 𝑘 ∗ log (
𝑁

2𝜋
).      (28) 

Here the parameters 𝑘, 𝑁 are the number of model parameters and number of observations 

respectively. Odds ratio is another measure that we are using to determine the probability 

that one model is better than another model, and hence detect if a model introduces 

significant improvement. The odds ratio between two models with a BIC difference of 

∆BIC is 𝑒
1

2
∆BIC . Significance is considered at ∆BIC = 4.6 as this yields odds ratio of 10 

reflecting odds ten times in favor of the better model.  

2.6.2 Nonparametric bootstrapping 

We performed nonparametric bootstrapping to determine Confidence Intervals (CIs) and 

quantify uncertainty. One thousand datasets were generated by random sampling from a 

uniform distribution with replacement. For each dataset, models were fit and parameters 

were estimated using MLE. CIs were calculated for all parameters and BIC values with 

95% confidence.  

Moreover, the one thousand bootstrapped datasets were each partitioned into males 

and females. Each category was fit to the four models and BICs were calculated. The 

models showing the best fit for each category: females and males were determined as they 

had the lowest mean BIC value over the bootstrapped sample. Then, the ∆BICs were 

calculated relative to the lowest model. After that, to determine if there is an advantage 

to use different models for males and females than one model for the joint sample (males 

and females grouped), we added the BICs of male sample (calculated using the best model 

for males) to the BICs of female sample (calculated using the best model for females) and 

compared the summation to the BICs of the joint sample (calculated using the best model 

for joint sample). Also, we used ∆BIC as a measure of model competition considering that 

the better hypothesis is to fit different models to males and females, so they were 

subtracted from the joint BICs. 
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2.7 Assessing impact of long-distance dispersal on CWD spread 

2.7.1 Specify IDE model variables  

The short-distance dispersal kernel 𝐾𝑆 was defined as follows:  

𝐾𝑆 = 
𝑒
−
𝑟2

2𝜎2

2𝜋𝜎2
         (29) 

where 𝜎 is the mean distance covered in dispersal within a home range. Moreover, a 

formula for the 𝐹 function proposed, 

𝐹 = 𝑃(escape threshold environmental exposure)  •  𝑃(escape direct infection) 

= 𝑒−𝜇⌊𝐻𝑛−𝐻𝑐⌋ (1 +
𝛼𝐼𝑛

𝜅
)−𝜅.       (30) 

Here the parameter 𝜇 is yearly probability per area/year of encountering prion hazard 

above critical threshold, 𝐻𝑐 is the critical dose of environmental hazard, 𝜅 is the clumping 

parameter for negative binomial distribution, and ⌊𝑥⌋ notation means that if the value 𝑥 

is negative, a zero will be substituted for it. The probability of deer escaping CWD 

infection 𝐹 can be estimated as a fraction of indirect to direct CWD transmission terms. 

Indirect transmission is estimated by the probability that the environmental hazard dose 

a deer is exposed to 𝐻𝑛 does not reach 𝐻𝑐. So, 𝑃(escape exposure to hazard above 

threshold) assumes a Poisson distribution for a deer not to encounter an environmental 

hazard that exceeds critical threshold. On the other hand, 𝑃(escape direct contact among 

conspecifics) accounts for the probability that a deer escapes direct contact with an 

infected deer according to a negative binomial distribution. 

2.7.2 Fitting IDE model parameters   

The IDE model parameters in the absence of dispersal were fit using study data published 

by Miller et al. (2006). They provided cumulative death rates of captive mule deer from 

two CWD epidemics beginning in 1974 and 1992 respectively and held at the Colorado 

Division of Wildlife Foothills Wildlife Research Facility. The first epidemic (1974-1985) 

caused the second epidemic to happen (1992-2001), despite amelioration efforts (removal 
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of carcasses, exposure to free air and sunshine) which supports that CWD prions are very 

hard to eliminate. 

The mortality rates provided by Miller et al. (2006) were used to determine five of 

the IDE model parameters: prion decay rate 𝜂, rate of shedding prions 𝛾, indirect 

transmission coefficient 𝜇, direct transmission coefficient 𝜈, and clumping parameter 𝜅. 

Parameters related to dispersal (either short or long) could not have been fit from Miller 

et al. (2006) data as the study was made on penned herds. To estimate other parameters, 

we have used the fminsearch function in MATLAB to minimize Sum Squared Error (SSE) 

between the IDE model predictions and observed mortality. 

Theses parameters represent contact rates in penned herds; Miller et al. (2006) 

suggested that direct and indirect CWD transmission coefficients should be divided by 10 

to reflect the crowdedness of the deer pen compared to the wild. We seek to determine a 

more specific scaling parameter. Following Hefley et al. (2017), we used their estimation 

of a net exponential force of infection rate 𝜆 ≈ 0.985 per year. Let 𝑠 be a contact scaling 

factor and the total population density 𝑃 𝑡𝑜𝑡𝑎𝑙 ≈ 40 WTD/km2 (approximate average 

density in southern WI). Then,  

2.678 ≈ 𝑒𝜆 = [1 − 𝐹(1,  𝐻𝑐 + 1)]𝑃 ≈ 𝑠[ν + μ]𝑃 ≈ 𝑠 (0.2)(40)        (31) 

Solving for 𝑠 gives 𝑠 ≈ 0.335. 

Moreover, through direct communication with Dr. Joel Pedersen, we learned that 

the amount of prions being shed by an infected deer during its lifetime, 𝛾, is approximately 

the same as the amount of prions found in its carcass, so we doubled our estimate for 𝛾. 

Furthermore, we estimated the standard deviation of an average home range is 819 m 

which will be used as the standard deviation, 𝜎, for the short dispersal kernel, 𝐾𝑆. 
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2.7.3 IDE model simulations  

The best performing long-distance dispersal kernel derived in this study was substituted 

in the IDE model to determine its effect on CWD spread. We have used FFT to solve the 

IDE model on a discretized space domain. Considering a one-thousand-kilometer spatial 

domain centered around the location 𝑥 = 0 with step size 
2∗500

213
 km. As for the time domain, 

we have used a total time of 100 timesteps where each step is a year. We have set the 

initial infected deer density 𝐼0 to 3 infected deer per km2 in the space from 𝑥 =  −10 to 

10. Then, to maintain the total population density 𝑃𝑡𝑜𝑡𝑎𝑙 constant, which we assumed it 

to be 100 deer/km2 (approximate deer density in the core CWD region of WI), the initial 

susceptible deer density 𝑆0 was set to 100 − 𝐼0. The initial CWD hazard density 𝐻0 was 

to set to be the quasi-steady state value of 𝐻 which is the equilibrium ratio of hazard to 

infected deer density. Hence, 𝐻0 = 
𝛾

(1−𝑒𝜂)∗ 𝐼0
. The fraction of long-distance dispersers 𝜌 was 

set to 0.05. A critical threshold was chosen for the environmental hazard 𝐻𝑐 and set to 1 

infectious dose per km2. Hence, all other hazard-related parameters were measured relative 

to it.  

The density of infected deer was simulated over the space domain. A threshold for 

detectable level of CWD in a deer population was set to 5% of the total population density. 

Then, successive waves of infected deer density were graphed versus the space domain. 

The locations at which each wave equals the CWD detection threshold were determined. 

After that, the front velocity of CWD, 𝑐𝑓𝑟𝑜𝑛𝑡, is a linear fit estimated by the difference 

between locations over number of years. We calculated it over the 100 years to get a good 

grasp of how CWD is spreading over time. Also, we evaluated the impact of long-distance 

dispersal as total deer population density 𝑃𝑡𝑜𝑡𝑎𝑙 and fraction of long-distance dispersers 𝜌 

vary in realistic parameter regimes by plotting the front velocity of CWD, 𝑐𝑓𝑟𝑜𝑛𝑡, versus 

total deer population density 𝑃𝑡𝑜𝑡𝑎𝑙 using 𝜌 = 0, 0.01, 0.05, and 0.1.  
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CHAPTER III 

 RESULTS 

 

3.1 Characteristics of long-distance dispersal  

Several measures of central tendency and ratios were calculated to characterize the 

empirical data. Males represented 51% of the total juvenile population in our dataset. Out 

of 363 deer, 113 exhibited long-distance dispersal. Mean dispersal distance for males was 

10,325 m while that for females was 14,567 m. More juvenile males (49%) exhibited 

dispersal than females (12.36%). Moreover, 48% of deer died by the end of the study due 

to different reasons including CWD sickness. In about 42% of long-distance dispersals the 

deer dies in the end, which poses the danger of spreading infection to new regions if the 

deer was CWD positive. Percentage of males who were not reported to die by the end of 

the study (48%) was less than that of females (57%).  

The age of juveniles was estimated at the time of collaring. All collaring events 

took place in winter, after the birth year. The fraction of 8-months-old juveniles was 71% 

while 20-months-old juveniles were only 29%. Juveniles of age 8 months old exhibited 

dispersal (40%) much more than juveniles of age 20 months old (10%). Almost the same 

fraction of juveniles died for each age 8 (53%) and 20 (50%) months years old. Twenty-

month juveniles dispersed on average for slightly longer distances (12,837 m) than the 8-

month juveniles (12,019 m).  

We found that juveniles disperse in two episodes over the year, spring and fall 

(Figure 4). Frequency of long-distance dispersals in both episodes indicate that juveniles 

are slightly more likely to disperse in spring (58 long-distance dispersals) than fall (55 

long-distance dispersals). Mean long-distance dispersals in fall (15,853 m) was almost 

double that in spring (8,124.7 m). Percentage of long-distance dispersal events were 

calculated at first spring, first fall, and second spring, where the order of the season is 
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according to which season juveniles encounter first after maturation (Figure 5). We found 

that most long-distance dispersal events take place at the age of one with a slight bias 

towards the spring season. 

 

Figure 4. Long-distance dispersal in juveniles occurs mainly in two seasons. Two main 

peaks are shown for dispersal indicating spring and fall dispersals respectively. 

3.2 M odel competition and uncertainty quantification  

3.2.1 M odel competition with GPS collar data 

The PDE kernels were multiplied by a factor of 2𝜋𝑟 to account for observations in 

radidal bins, and plotted versus the dispersal distance histograms (Figure 6). The four 

kernels showed a good fit to the data with models II and III as the best two. On the other 

hand, model IV showed the least accurate fit. For more accurate model competition that 

differentiates between the performances of models II and III, we calculated BIC values for 

each using NLL. The best fit according to the BIC values was model III with BIC value 

of 4803.9 (lowest BIC value) while the second best was model II with BIC value of 4805.4. 

The third performing model was model I, and lastly model IV.  
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Figure 5. Percentage of long-distance dispersal events to total alive juvenile deer at a 

given season. The order of the season is according to which season juveniles encounter 

first after maturation. 

Model parameters 𝛼 and 𝛽 were estimated for each of the four PDE models using 

the original dataset (Table 1) and using the bootstrapped dataset (Table 2).   

Table 1. Nominal values of the PDE model parameters using joint sample 

 Model I Model II Model III Model IV 

𝛼 (km) 7.7366 1.0891 1.0683 5.9993 

𝛽  -- 0.1657 0.1504 1.0503 

 

Table 2. Estimated parameters of PDE model among long-distance dispersal models 

using the bootstrapped joint sample 

 Model I Model II Model III Model IV 

Mean 𝛼 (km) 7.7306 1.3020 1.1577 6.3036 

CI of 𝛼 (km) (6.6867, 8.7899) (0.5149, 2.4795) (0.7421,1.746) (5.256,7.5696) 

Mean 𝛽  -- 0.2194 0.1712 1.1566 

CI of 𝛽 -- (0.0548,0.4954) (0.0902,0.3018) (0.8337,1.7104) 
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Figure 6. Fits of models I, II, III, and IV shown in red, magenta, green, and cyan 

respectively are plotted against long-distance dispersals from GPS data in km. Model 

I assumes deer will have equal tendency to settle down at any time from dispersal 

start. Model II considers that deer would not settle right away, and tendency increases 

with time. Model III adds that deer are motivated not to settle down any time soon 

after the dispersal start while model IV assumes motivation to settle down increases 

linearly with time. The four kernels show a good approximation to the data. However, 

𝐾4 is a little off the general behavior of data. 

Nominal values of BIC values were near the peak in the CIs and their distributions 

behave well despite changing the data (Figure 7). 

Table 3. Nominal BIC values competition among long-distance dispersal models using 

the joint sample 

 Model I Model II Model III Model IV 

BIC 4807.8 4805.4 4803.9* 4828.1 

∆BIC 3.8846 1.4795 0 24.2398 

Odds ratio 6.9748 2.0954 1 1.8349e+05 

* Indicates the best model   
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Figure 7. BIC distribution for all models using one thousand bootstrapped datasets. All 

four distributions are well-behaved and the nominal BIC values are close to the peaks and 

in the CI range which supports that the BIC values are valid. 

3.2.2 Joint model selection based on ∆BIC  

The ∆BIC values were calculated to evaluate the performance of long-distance dispersal 

models relative to the best. The BIC values showed that 𝐾3 is the best kernel as it has 

the lowest BIC, and competency of the other models was assessed using ∆BIC relative to 

model III using the original dataset (Table 3) and using the bootstrapped dataset (Table 

4 & Figure 8). Model II shows the second-best performance. The odds ratio shows that 

model III is almost seven times better than model I, and more than two times better than 

model II. On the other hand, model III is massively (1.8e+5) better than model IV. 

3.2.3 M odel selection across ages, sexes, and seasons 

We assessed different kernels according to their ∆BIC performance with different 

subpopulations. Hence, using the GPS data, we learned that male juveniles showed better 

fit with Model III while females showed better fit with model I. Also, the 8-months-old 
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juveniles behaved best like model III with BIC value of 4376.8 and the second-best model 

for them was model II with BIC value of 4378.1, while those of 20 months old, favored 

model I with BIC value of 427.52 and the second-best model for them was model III with 

BIC value of 427.61. In the spring, juveniles preferred model II with BIC value of 2248, 

and their second best was model III with BIC value of 2248.5. However, in the fall, the 

best model for juveniles was model I with BIC 2530.4 and second best was model III with 

BIC 2530.4. Here, the comparison of BIC values across different genders is not applicable 

as the data modelled in the two cases is different.  

 

Figure 8. ∆BIC distribution for model I, II, IV relative to model III using one thousand 

bootstrapped datasets. All four distributions are well-behaved and the nominal ∆BIC 

values are close to the peaks and in the CI range which supports that the ∆BIC values 

are valid. Relative to model III, all models show positive mean ∆BIC values.  
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Table 4. Calculated BIC values among long-distance dispersal models using the 

bootstrapped joint sample 

 Model I Model II Model III Model IV 

Mean BIC 4806.1 4802.8 4801.6* 4824.6 

CI of BIC  (4747, 4860) (4741,4861) (4738,4858) (4754,4888) 

∆ Mean BIC 4.5 1.2 0 23 

CI of ∆BIC (1.2426,8.8964) (-0.3358,2.374) -- (8.3313,38.303) 

Odds ratio 9.49 1.82 1 98715 

* Indicates the best model  

3.2.3.1 Competition between one model for both genders versus two models: 

males and females 

We assessed the competition between setting up one model for the whole juvenile 

population or two different models for juvenile males and juvenile females. The best model 

was chosen for males and for females based on ∆BIC calculations using the original dataset 

(Tables 5 & 6 respectively) and the bootstrapped dataset (Tables 7 & 8 respectively). The 

results agree that the best fit for males was model II while for females it was model I in 

comparison to model III, the best fit for the joint sample. However, the odds ratio show 

that model III was very close to best represent the male sample using both the original 

and bootstrapped datasets. Also, it shows that model III was nearly the best fit for the 

female sample rather than model I using both datasets. Nevertheless, we found that there 

is an overall advantage of fitting different models to each category: males and females 

(Figures 10, 11) as the summation of mean BIC values for both male and females sample 

gave 4796.0 while the mean BIC value of the joint for the joint sample was 4801.6. This 

was also supported when the nominal BIC values were used as the summation of BIC 

values for male and female samples was 4799.77 while that of the joint sample was 4803.9. 
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Table 5. Nominal BIC values competition among long-distance dispersal models using 

the male sample 

 Model I Model II Model III Model IV 

BIC 3849.5 3843.7 3843.6* 3852.6 

∆BIC 5.878 0.1054 0 9.0475 

Odds ratio 18.897 1.054 1 92.18 

* Indicates the best model  

Table 6. Nominal BIC values competition among long-distance dispersal models using 

the female sample 

 Model I Model II Model III Model IV 

BIC 956.17* 957.17 956.77  968.26 

∆BIC 0       0.9985       0.5972     12.092 

Odds ratio 1 1.647 1.3479     422.42 

* Indicates the best model  

Table 7. Bootstrapped BIC values among long-distance dispersal models using the male 

sample 

 Model I Model II Model III Model IV 

Mean BIC 3849.1 3842.4875* 3842.5185 3851.2 

CI of BIC (3518.4, 4135.9) (3511.8, 4129.2) (3512.2, 4129.4) (3532, 4136.8) 

∆ Mean BIC 6.6125 0 0.031 8.7125 

CI of ∆BIC (1.421,12.99) -- (-1.077,1.1498) (3.2265,15.752) 

Odds ratio 27.28 1 1.0156 77.964 

* Indicates the best model  

Furthermore, we estimated the PDE model parameters 𝛼, and 𝛽 for both males 

and females through minimizing the NLL using the original dataset (Tables 9 & 10) and 

bootstrapped dataset (Tables 11 & 12). 



29 

 

 
 

 

Table 8. Bootstrapped BIC values among long-distance dispersal models using the female 

sample 

 Model I Model II Model III Model IV 

Mean BIC 953.55* 954.28 953.95 964.07 

CI of BIC (662.7,1265.3) (662.9,1266.1) (662.72,1265.7) (666.94,1275.9) 

∆ Mean BIC 0 0.73 0.4 10.52 

CI of ∆BIC -- (-0.087,1.1446) (-0.208,0.733) (1.5221,18.802) 

Odds ratio 1 1.4405 1.2214 192.48 

* Indicates the best model  

Table 9. Nominal values of the PDE model parameters using the male sample 

 Model I Model II Model III Model IV 

𝛼 (km) 7.2005 2.2097 1.6202 7.2426 

𝛽  -- 0.41562 0.26548 1.5761 

 

Table 10. Nominal values of the PDE model parameters using the female sample 

 Model I Model II Model III Model IV 

𝛼 (km)      10.017 0.13304 0.4152604 6.8389 

𝛽   0.013 0.0408 0.8199 

 

Table 11. Estimated parameters of PDE model among long-distance dispersal models 

using the bootstrapped male sample 

 Model I Model II Model III Model IV 

Mean 𝛼 (km) 7.2013 2.7765 1.8247 7.7837 

CI of 𝛼 (km) (6.3095, 8.1396) (0.995, 5.912) (1.0288, 3.0529) (5.899, 10.578) 

Mean 𝛽  -- 0.59487 0.32115 1.8199 

CI of 𝛽 -- (0.1345, 1.424) (0.148, 0.619) (1.054, 3.124) 
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Figure 10. Distribution of BIC values for male-female and joint samples. The male 

bootstrapped sample was fit to model II, and the female bootstrapped sample was fit to 

model I whereas the joint bootstrapped sample (males and females) was fit to model III. 

The model selection was made based on the lowest BIC values. In this figure, the BICs 

(including nominal values) for males and females were added together versus the BICs for 

the joint sample. The trend shows that fitting different models to males and females gives 

overall lower BIC values than fitting one model for the joint sample. The summation of 

the nominal BIC values for male and female samples was 4800 while that of the joint 

sample was 4804. Hence, the ∆BIC is 4, which gives odds ratio of 7.39 (close to be 

significant) indicating that using separate models for each gender is more than seven times 

better than using one model for both genders. 

Table 12. Estimated parameters of PDE model among long-distance dispersal models 

using the bootstrapped female sample 

 Model I Model II Model III Model IV 

Mean 𝛼 (km) 10.083 0.45192 0.54903 6.9654 

CI of 𝛼 (km) (6.6548, 14.661) (0.0028, 1.3577) (0.2338, 1.112) (5.3119, 9.001) 

Mean 𝛽  -- 0.09131 0.06574 0.89269 

CI of 𝛽 -- (9.655e-5, 0.21) (0.016, 0.151) (0.716, 1.188) 
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Figure 11. Distribution of ∆BIC values for male-female and joint samples. The BICs of 

male and female samples were subtracted from the BICs from the joint (male and female 

grouped). The graph shows a right tail (82.4% of ∆BICs are positive) which supports the 

hypothesis that fitting different kernels to males and females is better than fitting one 

kernel for both due to behavior variation between genders.  

3.3 Impact of long-distance dispersals on CWD spread  

The IDE parameters: prion decay rate 𝜂, rate of shedding prions 𝛾, indirect transmission 

coefficient 𝜇, direct transmission coefficient 𝜈, and clumping parameter 𝜅 were estimated 

as using SSE (Table 13). Using the fitted parameters, the IDE model showed a very good 

fit to the mortality rates reported by Miller et al. (2006) (Figure 12).  

Using the scaling factor, 𝑠 = 0.335, which matches our IDE model contact 

parameters with observed growth of infection. (Hefley et al., 2017) come to the values in 

Table 14. The direct and indirect transmission coefficients 𝜈 and 𝜇 respectively were 

divided each by 𝑠 to account for changing the setting of deer from a pen as reported by 

Miller et al., (2006) to the wild. The rate of shedding prions 𝛾 was multiplied by two to 

include the number of prions added to the environmental hazard by corpses, since corpses 

were removed in the experiment done by Miller et al. (2006). Hence, the parameters 𝛾, 𝜈, 
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and 𝜇 were adjusted, the parameters 𝐻𝑐, and 𝑃 were set, and we used the estimates from 

Miller (2006) for the parameters 𝜂, and 𝜅, and the estimate from our GPS collar data for 

the parameter 𝜎. 

 

Figure 12. IDE model predictions for CWD mortality rates in two herds of WTD. The 

datapoints showing death rates from Miller et al. (2006) in red, were used to fit the IDE 

model parameters. Best-fit IDE model predictions are shown in blue for herd 1 in 1974, 

and herd 2 in 1992.  

3.3.1 Effect of different long distance dispersal kernels on CWD spread  

CWD infection waves were simulated over 100 years using the best performing long-

distance dispersal model, model III (Figures 14 & 16) versus not accounting for any long-

distance dispersal behavior (Figures 13 & 15) to assess the effect of long-distance dispersal 

on CWD spread. In Figures 14 & 16, the total deer population 𝑃 𝑡𝑜𝑡𝑎𝑙 was chosen to be 

100 deer per km2 and the fraction of long-distance dispersers 𝜌 was chosen to be 0.05. 

While deer densities in the core WI CWD area approach this density, it is unrealistically 

high for most environments and was chosen purely for purposes of illustration. The figures 

support that long-distance dispersal enhances CWD spread into new regions as the 
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infected individuals spread over more than 400 km instead of only 100 km in the case of 

deer not travelling to new home ranges. 

 

Figure 13. CWD wave simulations over space domain for 100 years with no long-distance 

dispersal (𝜌 = 0) and total population 𝑃𝑡𝑜𝑡𝑎𝑙 = 100. 

Table 13. Parameters estimated from Miller et al. (2006) data 

Parameter Value Unit 

Prion decay rate (𝜂) 0.478 Year-1 

Rate of shedding prions (𝛾) 0.232 Infectious dose/deer 

Indirect transmission coefficient (𝜇) 0.177 Area/infectious dose 

Direct transmission coefficient (𝜈) 0.0313 Area/deer 

Clumping parameter (𝜅) 0.769 -- 

 

CWD wave front positions show a linear trend with time. The starting jump is a 

transient due to the square-wave initial conditions accelerating to counter-propagating 

waves of invasion. (Figures 17 & 18). 
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Table 14. Final IDE model parameters 

Parameter Value Unit 

Standard deviation of short-dispersal distance (𝜎) 0.819 Km 

Prion decay rate (𝜂) 0.478 Year-1 

Rate of shedding prions (𝛾) 0.464 Infectious dose/deer 

Direct transmission coefficient (𝜈) 0.010475 Area/deer 

Indirect transmission coefficient (𝜇) 0.05925 Area/infectious dose 

Clumping parameter (𝜅) 0.769 -- 

Prion hazard threshold (𝐻𝑐) 1 Infectious dose/km2 

Initial population density (𝑃) 100 Deer/area 

 

 

Figure 14. CWD wave simulations over space domain for 100 years using the third long-

distance dispersal model with total population 𝑃 𝑡𝑜𝑡𝑎𝑙 = 100, and fraction of long-distance 

dispersers 𝜌 = 0.05.  
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Figure 15. CWD 100th wave outline over space domain with no long-distance dispersal 

and total population 𝑃 𝑡𝑜𝑡𝑎𝑙 = 100.  

 

Figure 16. CWD 100th wave outline over space using the third long-distance dispersal 

model, total population 𝑃 𝑡𝑜𝑡𝑎𝑙 = 100, and fraction of long-distance dispersers 𝜌 = 0.05. 
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Figure 17. Front movement plotted over time domain with no long-distance dispersal, and 

total population 𝑃 𝑡𝑜𝑡𝑎𝑙 = 100. The figure shows slow and smooth disease spread in the 

first few years then it approaches a linear trend of changing the front position over time. 

 

Figure 18. Front movement plotted over time domain using the third long-distance 

dispersal model with total population 𝑃 𝑡𝑜𝑡𝑎𝑙 = 100, and fraction of long-distance dispersers 

𝜌 = 0.05. Model III affects CWD with a big jump of disease spread in the first few years. 

Then, it increases at a steady rate but it is much faster than that in the case of no long-

distance dispersal. 
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3.3.2 Role of population size and fraction of long -distance dispersers  

The CWD front speed, 𝑐𝑓𝑟𝑜𝑛𝑡, appears to increase asymptotically linearly with higher total 

population density. Long-distance dispersal significantly influences CWD to spread more 

rapidly even for fractions of dispersing deer as low as 𝜌 = 0.01 (Figure 19). The effect of 

long-distance dispersal on CWD spreading speed is most obvious after the total population 

density 𝑃𝑡𝑜𝑡𝑎𝑙 becomes approximately 96 deer/km2; this is the approach density of which 

an entirely susceptible population becomes unstable due to direct transmission alone. 

 

Figure 19. CWD front wave speed 𝑐𝑓𝑟𝑜𝑛𝑡  simulated over total deer population density 

𝑃𝑡𝑜𝑡𝑎𝑙  using the third long-distance dispersal model with fraction of long-distance 

dispersers 𝜌 = 0, 0.01, 0.05, and 0.1. The plot shows higher increases in CWD front wave 

speed as the fraction of long-distance disperses, 𝜌, increases in comparison to 𝜌 = 0.  

 

 



38 

 

 
 

 

CHAPTER IV 

 DISCUSSION & CONCLUSION 

 

In this thesis, we have considered long-distance dispersal events of juvenile WTD, as they 

may have huge impact on CWD spread. We have developed and parameterized new 

mechanistic long-distance dispersal kernels to describe this behavior probabilistically; this 

due to the key role that dispersal kernels play in assessing risk of spread. For this, we 

propose a novel IDE model capturing the big picture of how deer get infected with CWD 

by direct interaction with their conspecifics or indirect pathways through the environment. 

With these kernels and the IDE model, we can predict CWD spread to new regions and 

assist CWD management and surveillance.  

A mechanistic PDE model was adapted from a seed transport and settling model 

presented by Neupane & Powell (2015). However, we proposed different settling rates to 

resemble animal movement more accurately by eliminating seeds digestion conditions 

affecting the settling distribution. Instead, we proposed setting rate functions denoting 

different mechanisms of juvenile long-distance dispersal. Then, by approximating solutions 

to the PDE model for long-distance dispersal kernels using Laplace’s method, we introduce 

a novel class of dispersal kernels that captures the spatial distribution of deer after long-

distance dispersal. 

Four settling kernels were proposed and evaluated to find the best approximation 

to the observed data. The first model supposed that juvenile deer have the same 

probability to settle down no matter time invested in finding a home range. The second 

model assumes deer would not settle right away, and tendency increases with time. As for 

the third model, it considered that deer do not prefer to settle down soon after they started 

dispersal as much as they do when they invest more time in dispersal. Lastly, the fourth 
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model adopted the same behavior of deer as model III but added that the tendency of 

deer to settle down increases as they disperse for longer time.  

The four models were tested against real data from GPS collars attached to 363 

juveniles of WTD between 2017 to 2020 in southwestern Wisconsin. For that, filtering 

home ranges was done on two stages. First, the FFT was applied to remove the erroneous 

unrealistic velocity spikes and identify sustained average velocities of long-distance 

dispersal. For this, two thresholds were set: a velocity of 300 m/day and a frequency 

threshold based on an 11-day interval as the time window for smoothing deer velocities. 

Then, the starting and ending locations of potential long-distance dispersal movements 

were calculated. Second, time and space filtering were applied as follows. We disregarded 

relocations that were more than twice the average population home range standard 

deviation to prevent overlapping home ranges. Also, we excluded ranges where deer spent 

less than two weeks to avoid rests during travel and short walkabouts. Then, model 

parameters were fitted using MLE and models competed using common data and BIC 

values. Furthermore, we performed uncertainty quantification through nonparametric 

bootstrapping. 

Our findings showed that all nominal parameter values were close to the peak and 

within the 95% confidence intervals. For the joint sample, including both males and 

females, the third kernel 𝐾3 indicated a general best fit to the data which supports that 

deer do not prefer to settle soon after they started dispersing as  juveniles would be still 

close to their original home ranges. After they travel long enough, their tendency to stop 

increases till the time interval they spent in dispersal does not influence their decision to 

settle down. After that, deer reach their maximum tendency for settling. This hypothesis 

agrees with the social motive of juvenile deer to travel for long distances as adult female 

deer haze them to disperse away from their original home range. Hence, juvenile deer 

remember the stimulus for a period of time before they start settling down. However, 𝐾3 
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was not significantly better than the second kernel 𝐾2 in the case of joint sample as the 

odds ratio stated that 𝐾3 is only twice better than 𝐾2. This still supports that juvenile 

deer will not prefer to stop at the time they started dispersal. 

The IDE model captured the CWD death rates in WTD reported by (Miller et al., 

2006). Moreover, CWD waves of infection simulated over a period of 100 years showed 

that long-distance dispersal has increased the infected region four times (more than 400 

km instead of only 100 km) in the case of 5% of the total population of deer disperse for 

long distances. Moreover, the speed of disease spread significantly increases with the total 

population density and the fraction of long-distance dispersers.  

4.1 Relative merits of kernels across ages, sexes, and seasons  

We found out that there is an advantage to fit different models to males and females 

separately as they exhibit different long-distance dispersal behaviors. This was supported 

by the histogram generated to compare the sum of BIC values that were separately 

calculated for males and females with the BIC values calculated for the joint sample 

consisting of both genders. Additionally, a further plot displaying the ∆BICs 

demonstrated that separate models are better suited for fitting each gender's data than 

one model for both genders combined.  

Those results agree with the behavioral background of WTD long-distance dispersal 

as social motives behind dispersal vary depending on gender. For example, males are more 

likely to be hazed by adult females which makes the majority of long-distance dispersers 

are males. Moreover, due to the hazing, males tend to remember the stimulus of being 

hazed out of their home ranges for a longer time than females. So, they travel for longer 

distances and try to avoid settling down soon after they started dispersal. This explains 

the results regarding best kernel for each category where model II was the best fitting 

model for the male subsample and model I was the best for the female subsample.  



41 

 

 
 

 

For the IDE model to be applied on the male and female samples, more information 

would be needed. For example, the data we have lack the nominal fractions of males and 

females in the total WTD population as well as the fraction of juveniles relative to the 

total WTD population. Moreover, the IDE model parameters need to be specific to male 

and female juveniles according to their different behaviors in short-distance and long-

distance dispersal, direct, and indirect interaction. Furthermore, the sample size of the 

female sample is not big enough to draw solid conclusions from it. Therefore, as 

demographic information and specific intersexual contact rates are currently unknown for 

WTD, it is hard to integrate them into a sex structured IDE model and derive the effect 

of male versus female long-distance dispersal on CWD spatial spread. Hence, this step is 

recommended for further research when more sex-specific data becomes available. 

4.2 H igher levels of complexity to improve model accuracy  

As deer always try to satisfy their motives behind travelling such as searching for food, 

water resources, cover, or mates, escaping danger like hunting, avoiding competition with 

conspecifics, being hazed by their mothers in case of juveniles, as well as their interaction 

with the surrounding landscape, all these factors shape deer movement and social behavior 

throughout the year. Furthermore, this might potentially impact CWD spread, but how 

this can happen exactly is still unknown.  

4.2.1 M ortality dispersal kernel  

The CWD infected individuals display a range of changes in behavior due to their health 

deterioration. This includes impaired coordination, walking in circles, and having a stance 

that is wide based. They can also have slight shakes in their head, seem to constantly seek 

out water sources, spend long parts of the day sleeping, and may have drooping heads or 

ears. Eating less due to these symptoms causes the animal to become fatigued and 

ultimately leads to excessive drinking, excess saliva production, dribbling, and urination 

at the last stages of the disease. 
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Hence, the poor body condition of CWD infected deer affects their movement 

pattern, and hence their long-distance dispersal kernel is expected to be different from 

that of healthy deer. In this case we recommend another kernel to be introduced: mortality 

dispersal kernel 𝐾𝑀 that accounts for the dispersal pattern of CWD infected individuals. 

4.2.2 Natural landscape variability 

Long-distance dispersal patterns can be interpreted by understanding the nature of 

landscape as a driver for dispersal. In regions with low forest coverage, rates and distances 

of deer dispersal show an increase. Also, rivers and roads usually hinder deer movement 

(semipermeable barriers), and hence help prevent gene flow and pathogen transmission 

(Gilbertson et al., 2022). In Wisconsin, the habitat where CWD was first discovered (same 

as the habitat of juveniles collared for the data) exhibits a rolling topography with 

approximately 41.0% highly dissected deciduous and 4.2% mixed or evergreen forest 

patches. The patches are interspersed with agricultural land (approximately 19.9% pasture 

or hay and 21.8% cultivated crops). Furthermore, grassland and emergent herbaceous or 

woody wetlands cover few portions of the landscape (Gilbertson et al., 2022). Hence, we 

recommend that future long-distance dispersal models account for variability of dispersal 

patterns in geographic regions. 

4.3 Potential applications 

Prospective studies may benefit from quantifying the pattern of WTD long-distance 

dispersal in Wisconsin in various ecological and/or epidemiological research areas. For 

example, the long-distance dispersal kernel could be used to better estimate the spread of 

other diseases that affect deer populations than CWD such as Epizootic hemorrhagic 

disease or similar prion diseases like BSE, CJD, and vCJD. Also, it is a step to generalizing 

deer dispersal patterns in other landscapes than Wisconsin and to other deer species than 

WTD. 
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Appendix A. Kernel Approximations 

 

A.1 Solving the diffusion-settling PDE system  

To generate the general formula for a dispersal kernel in the integral form, we solved the 

PDE system (4-5) as follows:  

𝑃 = 𝑒−∫ ℎ(𝑠)𝑑𝑠
𝑡
0 𝑢(𝑟, 𝑡)         

where 𝑢𝑡 = 𝐷∇2𝑢, 𝑢(𝑟, 0) = 𝛿(𝑟)         

Solving for the fundamental solution of the diffusion equation, we get: 

  𝑢 =
1

4𝜋𝐷𝑡
𝑒
−𝑟2

4𝐷𝑡, then substituting in       

𝑃 =
1

4𝜋𝐷𝑡
𝑒−∫ ℎ(𝑠)𝑑𝑠

𝑡
0 −

𝑟2

4𝐷𝑡       

Then, 𝑆(𝑟, 𝑡) = ∫
ℎ(𝜏)

4𝜋𝐷𝜏
𝑒−∫ ℎ(𝑠)𝑑𝑠

𝜏
0 −

𝑟2

4𝐷𝜏𝑑𝜏
𝑡

0
       

Hence, a kernel would be:  

𝐾(𝑟) = lim
𝑡→∞

𝑆(𝑟, 𝑡) = ∫
ℎ(𝜏)

4𝜋𝐷𝜏
𝑒−∫ ℎ(𝑠)𝑑𝑠

𝜏
0 −

𝑟2

4𝐷𝜏𝑑𝜏
∞

0
      

Using (42), the kernels 𝐾2, 𝐾3, and 𝐾4 were derived as follows. 

A.2 Approximation of 𝑲𝟐 

Considering ℎ2(𝑡) =
𝑎𝑏𝑡

𝑎+𝑡
 

∫ ℎ2(𝑠)𝑑𝑠 = ∫
𝑎𝑏𝑠

𝑎 + 𝑠
𝑑𝑠 = 𝑎𝑏∫

𝑠

𝑎 + 𝑠

𝑡

0

𝑑𝑠
𝑡

0

𝑡

0

 

= 𝑎𝑏∫
𝑠 + 𝑎

𝑠 + 𝑎
−

𝑎

𝑠 + 𝑎
𝑑𝑠 = 𝑎𝑏∫ 1 −

𝑎

𝑠 + 𝑎
𝑑𝑠

𝑡

0

𝑡

0

 

= 𝑎𝑏[𝑠 − 𝑎 ln(𝑠 + 𝑎)]|0
𝑡 = 𝑎𝑏[𝑡 − 𝑎 ln(𝑠 + 𝑎) − 0 + 𝑎 ln(0 + 𝑎)] 

= 𝑎𝑏[𝑡 − 𝑎 ln(𝑡 + 𝑎) + 𝑎 ln 𝑎] = 𝑎𝑏𝑡 − 𝑎2𝑏 ln(𝑡 + 𝑎) +𝑎2𝑏 ln 𝑎 
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= 𝑎𝑏𝑡 − 𝑎2𝑏 ln (
𝑡

𝑎
+ 1) 

For 𝛽 = 𝑎2𝑏, 

∫ ℎ(𝑠)𝑑𝑠
𝑡

0

= 𝑎𝑏𝑡 − 𝛽 ln (
𝑡

𝑎
+ 1) 

Substituting in the general formula of kernels, and let 𝐷 =
𝑐2

𝑎𝑏
 

𝐾2(𝑟) = ∫
𝑎𝑏𝑡

(𝑡 + 𝑎) ∗ 4𝜋
𝑐2

𝑎𝑏
𝑡
𝑒

−𝑎𝑏𝑡+𝛽 ln(
𝑡
𝑎
+1)−

𝑟2

4
𝑐2

𝑎𝑏
𝑡 𝑑𝑡

∞

0

 

𝐾2(𝑟) =  ∫
𝑎𝑏2 (

𝑡
𝑎 + 1)

𝛽−1

4𝜋𝑐2

∞

0

𝑒
𝑎𝑏(−𝑡−

𝑟2

4𝑐2𝑡
)
𝑑𝑡 

Applying Laplace’s rule to approximate the integral, we get 

𝑓(𝑡) =  
𝑎𝑏2 (

𝑡
𝑎 + 1)

𝛽−1

4𝜋𝑐2
 

𝜆 = 𝑎𝑏 

𝑔(𝑡) =  −𝑡 −
𝑟2

4𝑐2𝑡
 

To maximize g, 
𝑑𝑔(𝑡)

𝑑𝑡
= −1 + 

𝑟2

4𝑐2𝑡2
 

Setting the time derivative of 𝑔(𝑡) to zero we get,  

𝑚 =
𝑟

2𝑐
 , where 𝑚 is the time value at the maximum 

Getting the second time derivative, 
𝑑2𝑔(𝑡)

𝑑𝑡2
=

−𝑟2

2𝑐2𝑡3
 

Evaluating the second time derivative at 𝑚, 
𝑑2𝑔(𝑚)

𝑑𝑡2
=

−4𝑐

𝑟
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Then, approximating the kernel, 𝐾2(𝑟) ≈
𝑎𝑏2(

𝑟

2𝑎𝑐
+1)

𝛽−1

4𝜋𝑐2
𝑒
𝑎𝑏(

−𝑟

2𝑐
−
2𝑐𝑟2

4𝑐2𝑟
)
√

−2𝜋

𝑎𝑏∗ 
−4𝑐

𝑟

 

𝐾2(𝑟) ≈
𝑎
1
2𝑏

3
2

4√2√𝜋𝑐
5
2

√𝑟 (
𝑟

2𝛼
+ 1)

𝛽−1

𝑒
−𝛽

𝛼
𝑟, where 𝛼 = 𝑎𝑐 

A constant 𝑐2 is introduced to account for the approximated constant value for 𝐾2(𝑟) 

Therefore, 𝐾2(𝑟) ≈ 𝑐2 √𝑟 (
𝑟

2𝛼
+ 1)

𝛽−1

𝑒
−𝛽

𝛼
𝑟 

A.3 Approximation of 𝑲𝟑 

Considering ℎ3(𝑡) =
𝑎𝑏𝑡2

𝑡2+𝑎2
 

∫ ℎ3(𝑠) 𝑑𝑠 =  ∫
𝑎𝑏𝑠2

𝑠2 + 𝑎2
 𝑑𝑠 = 𝑎𝑏 ∫

𝑠2 + 𝑎2

𝑠2 + 𝑎2
−

𝑎2

𝑠2 + 𝑎2
 𝑑𝑠 

𝑡

0

𝑡

0

𝑡

0

 

= 𝑎𝑏∫ 1
𝑡

0

𝑑𝑠 − 𝑎3𝑏 ∫
1

𝑠2 + 𝑎2
 𝑑𝑠 = 𝑎𝑏[𝑠|0

𝑡 ] −
𝑡

0

𝑎3𝑏 [
1

𝑎
tan−1

𝑠

𝑎
|0
𝑡 ]

=  𝑎𝑏𝑡 − 𝑎2𝑏 tan−1
𝑡

𝑎
 

Substituting in the general formula of kernels,  

𝐾3(𝑟) = ∫
𝑎𝑏𝑡2

(𝑡2 + 𝑎2) ∗ 4𝜋
𝑐2

𝑎𝑏
𝑡

∞

0

𝑒

−𝑎𝑏𝑡+𝑎2𝑏 tan−1
𝑡
𝑎
−

𝑟2

4
𝑐2

𝑎𝑏
𝑡 𝑑𝑡 

𝐾3(𝑟) =  ∫
𝑏2𝑡

4𝜋𝑐2 (
𝑡2

𝑎2
+ 1)

∞

0

𝑒
𝑎𝑏(−𝑡+𝑎 tan−1

𝑡
𝑎
−
𝑟2

4𝑐2𝑡
)
 𝑑𝑡 

Applying Laplace’s rule to approximate the integral, we get 

𝑓(𝑡) =  
𝑏2𝑡

4𝜋𝑐2 (
𝑡2

𝑎2
+ 1)

 

𝜆 = 𝑎𝑏 

𝑔(𝑡) =  −𝑡 + 𝑎 tan−1
𝑡

𝑎
−

𝑟2

4𝑐2𝑡
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To maximize g, 
𝑑𝑔(𝑡)

𝑑𝑡
= −1 +

𝑎2

𝑡2+𝑎2
+

𝑟2

4𝑐2𝑡2
 

Setting the time derivative of 𝑔(𝑡) to zero we get,  

𝑎2

𝑡2 + 𝑎2
+

𝑟2

4𝑐2𝑡2
= 1 

4𝑎2𝑐2𝑡2 + 𝑎2𝑟2 + 𝑟2𝑡2

4𝑎2𝑐2𝑡2 + 4𝑐2𝑡4
= 1 

4𝑐2𝑡4 − 𝑟2𝑡2 − 𝑎2𝑟2 = 0 

Let 𝑦 = 𝑡2, therefore we have a second-degree polynomial as follows 

4𝑐2𝑦2 − 𝑟2𝑦 − 𝑎2𝑟2 = 0 

Using the quadratic formula, and considering the definite positive root only, we get 

𝑦 =
𝑟2

8𝑐2
(1 +

√𝑟2 + 16𝑎2𝑐2

𝑟
) 

Therefore, 𝑚 =
𝑟

√8𝑐
√1 +

√𝑟2+16𝑎2𝑐2

𝑟
 

Getting the second time derivative, 
𝑑2𝑔(𝑡)

𝑑𝑡2
= 

−2𝑡

(
𝑡2

𝑎2
+1)2

−
𝑟2

2𝑐2𝑡3
 

Evaluating the second time derivative at 𝑚, 
𝑑2𝑔(𝑚)

𝑑𝑡2
= 

−2𝑚

(
𝑚2

𝑎2
+1)2

−
𝑟2

2𝑐2𝑚3 

Then, approximating the kernel 𝐾3(𝑟), 

𝐾3(𝑟) ≈
𝑏2𝑚

4𝜋𝑐2 (
𝑚2

𝑎2
+ 1)

 𝑒
𝑎𝑏(−𝑚+𝑎 tan−1

𝑚
𝑎
−

𝑟2

4𝑐2𝑚
)

√
  
  
  
  
  −2𝜋

𝑎𝑏 ∗ (
−2𝑚

(
𝑚2

𝑎2
+ 1)

2 −
𝑟2

2𝑐2𝑚3)

 

Simplifying the kernel using 
𝑚2

𝑎2
+ 1 =  

4𝑐2𝑚4

𝑎2𝑟2
 from the quadratic equation in 𝑦 

A.4 Approximation of 𝑲𝟒 

Considering ℎ4(𝑡) =
𝑏𝑡2

𝑡+𝑎
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∫ ℎ4(𝑠) 𝑑𝑠 =  ∫
𝑏𝑠2

𝑠 + 𝑎
 𝑑𝑠

𝑡

0

𝑡

0

 

Let 𝑦 = 𝑠 + 𝑎, then  

 ∫ 𝑏𝑦 + 2𝑎𝑏 + 
𝑎2𝑏

𝑦

𝑎+𝑡

𝑎
 𝑑𝑦 = (

1

2
𝑏𝑦2 − 2𝑎𝑏𝑦 + 𝑎2𝑏 ln 𝑦) |𝑎

𝑎+𝑡 

=
1

2
𝑏𝑡2 − 𝑎𝑏𝑡 + 𝑎2𝑏(ln(𝑡 + 𝑎) − ln 𝑎) 

Substituting in the general formula of kernels,  

𝐾4(𝑟) = ∫
𝑏2𝑡 

4𝜋𝑐2

∞

0

(
𝑡

𝑎
+ 1)

−(1+𝛽)

𝑒
𝑎𝑏(

−1
2𝑎
𝑡2+𝑡−

𝑟2

4𝑐2𝑡
)
 𝑑𝑡 

Applying Laplace’s rule to approximate the integral, we get 

𝑓(𝑡) =  
𝑏2𝑡 

4𝜋𝑐2
(
𝑡

𝑎
+ 1)

−(1+𝛽)

 

𝜆 = 𝑎𝑏 

𝑔(𝑡) =  
−1

2𝑎
𝑡2 + 𝑡 −

𝑟2

4𝑐2𝑡
 

To maximize g, 
𝑑𝑔(𝑡)

𝑑𝑡
= −

𝑡

𝑎
+ 1 +

𝑟2

4𝑐2𝑡2
 

Setting the time derivative of 𝑔(𝑡) to zero we get,  

𝑡 − 𝑎

𝑎
=

𝑟2

4𝑐2𝑡2
 

𝑎𝑟2 = 4𝑐2𝑡3 − 4a𝑐2𝑡2 

𝑡3 − 𝑎𝑡2 −
𝑎𝑟2

4𝑐2
= 0 

 1 −
𝑎

𝑡
−

𝑎𝑟2

4𝑐2𝑡3
= 0 

 
𝑎3𝑟2

4𝛼2𝑡3
+

𝑎

𝑡
− 1 = 0 

where 𝛼 = 𝑎𝑐. Then, 
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𝑎3

𝑡3
+ (

4𝛼2

𝑟2
)
𝑎

𝑡
− (

4𝛼2

𝑟2
) = 0 

Let 𝑢 =
𝑎

𝑡
, therefore we have a third-degree polynomial as follows 

𝑢3 + (
4𝛼2

𝑟2
)𝑢 − (

4𝛼2

𝑟2
) = 0 

Using the formula for simple cubic polynomials, and considering the positive real roots 

only, we get 

𝑢 = 𝐴 + 𝐵 

where, 𝐴 = √2𝛼2

𝑟2
+√

4𝛼4

𝑟4
+

64

27

𝛼6

𝑟6

3

 and 𝐵 = √2𝛼2

𝑟2
− √

4𝛼4

𝑟4
+

64

27

𝛼6

𝑟6

3

 

Hence, 𝑚 =
𝑎

𝑢
=

𝑎

𝐴+𝐵
 

Getting the second time derivative, 
𝑑2𝑔(𝑡)

𝑑𝑡2
= −

1

𝑎
−

𝑟2

2𝑐2𝑡3
 

Evaluating the second time derivative at 𝑚, 
𝑑2𝑔(𝑚)

𝑑𝑡2
= −

1

𝑎
−

𝑟2

2𝑐2𝑚3 

Then, approximating the kernel 𝐾4(𝑟), 

𝐾4(𝑟) ≈  
𝑏2𝑚 

4𝜋𝑐2
(
𝑚

𝑎
+ 1)

−(1+𝛽)

𝑒
𝑎𝑏(

−1
2𝑎
𝑚2+𝑚−

𝑟2

4𝑐2𝑚
)

√

−2𝜋

𝑎𝑏 ∗ (−
1
𝑎 −

𝑟2

2𝑐2𝑚3)
 

Simplifying the kernel, we get 

𝐾4(𝑟) ≈ 𝑐4𝑚(
𝑚

𝑎
+ 1)

−(1+𝛽)

(1 +
𝑟2

2𝛼2𝑡3
)−

1
2 𝑒

𝛽(−
1
2
𝑚2+𝑚−

𝑟2

4𝛼2𝑚
)
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Appendix B. Long-distance dispersal filtering 

 

A frequency threshold 𝜔 was set based on the 11-days interval as follows: 

𝜔 =
4𝜋

11
 

Here the frequency number for a wave 11-week long has an additional factor of two 

because of Nyquist sampling and to resolve bumps of window duration and another factor 

of two because we will reflect the Fourier series to minimize oscillations at both ends. 

Then, the indices of the starting and ending locations of potential home ranges were 

determined as a home range should not have rapid average movements. 
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Appendix C. M ATLAB Code 

 

C.1 Extracting long-distance dispersals from data 

% Menna Gouda 

load("meta_data.mat") 

load("new_data.mat") 

%% Searching for Long distances 

Long_dists=[]; 

for n=1:363 

    % Calling the fourier function 

    x=new_data(IDindx(n,1):IDindx(n,2),1); 

    y=new_data(IDindx(n,1):IDindx(n,2),2); 

    T=new_data(IDindx(n,1):IDindx(n,2),3); 

    dx=new_data(IDindx(n,1):IDindx(n,2),5); 

    dy=new_data(IDindx(n,1):IDindx(n,2),6); 

    [Isegs, Tsegs]=FT_traj(T,dx,dy,11,300);  

    % Removing false home ranges  

    [Isegs_new, Tsegs_new]=time_filter(Isegs,Tsegs,14); 

    % Getting Long distances 

    age=meta_data{n,"ageatcol1"}; 

    if meta_data{n,"sex"} == "Male"  % 0 for Male  

        sex=0; 

    elseif meta_data{n,"sex"} == "Female"  % 1 for Female 

        sex=1; 

    end 

    id=new_data(IDindx(n,1),8); 

    if meta_data{n,"reasonoff1"}=="mortality" 

        status=1;  % alive or collar lost 

    else 

        status=0; % dead 

    end 

    if (height(Isegs_new) ~= 1) 

    Long_dists=[Long_dists; 

get_long_dists(Isegs_new,T,dx,dy,age,sex,id,status,n)]; % 165 
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    end 

end 

%% Filtering (using Average home range distance) 

mean_std=819; % calc_std(new_data,IDindx,11,300);  % 

818.6989974547785 

final_indicies=find(Long_dists(:,1)>=2*mean_std);  

final_long=Long_dists(final_indicies,:);  % 113  

%% Partitioning data 

% males 

male_indicies=find(final_long(:,4)==0);  

male_dists=final_long(male_indicies,:);       % 91 are males out 

of 113  

m=male_dists(:,1); 

% females 

female_indicies=find(final_long(:,4)==1);  

female_dists=final_long(female_indicies,:);   % 22 females 

f=female_dists(:,1); 

% 8 yrs old 

age8_indicies=find(final_long(:,5)==8);       % 103 out of 113 

age8_dists=final_long(age8_indicies,:);   

a8=age8_dists(:,1); 

% 20 yrs old 

age20_indicies=find(final_long(:,5)==20);     % 10 only  

age20_dists=final_long(age20_indicies,:);   

a20=age20_dists(:,1); 

% spring 

spring_indicies=find(final_long(:,6)==1);     % 46 deer 

spring_dists=final_long(spring_indicies,:);   

s=spring_dists(:,1); 

% fall 

fall_indicies=find(final_long(:,6)==3);       % 50 deer 

fall_dists=final_long(fall_indicies,:);   

fl=fall_dists(:,1); 

%% 
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C.1.1 Fourier smoothing 

function [Isegs, Tsegs] = FT_traj(T, dx, dy, days2filter, 

speed_threshold) 

%FT_TRAJ This is a function which uses Fourier filtering to find 

signficant  

%   excursions from home range based on GPS collar data (based 

on WTD 

%   collar data from upper Midwest).   

% 

%   Jim Powell, Dec. 23, 2021,  jim.powell@usu.edu 

% 

%   INPUTS (all vectors of the same length): 

%       T           vector of location times, in Julian days 

%       dx          W->E changes in location at each time, 

meters  

%       dy          S->N changes in location at each time, 

meters  

% 

%   CONTROL PARAMETERS (scalars) 

%       days2filter         time window of filter, days 

%                               -- duration of a `week' 

%       speed_threshold     average speed threshold for big 

move, meters/day 

%        

%   OUTPUTS 

%        

%       Isegs       two columns which are starting, ending 

indices for the 

%                   portion of trajectories which stay below the 

filtering 

%                   threshold (i.e. bracketing potential home 

ranges) 

%       Tsegs       time individual spent in potential home 

range (useful 

%                   for further filtering) 
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% 

 

%   Calculate cumulative changes from initial location 

cumx=cumsum(dx); cumy=cumsum(dy); 

%   Total square displacement from original location 

cumd=sqrt(cumx.^2+cumy.^2); 

 

%   Find indices so that averaging doesn't fall out of data 

window 

NT=length(T); 

daze=days2filter/2; 

idxwk_min=find(T-T(1)>daze, 1); 

idxwk_max=find(T(NT)-T>daze, 1, 'last'); 

Ts=T(idxwk_min:idxwk_max); 

N=idxwk_max-idxwk_min+1;    % length of smoothed trajectory, 

subtracting a  

                            % half week on each end 

 

%   Sample velocities over a week (initial smoothing) 

v_smooth=zeros(N,1); 

for n=1:N 

    % Find indices for beginning and end of weekly filter window 

(times 

    % steps not equal!) 

    iwk_left=find(T-T(n+idxwk_min-1) > -daze,1);  %find relative 

first index in half week interval to left 

    iwk_right=min(NT-1,find(T-T(n+idxwk_min-1) > daze,1)); % 

find last in half week on right 

    deltat=T(iwk_right)-T(iwk_left);           % actual time 

interval ~ 1 week 

    v_smooth(n)=(cumd(iwk_right)-cumd(iwk_left))/deltat; 

end 

 

%   Set up for Fourier smoothing 

%   First, figure out number of modes to keep based on filtering 

window and 
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%   calculate a mask of 0/1s to keep those modes 

Nsmooth=int16(ceil(4*(Ts(N)-Ts(1))/days2filter)); % modes to 

keep; window duration/length of week 

%       is freq. number for a wave one `week' long.  Addtl 

factor of two because  

%       of Nyquist sampling and we want to resolve bumps of 

window duration  

%       and another factor of two because we will reflect the 

series to minimize  

%       oscillations at beginning and end 

  

if (rem(Nsmooth,1)==0 && Nsmooth > 0)  

    mask=zeros(2*N,1); 

    mask(1:Nsmooth+1)=1;  

    mask(2*N-Nsmooth:2*N)=1;    % freqs to keep are in initial 

and final positions of FFT vector 

     

    %   Use FFT to generate smoothed data in wave space 

    fv=fft([v_smooth; v_smooth(N:-1:1)]);   % reflect data 

    fv2=fv.*mask;           % filter out high frequencies 

    v_s2=real(ifft(fv2));   % invert the FFT 

    v_s=v_s2(1:N);          % smoothed velocities; keep first 

half of reflected results 

     

    %   Find indices when smoothed velocites exceed threshold 

    idx_normal=find(abs(v_s)<speed_threshold);   % indices 

corresponding to home range moves 

    idx_jump=find(diff(idx_normal)>1);      % indices of 

idx_normal at which there  

    %       is a jump between ranges, i.e. indices when rapid 

average movement 

    %       begins 

          

    %   Set up output variables 

    Nsegs=length(idx_jump)+1;   % number of distinct home range 

segments 
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    Tsegs=zeros(Nsegs,1);       % to contain the temporal 

duration of segments 

    Isegs=zeros(Nsegs,2);       % start and end of relevant 

indices for each segment 

    idx_hr=Isegs;               % working variable to keep track 

of home range indices  

                                % relative to original inputs 

     

    if (Nsegs==1)       % no jumps, individual stays at home 

        idx_hr(1,1)=0; idx_hr(1,2)=idxwk_max-1; 

    elseif (Nsegs==2)   % one jump, before/after ranges 

        idx_hr(1,1)=0; 

idx_hr(1,2)=idxwk_min+idx_normal(idx_jump(1)); 

        idx_hr(2,1)=idxwk_min+idx_normal(idx_jump(1)+1); 

idx_hr(2,2)=idxwk_max-1; 

    else                % multiple jumps among ranges 

        idx_hr(1,1)=0; 

idx_hr(1,2)=idxwk_min+idx_normal(idx_jump(1)); 

        idx_hr(Nsegs,1)=idxwk_min+idx_normal(idx_jump(Nsegs-

1)+1);  

        idx_hr(Nsegs,2)=idxwk_max-1; 

        for j=2:Nsegs-1 

            idx_hr(j,1)=idxwk_min+idx_normal(idx_jump(j-1)+1); 

            idx_hr(j,2)=idxwk_min+idx_normal(idx_jump(j)); 

        end 

    end 

    Isegs=idx_hr+1;    % starting index is 1, not zero 

     

    % calculate the duration of residence in potential range 

segments 

    for j=1:Nsegs 

        Tsegs(j)=T(Isegs(j,2))-T(Isegs(j,1)); 

    end 

else  

    disp("no"); 

    Isegs=[]; 
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    Tsegs=[]; 

end 

 

end 

 

C.1.2 Time filtering 

function [Isegs Tsegs]=time_filter(Isegs,Tsegs,time_threshold) 

 

[p,q]=size(Isegs); 

flag=[]; 

for i=1:p 

   if Tsegs(i)<time_threshold 

       flag=[flag 1]; 

   else  

       flag=[flag 0]; 

   end 

end 

 to_del=find(flag==1); 

 Isegs(to_del,:)=[]; 

 Tsegs(to_del,:)=[]; 

end 

 

C.1.3 Calculating average standard deviation of home ranges 

function 

mean_std=calc_std(new_data,IDindx,days2filter,speed_threshold) 

 

% This function calculates the average std of home range 

std_d=[]; 

for n=1:363  

    x=new_data(IDindx(n,1):IDindx(n,2),1); 

    y=new_data(IDindx(n,1):IDindx(n,2),2); 

    T=new_data(IDindx(n,1):IDindx(n,2),3); 

    dx=new_data(IDindx(n,1):IDindx(n,2),5); 

    dy=new_data(IDindx(n,1):IDindx(n,2),6); 



62 

 

 
 

 

    % Calling the fourier function 

    [Isegs, Tsegs]=FT_traj(T,dx,dy,days2filter,speed_threshold);  

    % Find average stdiance across home range 

    [p,q]=size(Isegs); 

    for i=1:p 

        if Tsegs(i)>14  % filtering non home ranges 

            new_x=x(Isegs(i,1):Isegs(i,2)); 

            new_y=y(Isegs(i,1):Isegs(i,2)); 

            mean_x=mean(new_x); 

            mean_y=mean(new_y); 

            new_std=sqrt(sum((new_x-mean_x).^2+(new_y-

mean_y).^2)./(length(new_x)-1)); % calculating std in 2D 

            std_d=[std_d; new_std];  

        end 

    end 

mean_std=mean(std_d,'omitnan'); % averaging all std 

end 

C.2 Fitting the four models to the GPS data  

%% Fitting  

r=final_long(:,1);   

alpha=mean(r); N=length(r); d=1; % d is beta - 1 

 

format short g; 

% nll modified bessel function of the second kind  

[parms1, fval1, iflag1]= fminsearch(@(x) nll_bessel(r, x), 

[alpha])  

% nll type II 

[parms2, fval2, iflag2]= fminsearch(@(x) nll_typeII(r, x), 

[alpha d])  

% nll type III 

[parms3, fval3, iflag3]= fminsearch(@(x) nll_typeIII(r, x), 

[alpha d])  

% nll model 4 

[parms4, fval4, iflag4]= fminsearch(@(x) nll_model4(r, x), 

[alpha d])  
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% nll model 4 new 

[parms5, fval5, iflag5]= fminsearch(@(x) nll_model4_new(r, x), 

[alpha d])  

C.2.1 M odel I 

function [p,c1]=bessel(x) 

alpha=x(1); 

rc=linspace(1,71001,71001); 

drc=rc(2)-rc(1); 

K=besselk(0,rc/alpha); 

p=2*pi.*K.*(rc./(alpha.^2)); 

c1=1/trapz(drc*p); 

end 

C.2.2 NLL calculation for model I 

function err=nll_bessel(r,x) 

alpha=x(1); 

[p,c1]=bessel(x); 

K=besselk(0,r/alpha); 

err=length(r)*(2*log(alpha)-log(c1))+sum(-log(K)); 

end 

C.2.3 M odel II 

function [p,c1]=typeII(x) 

alpha=x(1); 

d=x(2); 

rc=linspace(1,71001,71001); 

drc=rc(2)-rc(1); 

p=2*pi.*sqrt(rc./alpha).*((1+0.5*rc./alpha).^d).*exp(-

(d+1).*rc./alpha).*(rc./(alpha.^2)); 

c1=1/trapz(drc*p); 

end 

C.2.4 NLL calculation for model II 

function err=nll_typeII(r,x) 

alpha=x(1); 

d=x(2) 

[p,c1]=typeII(x); 
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err=length(r)*(2*log(alpha)-log(c1)) +sum((d+1).*(r/alpha)-

0.5.*log(r/alpha)-d.*log(1+0.5.*(r/alpha))); 

end 

C.2.5 M odel III 

function [p,c1]=typeIII(x) 

alpha=x(1); 

d=x(2); 

rc=linspace(1,71001,71001); 

drc=rc(2)-rc(1); 

t=(rc./(sqrt(8).*alpha)).*sqrt(1+(1+16*(alpha./rc).^2));  

p=2*pi.*sqrt(t).*(((t.^2)+2).^-0.5).*exp((d+1).*(-t+atan(t)-

((1./(4.*t)).*((rc./alpha).^2)))).*(rc./(alpha.^2)); 

c1=1/trapz(drc*p); 

end 

C.2.6 NLL calculation for model III 

function err=nll_typeIII(r,x) 

alpha=x(1); 

d=x(2); 

[p,c1]=typeIII(x); 

t=(r./(sqrt(8).*alpha)).*sqrt(1+(1+16*(alpha./r).^2));  

err=length(r)*(2*log(alpha)-log(c1))+... 

    sum(-0.5*log(t)+0.5*log((t.^2)+2)+(d+1).*(t-

atan(t)+((1./(4.*t)).*((r./alpha).^2)))); 

end 

C.2.7 M odel IV 

function [p,c1]=model4(x) 

alpha=x(1); 

d=x(2); 

rc=linspace(1,71001,71001); 

drc=rc(2)-rc(1); 

m=alpha./rc; 

A=(m.^(2/3)).*nthroot(2+2*sqrt(1+((8/27).*m.^2)),3); 

B=(m.^(2/3)).*nthroot(2-2*sqrt(1+((8/27).*m.^2)),3); 

t=1./(A+B); 
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p=2*pi.*t.*((t+1).^(-d-

2)).*((1+(((rc./alpha).^2)./(2.*(t.^3)))).^-0.5).*exp((((-d-

1)/2).*t.^2)+((d+1).*t)-

(((rc./alpha).^2).*(d+1)./(4.*t))).*(rc./(alpha.^2)); 

c1=1/trapz(drc*p); 

end 

C.2.8 NLL calculation for model IV  

function err=nll_model4(r,x) 

alpha=x(1); 

d=x(2); 

rc=linspace(1,71001,71001); 

drc=rc(2)-rc(1); 

A=(m.^(2/3)).*nthroot(2+2*sqrt(1+((8/27).*m.^2)),3); 

B=(m.^(2/3)).*nthroot(2-2*sqrt(1+((8/27).*m.^2)),3); 

t=1./(A+B); 

p=2*pi.*t.*((t+1).^(-d-

2)).*((1+(((R./alpha).^2)./(2.*(t.^3)))).^-0.5).*exp((((-d-

1)/2).*t.^2)+((d+1).*t)-

(((R./alpha).^2).*(d+1)./(4.*t))).*(rc./(alpha.^2)); 

c1=1/trapz(drc*p); 

err=length(r)*(2*log(alpha)-log(c1))+sum(-

log(t)+(d+2).*log(t+1)+0.5.*log(1+((r./alpha).^2)./(2.*(t.^3)))+

(d+1).*(0.5.*(t.^2)-t+(1./(4.*t)).*((r/alpha).^2))); 

end 

C.3 Visualization of the four models versus GPS data 

%% Visualization 

r=final_long(:,1); N=length(r); 

[counts,centers]=hist(r,30);  

delta_r=(centers(2)-centers(1));  % bin width   

hist(r/1000,30) 

format short g; 

 

rc=linspace(1,71001,71001); 

drc=rc(2)-rc(1); 
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% bessel NLL 

alpha=parms1(1); 

[p1,c1]=bessel(alpha); 

hold on, plot(rc/1000,N*delta_r*p1*c1,"r"),  

 

% grad descent type II NLL 

alpha=parms2(1);d=parms2(2); 

[p2,c2]=typeII(parms2); 

hold on, plot(rc/1000,N*delta_r*c2*p2,"m"),  

 

% grad descent type III NLL 

alpha=parms3(1);d=parms3(2); 

[p3,c3]=typeIII(parms3); 

hold on, plot(rc/1000,N*delta_r*c3*p3,"g"),  

 

% grad descent model 4 NLL 

alpha=parms4(1);d=parms4(2); 

[p4,c4]=model4(parms4); 

hold on, plot(rc/1000,N*delta_r*c4*p4,"c"), hold off 

 

xlabel('Distance (km)'), ylabel('Frequency') 

legend("Raw data", "K_1","K_2", "K_3", "K_4") 

C.4 BIC Calculations 

%% BIC Calculations 

N=length(r); 

format short g; 

% bessel  

BIC1= 2*fval1 + 1*log(.5*N/pi)   % 4807.8 

% grad type II 

BIC2=  2*fval2 + 2*log(.5*N/pi)  % 4805.4 

% grad type III 

BIC3=  2*fval3 + 2*log(.5*N/pi)  % 4803.9 

% grad model 4 

BIC4=  2*fval4 + 2*log(.5*N/pi)  % 4828.1 

% grad model 4 new 
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BIC5=  2*fval5 + 2*log(.5*N/pi)  % 4825 

% Comparisons   

BIC13=exp(0.5*(BIC1-BIC3)); % 6.9748 

BIC23=exp(0.5*(BIC2-BIC3)); % 2.0954 

BIC43=exp(0.5*(BIC4-BIC3)); % 1.8349e+05 

BIC53=exp(0.5*(BIC5-BIC3)); % 38525 

C.5 Bootstrapping & fitting bootstrapped data 

%% Bootstrapping while accounting for differences in sex 

all_BICs_j=[];all_Parms_j=[];all_Flags_j=[];  % joint sample 

all_BICs_m=[];all_Parms_m=[];all_Flags_m=[];  % male sample 

all_BICs_f=[];all_Parms_f=[];all_Flags_f=[];  % female sample 

 

while (sum(all_Flags_j)~=1000) | (sum(all_Flags_m)~=1000) | 

(sum(all_Flags_f)~=1000) 

    % disp("hello"); 

   

    rand_idx=ceil(113*rand(113,1)); 

    final_dists=final_long(rand_idx,:); 

 

    % males 

    male_indicies=find(final_dists(:,4)==0);  

    male_dists=final_dists(male_indicies,:);         

    m_btstrp=male_dists(:,1); 

    % females 

    female_indicies=find(final_dists(:,4)==1);  

    female_dists=final_dists(female_indicies,:);    

    f_btstrp=female_dists(:,1); 

 

    [BICs_j,Parms_j,Flags_j]=fit(final_dists(:,1)); 

    [BICs_m,Parms_m,Flags_m]=fit(m_btstrp);  

    [BICs_f,Parms_f,Flags_f]=fit(f_btstrp); 

     

    % ignoring samples if their fit doesn't converge or BIC goes 

complex 
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    if (Flags_j==1) & (Flags_m==1) & (Flags_f==1) & 

(isreal(BICs_j)) & (isreal(BICs_m)) & (isreal(BICs_f))      

       % joint sample 

       all_BICs_j=[all_BICs_j;BICs_j];  

       all_Parms_j=[all_Parms_j;Parms_j]; 

       all_Flags_j=[all_Flags_j;Flags_j]; 

       % male sample 

       all_BICs_m=[all_BICs_m;BICs_m];  

       all_Parms_m=[all_Parms_m;Parms_m]; 

       all_Flags_m=[all_Flags_m;Flags_m]; 

       % female sample 

       all_BICs_f=[all_BICs_f;BICs_f];  

       all_Parms_f=[all_Parms_f;Parms_f]; 

       all_Flags_f=[all_Flags_f;Flags_f]; 

    end 

end 

 

C.6 Visualization of model parameters and BICs using bootstrapped data 

%% Boostrap histograms again (for males and females version) 

nominal_BICs_j=[BIC1,BIC2,BIC3,BIC4]; 

nominal_Parms_j=[parms1,parms2,parms3,parms4]; 

nominal_BICs_m=[BIC1_m,BIC2_m,BIC3_m,BIC4_m]; 

nominal_Parms_m=[parms1_m,parms2_m,parms3_m,parms4_m]; 

nominal_BICs_f=[BIC1_f,BIC2_f,BIC3_f,BIC4_f]; 

nominal_Parms_f=[parms1_f,parms2_f,parms3_f,parms4_f]; 

CIs_BICs_j=CIs(1:4,:); CIs_BICs_m=CIs(5:8,:); 

CIs_BICs_f=CIs(9:12,:);  

CIs_Parms_j=CIs(13:19,:); CIs_Parms_m=CIs(20:26,:); 

CIs_Parms_f=CIs(27:33,:); 

CIs_delta_BICs_j=CIs(34:37,:); CIs_delta_BICs_m=CIs(38:41,:); 

CIs_delta_BICs_f=CIs(42:45,:);  

n=1; 

for i=1:4 
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    create_bootstrap_hists(all_BICs_j(:,i),nominal_BICs_j(i),i," 

BIC for joint sample using model 

",CIs_BICs_j(i,1),CIs_BICs_j(i,2)); 

    create_bootstrap_hists(all_BICs_m(:,i),nominal_BICs_m(i),i," 

BIC for male sample using model 

",CIs_BICs_m(i,1),CIs_BICs_m(i,2)); 

    create_bootstrap_hists(all_BICs_f(:,i),nominal_BICs_f(i),i," 

BIC for female sample using model 

",CIs_BICs_f(i,1),CIs_BICs_f(i,2)); 

    

create_bootstrap_hists(all_Parms_j(:,n),nominal_Parms_j(n),i," 

Parameter $\alpha$ for joint sample model using model 

",CIs_Parms_j(n,1),CIs_Parms_j(n,2)); 

    

create_bootstrap_hists(all_Parms_m(:,n),nominal_Parms_m(n),i," 

Parameter $\alpha$ for male sample model using model 

",CIs_Parms_m(n,1),CIs_Parms_m(n,2)); 

    

create_bootstrap_hists(all_Parms_f(:,n),nominal_Parms_f(n),i," 

Parameter $\alpha$ for female sample model using model 

",CIs_Parms_f(n,1),CIs_Parms_f(n,2)); 

    create_bootstrap_hists(all_BICs_j(:,i)-

all_BICs_j(:,3),nominal_BICs_j(i)-nominal_BICs_j(3),i," $\Delta$ 

BIC for joint sample for model 

",CIs_delta_BICs_j(i,1),CIs_delta_BICs_j(i,2)); 

    create_bootstrap_hists(all_BICs_m(:,i)-

all_BICs_m(:,2),nominal_BICs_m(i)-nominal_BICs_m(2),i," $\Delta$ 

BIC for male sample for model 

",CIs_delta_BICs_m(i,1),CIs_delta_BICs_m(i,2)); 

    create_bootstrap_hists(all_BICs_f(:,i)-

all_BICs_f(:,1),nominal_BICs_f(i)-nominal_BICs_f(1),i," $\Delta$ 

BIC for female sample for model 

",CIs_delta_BICs_f(i,1),CIs_delta_BICs_f(i,2)); 

    n=n+1; 

    if i > 1 
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create_bootstrap_hists(all_Parms_j(:,n)+1,nominal_Parms_j(n)+1,i

," Parameter $\beta$ for joint sample model 

",CIs_Parms_j(n,1),CIs_Parms_j(n,2)); 

       

create_bootstrap_hists(all_Parms_m(:,n)+1,nominal_Parms_m(n)+1,i

," Parameter $\beta$ for male sample model 

",CIs_Parms_m(n,1),CIs_Parms_m(n,2)); 

       

create_bootstrap_hists(all_Parms_f(:,n)+1,nominal_Parms_f(n)+1,i

," Parameter $\beta$ for female sample model 

",CIs_Parms_f(n,1),CIs_Parms_f(n,2)); 

       n=n+1; 

    end 

end 

C.7 Calculating the best model for males, females, and the joint sample  

%% Deciding which is the best model for each group: joint,male, 

and female 

best_model=[0 0 0]; 

for j=1:3 

    if j==1 

        myBIC=all_BICs_j; 

    elseif j==2 

        myBIC=all_BICs_m; 

    else  

        myBIC=all_BICs_f; 

    end 

    min_sum=inf; 

    for i=1:4 

        if mean(myBIC(:,i))<min_sum  % should I use sum?! or 

mode? or mean? 

           min_sum=mean(myBIC(:,i)); 

           best_model(j)=i;   % [3 2 1] using sum  

        end                   % [3 2 3] using mode 

    end                       % [3 2 1] using mean 
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end 

C.8 Testing whether one model for joint data is better or one for males 

and one for females  

%% Comparing BICs male + female vs joint 

% map = brewermap(2,'Set1');  

combined_BICs=all_BICs_m(:,2)+all_BICs_f(:,1); 

figure,  

h1=histogram(all_BICs_j(:,3),'facecolor',[0 0 

1],'edgecolor','none'), hold on 

h2=histogram(combined_BICs,'facecolor',[1 0 

0],'edgecolor','none'), hold off 

title('Distribution of BIC values for male-female and joint 

samples','interpeter','latex') 

xl=xline(BIC3, '--k',strcat("Nominal value: 

",num2str(round(BIC3)))); 

xll=xline(BIC2_m+BIC1_f, '--k',strcat("Nominal value: 

",num2str(round(BIC2_m+BIC1_f)))); 

xl.LabelVerticalAlignment = 'bottom'; 

xl.LabelHorizontalAlignment = 'right'; 

xl.Color=[0 0 1]; 

xl.LineWidth=1.3; 

xll.Color= [1 1 0]; 

xll.LineWidth=1.3; 

xll.LabelVerticalAlignment = 'bottom'; 

xll.LabelHorizontalAlignment = 'left'; 

xlabel('BIC values','interpeter','latex'); 

ylabel('frequency','interpeter','latex') 

legend("Joint","Male-Female","joint", "Male-Female") 

%% getting delta BICs for male+female vs joint 

combined_BICs=all_BICs_m(:,2)+all_BICs_f(:,1); 

figure,  

h1=histogram(all_BICs_j(:,3)-combined_BICs,'facecolor',[0 0 

1],'edgecolor','none') 

title('Distribution of \Delta BIC for male-female vs. joint 

sample') 
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xl=xline(BIC3-BIC2_m-BIC1_f, '--k',strcat("nominal value: 

",num2str(BIC3-BIC2_m-BIC1_f))); 

% xll=xline(BIC2_m+BIC1_f, '--k',strcat("male-female sample 

nominal value: ",num2str(round(BIC2_m+BIC1_f)))); 

xl.LabelVerticalAlignment = 'bottom'; 

xl.LabelHorizontalAlignment = 'right'; 

xl.LineWidth=1.3; 

% xl.Color=[0 1 1]; 

xlabel('\Delta BIC values'); ylabel('frequency') 
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