Imaging of Magnetic Microstructures at Surfaces: The Scanning Electron Microscope with Spin Polarization Analysis

H. P. Oepen
Institut für Grenzflächenforschung und Vakuumphysik Forschungszentrum Jülich

J. Kirschner
Institut für Experimentalphysik

Follow this and additional works at: https://digitalcommons.usu.edu/microscopy

Part of the Biology Commons

Recommended Citation
Available at: https://digitalcommons.usu.edu/microscopy/vol5/iss1/1

This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact rebecca.nelson@usu.edu.
IMAGING OF MAGNETIC MICROSTRUCTURES AT SURFACES:
THE SCANNING ELECTRON MICROSCOPE WITH SPIN POLARIZATION ANALYSIS

H.P. Oepen*
Institut für Grenzflächenforschung und Vakuumphysik
Forschungszentrum Jülich, Postfach 1913, D-5170 Jülich, West Germany

J. Kirschner
Institut für Experimentalphysik, Freie Universität Berlin
Arnimallee 14, D-1000 Berlin 33, West Germany

(Received for publication April 15, 1990, and in revised form January 21, 1991)

Abstract

The scanning electron microscope with spin polarization analysis of secondary electrons has been proven to be a powerful tool for studying magnetic microstructures. Secondary electrons created at the surface of a ferromagnet are spin-polarized and contain information about the sample magnetization and its orientation. The combination of a spin polarization analyzer with a scanning electron microscope yields an unique apparatus for probing magnetic properties on a very small lateral scale. The magnetic resolution of < 40 nm is demonstrated. This type of microscope provides high magnetic contrast, while the surface morphology is strongly or even totally suppressed. The capability of studying magnetic properties of semi-infinite samples as well as in ultrathin films is demonstrated with a Fe(100) single crystal, video tape, CoCr perpendicular recording medium and ultrathin cobalt films.

KEY WORDS: Spin polarization, magnetic microstructure, storage media, surface and thin films magnetism.

*Address for correspondence:
H.P. Oepen, IGF, KFA Forschungszentrum Jülich, Postfach 1913, D-5170 Jülich, West Germany
Phone No.: (49) 2461-61-6516

Introduction

Magnetism and its manifestation is one of the most complex fields of solid state physics. One of the reasons for its extraordinary position is the fact that many macroscopic properties of magnets depend on mesoscopic quantities i.e. the magnetic domains and their equilibrium configuration. Domain configurations can only be calculated in ideal cases. In general, they are very complex and can be determined only by observation. The experimental study of the magnetic structure, e.g. the shape and size of domains, the direction of magnetization in each domain, or the change of domain configurations in the reversal process, has given an impetus to the understanding of many properties of magnets. Still there are, however, a number of unresolved questions demanding new techniques for studying the magnetic microstructure with high spatial resolution. A major goal of magnetic data storage technology is to increase the storage density via miniaturizing the lateral size of the smallest information stored, the bit. In miniaturizing the bits their magnetic boundary quality, i.e. their sharpness and smoothness, as well as the homogeneity of magnetization of the bits gain more and more importance for the noise in the reading process. For optimizing the medium quality with respect to such questions there is again a strong need for analyzing techniques with high spatial resolution.

Recently, investigations of ultrathin ferromagnetic films, with thicknesses of a few monolayers, have become feasible, as the techniques of preparation and growth have been improved. Monolayer films open the opportunity to study the influence of dimensionality and the influence of surfaces and interfaces on magnetism. The requirements on any experimental technique are high, since a high sensitivity for samples of vanishing thickness is essential, besides high resolution. A powerful technique, promising high spatial resolution and high surface sensitivity as well, had been proposed about a decade ago (Distefano, 1978; Unguris et al., 1982; Kirschner, 1984). Soon after these suggestions this new domain observation method was actually realized (Kolke and Hayakawa, 1984a; Unguris et al., 1985). This technique uses the highly focused unpolarized electron
beam of a scanning electron microscope (SEM) to generate secondary electrons, the polarization of which is subsequently measured to obtain the magnetic information. Some of the advantages of this technique have been demonstrated in the last few years, e.g., high magnetic contrast nearly independent of surface morphology (Koike and Hayakawa, 1984b), or high spatial resolution. The established techniques attaining high-resolution, equal or less than 10 nm, include Lorentz microscopy (Jacubovics, 1973; Chapman and Morrison, 1983) and electron holography (Tomonura, 1983), are limited to thin samples, as they work in transmission only. Therefore, the samples have to be thinned for investigation, which may in turn affect their magnetic properties. The contrast obtained, depends on the Lorentz force due to the magnetic flux along the whole electron path, thus measuring an integrated quantity not only through the sample but also outside it. The scanning electron microscope with spin polarization analysis works in the emission mode, thus being capable of investigating semi-infinite samples as well as thin and ultrathin films.

Of course, each technique has its specific advantages and drawbacks and it depends very much on the particular application, which one is the best to attack a given problem. Since a complete overview over different techniques must lie outside the scope of this paper, we line out the particular advantages and limitations of this type of microscope. Some illustrative examples are given for a number of different applications. After briefly discussing the underlying physics of the technique, we concentrate on the apparatus built up at the KFA (Oepen and Kirschner, 1988), although most of the results and considerations are also valid and applicable to other microscopes with spin polarization analysis.

Basic Effects

Secondary electron spin polarization

In 1976, Chobrok and Hofmann (Chobrok and Hofmann, 1976) found that the secondary electrons ejected from a ferromagnet are spin-polarized. Little attention was paid to this discovery until 1982, when the first systematic energy resolved studies on the secondary electron spin polarization from ferromagnets were carried out (Unguris et al., 1982; Kisker et al., 1982). Since then this effect has been extensively studied by many groups. It has been found, that the polarization of the secondaries exhibits a pronounced dependence on their energy, in fact not depending on the kind of particles they are created by (Kirschner et al., 1988). A typical result of an angle- and energy resolved study is shown in Fig. 1. The upper curve shows the intensity - the lower one the polarization distribution of the secondary electrons from a Fe(110) single crystal surface, excited by electrons of 2 keV energy. The highest polarization is found for the electrons with nearly zero kinetic energy (see Fig. 1), just at the peak of the intensity distribution. With increasing secondary electron energy the polarization decreases smoothly and ends up at energies above 20 eV with a value of about 20%, approximately the net spin polarization of the valence band electrons of iron. Some fine structure is also seen in the polarization distribution, which we do not discuss here. For more details the reader is referred to Kirschner (Kirschner, 1988). The most exciting feature of the secondary electron polarization is its maximum value of about 50%, which is nearly twice the value of the valence band electron spin polarization. The reason for this enhancement is commonly believed, though still a subject of current debate and studies, to be a consequence of the cascade process of secondary electron creation and the inelastic processes involved. The energy loss process via electron-electron interaction in the cascade is determined by the different density of states.

Table 1: List of symbols.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>scattering asymmetry</td>
</tr>
<tr>
<td>C</td>
<td>image contrast</td>
</tr>
<tr>
<td>e</td>
<td>elementary charge</td>
</tr>
<tr>
<td>F</td>
<td>figure of merit</td>
</tr>
<tr>
<td>I_p</td>
<td>probe current</td>
</tr>
<tr>
<td>M_s</td>
<td>saturation magnetization</td>
</tr>
<tr>
<td>N_{A,B}</td>
<td>number of electrons scattered into opposite channels</td>
</tr>
<tr>
<td>N_o</td>
<td>number of electrons entering the polarization detector</td>
</tr>
<tr>
<td>N_s</td>
<td>noise</td>
</tr>
<tr>
<td>P</td>
<td>spin polarization</td>
</tr>
<tr>
<td>S</td>
<td>polarization sensitivity</td>
</tr>
<tr>
<td>t</td>
<td>measuring time</td>
</tr>
<tr>
<td>T</td>
<td>transmission of the detector electron optics</td>
</tr>
<tr>
<td>Y</td>
<td>secondary electron yield</td>
</tr>
<tr>
<td>\delta S</td>
<td>signal difference from different magnetic domains</td>
</tr>
<tr>
<td>\eta</td>
<td>scattering efficiency</td>
</tr>
</tbody>
</table>
Imaging of Magnetic Microstructures at Surfaces

Figure 1. Logarithmic intensity and spin polarization distributions of secondary electrons emitted normally from clean Fe(110) as a function of their kinetic energy. The primary energy is 2 keV and the angle of incidence is about 50°.

Below and above the Fermi energy for majority and minority spin electrons. Thus preferentially, majority spin electrons are excited, while a higher possibility exists for minority spin electrons to be inelastically scattered. The possibility of the latter process rises with decreasing energy of the electrons to be scattered. At very low energies, around threshold, the electrons can be inelastically scattered into states near the Fermi level only. Above the Fermi level, however, there is a strong imbalance of unoccupied minority and majority states. Due to the considerably higher density of minority states, preferentially minority electrons are scattered inelastically. This leads to a strong suppression of the minority spin electrons at low energies, being responsible for the enhanced majority-type polarization of the ejected electrons. The decrease of the polarization (Fig. 1) shows that the filtering effect becomes weaker with increasing secondary electron energy. At about 20 eV the polarization is roughly equal to the net spin polarization of the valence band electrons.

This is the effect behind the very advantageous combination of high polarization and high intensity at low secondary electron energy. This circumstance is an essential condition for obtaining high contrast in a scanning electron microscope with polarization analysis, as will be discussed in detail below. Some other features of the cascade induced secondary electron polarization should be mentioned. Firstly, a direct correlation between the polarization vector and magnetization orientation was found. It is actually the magnetization direction which determines the orientation of the spin polarization vector (Kirschner and Suga, 1987), i.e. the polarization vector lies antiparallel to the magnetization vector. This opens the opportunity to determine the magnetization orientation directly via the polarization vector determination. In the scanning electron microscope with polarization analysis, it is actually the polarization magnitude and orientation that gives the signal used to obtain the magnetic image. Secondly, it was found empirically that the polarization of the secondary electrons scales roughly with the saturation magnetization (M_s) of the material. From that, one can estimate the polarization (P), which is to be expected for different ferromagnetic materials. For example in the case of cobalt the polarization near zero kinetic energy is about

$$P(\text{Co}) = \frac{M_s(\text{Co})}{M_s(\text{Fe})} \quad P(\text{Fe}) = 40\%.$$ \hspace{1cm} (1)

Finally it is important to note that in an angle integrated experiment the intensity maximum shifts to somewhat higher energies (to about 2 eV) (Seiler, 1983), due to emission cone effects. The spin polarization is only slightly reduced at that energy.

The depth of information

A considerable body of information on the escape depth of secondary electrons has been accumulated, mainly in connection with scanning electron microscopy. According to Seiler (Seiler, 1983) the escape depth ranges from 0.5 to 1.5 nm for metals. The smallest escape depths are found for d-band metals with half filled d-shells (Makharov and Petrov, 1981). These considerations are valid in general without any reference to the spin polarization. Recalling from above that the largest polarization value is found at very low energies it is evident that in both applications electrons of the same energy are used. Thus the depth of information should be similar. Experimentally, the magnetic probing depth in spin-polarized secondary electron spectroscopy has been studied by Abraham and Hopster (Abraham and Hopster, 1987). They found the escape depth to be about 0.5 nm in excellent agreement with the above values. The same has been found in the investigation of the domain structure of ultrathin ferromagnetic films, which will be discussed later on. Although the probing depths appear to be the same, there are remarkable differences between conventional scanning electron microscopy and the observation of magnetic structures via spin polarization analysis. To form a topographic image it is of minor or even no importance at what depth the secondary electrons are created. The structure is even well observable if the electrons are produced in an overlayer and, indeed, for many applications the samples are coated on purpose. In the scanning electron microscope with spin polarization analysis, however, only the electrons from the ferromagnetic part of the sample are spin-polarized and thus contain the information about the magnetic structure. From that it is evident that for this type of micro-
scope the meaning of the phrase "depth of information" is more restrictive than for conventional topographical microscopy. Any coating or any surface coverage due to residual gas adsorption may suppress all the magnetic signal, while a topographic contrast is preserved. Even very small amounts of contamination may strongly reduce the polarization signal. It has been shown that for iron one monolayer of oxygen reduces the polarization by more than a factor of two (Allenspach et al., 1985). That finding clearly demonstrates the necessity for clean surfaces as an important prerequisite for a successful domain structure observation. To achieve clean surfaces the samples have to be prepared in situ using the traditional surface science cleaning techniques. To keep surfaces clean for a certain amount of time, at least for the time of taking an image, the whole experiment has to be performed under ultra high vacuum conditions. These essential requirements may be a disadvantage for the microscope with polarization analysis for some applications. On the other hand, the small depth of information can be used to advantage. First of all the technique allows the study of surface magnetism, i.e. the magnetic properties of the topmost few layers. Secondly, the technique is unique for studies of ultrathin films. The ferromagnetic properties of such films in the thickness range of some monolayers exhibit highly interesting behaviour due to the transition from three to two dimensional magnetism. Some examples of magnetic microstructures in monolayer films are discussed below.

Scanning Electron Microscope with Spin Polarization Analysis

Spin polarization measurement

Various methods are used to detect the spin polarization of electrons, such as the Mott detector (Kessler, 1985), LEED detector (Kirschner, 1985), absorption current detector (Siegmann et al., 1981), low energy diffuse scattering detector (Unguris et al., 1986). All of them have been used in scanning electron microscopes with spin polarization analysis (Koike and Hayakawa, 1984a; VanZandt et al., 1989; Oepen and Kirschner, 1988; Koike et al., 1988; Unguris et al., 1985). As we use the LEED detector in our microscope, this detector is explained in some detail.

The principle of the LEED detector is explained with reference to Fig. 2. The electrons to be analyzed are focused by an electrostatic lens onto a W(100) single crystal. The intensities \(I_A \) and \(I_B \) of two equivalent diffraction beams, here the (2,0) beams, are measured for the polarization analysis. Due to spin orbit interaction in the scattering process oppositely diffracted beams exhibit different intensities if the incoming electrons are spin-polarized. The measured asymmetry,

\[
A = \frac{N_A - N_B}{N_A + N_B}
\]

is proportional to one polarization component. This component is perpendicular to the scattering plane, which is spanned by the incoming and diffracted beams. The polarization is given by

\[
P = \frac{1}{S} \cdot A
\]

with \(S \) the sensitivity of the detector. The asymmetry one would measure with totally polarized electrons. The sensitivity of the LEED detector, using the (2,0) diffraction beams with a scattering energy of 104.5 eV is \(S = -0.25 \), in our case.

As the W(100)-crystal has fourfold symmetry, there are two additional (2,0) beams, which can also be used for spin polarization detection. With these beams a second polarization component, perpendicular to the former one, can be measured. Fig. 3 shows a top view of the detector with its fourfold symmetrical arrangement of the electron counting facilities, and the W crystal in the center. The two polarization components, which can be measured with that detector, run parallel to the large and short sides of the W-crystal.

A commonly used quantity to characterize the efficiency of spin detectors is the so-called figure of merit

\[
F = S^2 \cdot \eta
\]
Imaging of Magnetic Microstructures at Surfaces

Figure 3. Top view of the LEED spin polarization analyzer. The W(100)-crystal in the centre as well as four multiplier housings are to be seen. The two polarization sensitive axes of the detector are parallel to the crystal edges ([100]-directions). The whole assembly is equipped with a ball bearing for rotating the detector as a whole about the crystal surface normal. The diameter of the system is \(< 150 \text{ mm.}

with \[\eta = \frac{N_A}{N_0} \] \tag{5} and \(N_0 \) the number of electrons entering the detector. For our LEED detector \[F \approx 1 \cdot 10^{-4}, \] \tag{6} a value that is similar for all the above listed detector systems. Among detectors of equal figures of merit, however, the one with a large polarization sensitivity \(S \) is preferable, since it is less sensitive to instrumental asymmetries. The LEED detector has a good sensitivity and is therefore well applicable also in cases with small magnetic signals (see results: CoCr storage medium).

Principle of domain observation

The principle of domain observation using a scanning electron microscope with spin polarization analysis is shown in Fig. 4. A fine primary electron beam is scanned across the magnetic sample. Secondary electrons are created in a very small spot with lateral dimensions of the order of the primary beam diameter. As mentioned above, the secondary electrons are spin-polarized and their polarization vector points antiparallel to the magnetization (parallel to the majority spin polarization orientation of the valence band electrons as shown in Fig. 4). Measuring the orientation of the spin polarization thus yields the magnetization orientation at each point, or in other words the magnetization distribution of the sample, i.e. the domain pattern.

A sketch of our experimental set up is shown in Fig. 5. The whole experiment is performed under ultra high vacuum conditions for the reasons mentioned above. The electron microscope column is equipped with a field emission source yielding a spatial resolution of 3 nm at 25 keV. The beam energy can be varied between 300 eV and 25 keV. The base resolution at 500 eV is \(< 100 \text{ nm} \) and \(< 20 \text{ nm} \) at 1 keV.

A specially designed focussing lens picks up the secondary electrons and focusses them into the spin polarization analyzer. The detector arrangement shown allows the determination of the two magnetization components oriented parallel to the sample surface at grazing incidence of the primary beam. Depending on the tilt of the sample, the projection of the component in the paper plane is measured (see Fig. 5). A second detector position, not shown in the sketch, is positioned at an angle of \(90^\circ \) to the former one. This detector allows to measure additionally the third magnetization component, perpendicular to the sample surface. To reach this second spin polarization analyzer the electrons are bent by \(90^\circ \) on passing through an energy analyzer, mounted behind the focussing lens. The two detectors are selected by turning the energy analyzer on and off.

The sample is typically at \(45^\circ \) with respect to the column and the focussing lens. This arrangement has been preferred to obtain a good compromise between a loss of resolution due to the glancing incidence of the primary electrons and a reduction of secondary electron intensity due to a reduction of the accepted secondary
H.P. Oepen and J. Kirschner

Figure 5. A sketch of the scanning electron microscope with spin polarization analysis of the secondary electrons. The arrangement of the spin analyzer allows to measure two magnetization components within the sample surface. A second detector position is available orthogonal to the one shown. To focus the electrons into this detector an electrostatic deflector is installed behind the focusing lens. By this equipment the electrons are bend by 90° (coming out of the plane of drawing) and enter a second analyzer. This analyzer allows to measure one in-plane magnetization component and the magnetization perpendicular to the sample surface.

Image contrast

What is the magnetic contrast one can obtain with the scanning electron microscope with polarization analysis? For distinguishing two different areas in an image, the ratio

$$C = \frac{\delta S}{N_s}$$

of the signal difference δS from the two areas and the noise N_s should be sufficiently high ($C > 1$) (Koike et al., 1987). That means, if one wants to distinguish between the two oppositely magnetized domains of Fig. 4, it is $\delta S = 2P$. If we assume the predominant noise to be statistical noise, we may write

$$N_s = \frac{1}{\sqrt{F\cdot N_0}}$$

with $F = \eta \cdot S^2$ the figure of merit and N_0 the number of electrons entering the detector (Kessler 1985). Thus we obtain for the contrast

$$C = 2P \cdot \frac{1}{F\cdot N_0}.$$ \hspace{1cm} (9)

N_0 can be expressed by parameters characterizing the various properties of the microscope. N_0 is obviously proportional to the number of primary electrons hitting the sample, which can be expressed as

$$I_p/e^- \cdot t$$

with the probe current I_p, the measuring time t and the elementary charge $e^- = 1.6 \times 10^{-19}$ C. (10)

Thus one obtains for the contrast

$$C = 2P \cdot \frac{1}{F\cdot T\cdot Y\cdot (I_p/e^-) \cdot t}.$$ \hspace{1cm} (13)

We would like to discuss equation (13) in more depth, as it shows the capabilities and limits of this kind of microscopy.

First of all it is interesting to realize the strong dependence of contrast on the spin polarization of the secondary electrons. There is a linear dependence on P whereas all the other quantities show a square root dependence. In other words, a loss of P by a factor f, needs a factor f^2 to be gained by one of the other factors or by the measuring time. Remembering the energy dependence of the secondary electron spin polarization (see Fig. 1), it is obviously favorable and in most cases even necessary to select the very low energy electrons for image formation. Thus an energy dispersive element in the analyzer equipment is most favorable. In our microscope electrons with energies ranging from 0 to 6 eV are used, yielding high polarization and high intensity as well.

A further consequence of the polarization dependence of the contrast is that it also imposes some restrictions on the materials that can be investigated with this technique. If P scales roughly with M we can estimate the contrast one can expect with different materials. With iron we can easily obtain a contrast of > 10 (see examples below) in a very short time of $t = 10$ msec/pixel, yielding a total time of 10 minutes to obtain a picture of 250×250 pixels. For a material like Ni ($M_s = 1/3 M_s(Fe)$) one may extrapolate a measuring time of 100 msec/pixel to achieve the same contrast. For materials with much lower saturation magnetization than Ni it is very difficult to obtain the same picture quality in acceptable times. Another consequence of the dependence of the contrast C on the polarization is the requirement of a clean surface, especially with material of
low saturation magnetization, as the polarization is drastically lowered by small amounts of any contaminants (see above).

The other quantities in formula (13) are more or less related to the experimental set up and the special features of the different components. F, the figure of merit, is the efficiency of the spin analyzer. As mentioned above, its value is of the order of 10^{-4} for all existing kinds of spin polarization detectors, which is extremely small compared to the electron multiplier efficiency (-1) used in normal SEM applications. In principle, the figure of merit could be about three orders of magnitude higher, but unfortunately no such device has yet been invented. This particular property of polarization analyzers presently demands the optimizing of all the other parameters at hand.

The transmission T is defined as the ratio of the number of electrons entering the detector to the total number of electrons leaving the sample with energies up to 6 eV. Thus T does not only describe the quality of the electron optics but also contains the loss of intensity due to the limited acceptance angle and the energy filtering. In fact our measured value for T is mainly determined by the size of the acceptance cone due to the 45° sample tilt. With 0 - 6 eV electrons we find a transmission of 10 % for our experimental geometry.

The secondary electron yield Y depends on the material as well as on the energy of the primary beam. The dependence of the total electron yield and secondary electron spin polarization on the primary electron energy for iron is shown in Fig. 6. As one can see the total electron yield exhibits a pronounced maximum at about 500 eV, whereas the spin polarization saturates at about 1 keV for secondary electrons of 1 eV kinetic energy. Above 1 keV the polarization remains constant. A detailed discussion and interpretation of that result is published elsewhere (Kirschner, 1988). We will focus our attention on its consequences for the optimal working condition of the microscope. From equation (13) it is evident that the product p²Y should be a maximum to obtain highest contrast. It turns out that the highest value of the product is to be found at about 1 keV primary energy, when the polarization has reached its maximum value and the total electron yield is still high. From this result, together with the remaining quantity p²Y of formula (13), we may directly derive the requirements on the electron gun, i.e. the scanning electron microscope column: The column should be able to give high intensity, certainly with high spatial resolution, to maximize p²Y (P²e⁻). These requirements are best satisfied by scanning electron microscope columns with a field emission source. Such a column is used in our microscope. We may obtain probe currents of about 10⁻⁹ A at 1 keV with spatial resolution of ≤ 50 nm.

Results

The domain images shown below all consist of 250x250 pixel unless stated otherwise. The

Figure 6. Total secondary electron yield (left-hand scale) and ratio of majority electrons to minority electrons for secondary electrons of 1 eV kinetic energy as a function of the primary electron energy. The polarization P may be obtained from ln N₁/N₀ via the relation ln N₁/N₀ = ln[(1+P)/(1-P)] = 2(P+P²/3+P⁴/5+...).

Single crystal: Fe(100)

Domain images of a Fe(100) single crystal surface are shown in Fig. 7 and Fig. 8. The arrows within the domains indicate their magnetization orientation. A large fraction of the surface (400x400 µm²) is shown in Fig. 7, yielding a survey of the domain pattern. The characteristic structure with domains of highly symmetrical shapes determined by the magnetic properties of iron are to be seen. Fig. 8 shows an interesting detail of the domain pattern, i.e. a magnetic shunt, which is energetically favourable. Similar structures can also be seen in Fig. 7. Both images were taken with the spin analyzer in the 90° bent position (see discussion above), which means that the two measured polarization components are along the surface normal and along one in-plane component of magnetization of the sample. While in the vertical component no polarization was detected, the in-plane component exhibits the structure shown in Fig. 7 and 8. Firstly, this proves the magnetization to lie parallel to the surface, and secondly it demonstrates that in some instances it is sufficient to measure only one in-plane polarization component to obtain the whole magnetization orientation. This works if the magnetic easy axes, i.e. the axes of spontaneous magnetization of the sample, do not coincide with the polarization sensitive axes of the detector. In the case of Fig. 7 and Fig. 8 the polarization sensitive axis is parallel to the vertical picture axes, while the easy axis is tilted by 14°.
Figure 7. Domain pattern on a Fe(100) single crystal surface. The arrows indicate the magnetization of the domains. The image size is 400x400 µm². The dwell time per pixel was 10 ms.

Figure 8. Detail of domain structures in a Fe(100) surface, showing a magnetic shunt. The image size is 33.3x33.3 µm².

Figure 9. Sketch of the arrangement of easy axes and polarization sensitive directions used for taking the images 7 and 8.

Remembering the above discussion and the results of the spin-polarized spectroscopy of iron one is led to ask, why the polarization found in the line scans is clearly lower than the value in Fig. 1 of < 50 %. The reason for this reduction is surface contamination by residual gas. From the above considerations about surface cleanliness it is obvious that only a small amount of contamination, e.g. fractions of one monolayer, are sufficient for the reduction found here. If one remembers that at a base pressure of 10⁻¹⁰ Torr it takes about 3 hours to cover a clean surface with one monolayer by a residual gas with 100 % sticking probability, it is evident that the time for aligning the whole
Imaging of Magnetic Microstructures at Surfaces

Figure 10. a) Line scan extracted from the data set of Fig. 8 showing the measured polarization distribution along a horizontal line just above the point of intersection of the four domains. For the sake of simplicity the inverted P values are drawn. b) As a) with a line scan extracted from just below the point of intersecton.

Figure 11. Frequency distribution of the polarization values measured with Fig. 8.

Figure 12. High-resolution line scan across a 180° domain wall at a Fe(100) surface. Inset: The orientation of polarization detection axes relative to the sample. The P± component is corrected for the sample tilt. The lines are meant to guide the eye. The step width is 20 nm. The error bars give the 1σ-statistical error.

interval between these two boundaries is divided into 16 equally separated parts, to which the gray levels are appointed. All polarization values within such a subdivision are set to the same gray tone in the image. No further manipulations are necessary to achieve the domain images.

To test the spatial resolution for magnetic structures the smallest structures of the domain pattern have been analyzed, i.e. the domain boundaries. Fig. 12 shows a line scan across a 180° domain wall at the Fe(100) surface. A 180° wall separates two oppositely magnetized domains, e.g. the line where a black and white domain in Fig. 7 intersect. The geometry of the
measurement is seen in the inset of Fig. 12. Both in-plane components of the magnetization were measured with the polarization sensitive axes aligned with the sample easy axes. One component ("o") is parallel to the domain magnetization and thus reflects the change in magnetization (respectively polarization) while crossing the domain wall. The transition appears to be continuous, indicating that the magnetization turns around within the wall as $M(r) = \text{const}$ within a homogeneous magnet. The second in-plane component ("+" or "-" in the text, depending on the figure) shows how the magnetization vector turns around inside the wall. Within the domains this component exhibits no spin polarization; in the transition region, however, the polarization raises to its maximum value. Thus it is obvious that the magnetization vector turns around totally within the surface plane. This domain wall structure is commonly known as a Néel wall. In this bulk the wall is of Bloch-like structure, the termination into a Néel-like structure at the surface is a consequence of the very existence of the surface itself (Oepen and Kirschner, 1989; Scheinfein et al., 1989).

Let us turn back to the question of the attainable resolution for magnetic structures. From the line scan studies (Fig. 12) we can estimate an upper limit for the achievable resolution. The step width, e.g. the spacing between adjacent points, is 20 nm. Looking at the right edge of the bump in the "o" component one can see a drop of the polarization from nearly maximum to nearly zero within two measuring points. From that we deduce a resolution of < 40 nm for an iron sample as an upper limit. As such a domain wall exhibits a continuous change of the signal it is hard to demonstrate the resolution in the conventional sense of microscopy with a domain image of Fe(100). The achievable resolution in domain images is of the same order of magnitude, although this is not generally valid as it depends on the contrast that is attainable in reasonable times and thus it depends strongly on the magnetic properties of the material.

Ultrathin films: Co/Cu(100)

The high surface sensitivity of the technique is very advantageous for the study of magnetic structures in ultrathin films. Co films in the thickness range of a few monolayers were epitaxially grown on a Cu(100) single crystal surface. They grow in a fcc modification. Both the preparation of the substrate surface as well as the evaporation of the films were done in situ to achieve perfect films with absolutely clean surfaces. The domain image from a 5.5 monolayer thick cobalt film is shown in Fig. 13. The arrows indicate the magnetization orientation of the domains. The easy axes were found to be parallel to the [110] directions and within the magnetization in the domains differ only by 90°, which generally yields a lower contrast (see discussion about contrast). Fig. 15 and Fig. 16 exhibit some of the characteristic features found in our studies of ultrathin films. Firstly the domain walls are very irregular compared with the results for bulk iron (see Fig. 7 and Fig. 8). Secondly, the domain wall width varies depending on their relative orientation with respect to the magnetization orientation of the adjacent domains (see Fig. 15). The studies of ultrathin films are still under progress. For more details the reader is referred to Oepen et al. (Oepen et al., 1990).
Imaging of Magnetic Microstructures at Surfaces

Figure 13. Domain image of a 5.5 monolayer thick cobalt film on Cu(100). The image size is 100x100 µm².

Figure 14. Normalized spin polarization vs Co film thickness. The spin polarization values taken from the domain structure investigation (+) are normalized to the value of thick cobalt films. The data are combined with magneto-optical Kerr effect measurements (o). The Kerr data are normalized with respect to the film thickness and fitted to the polarization data in the region of 3.5-5 monolayers. The two techniques were performed in different laboratories, completely independently of each other.

Video tape: Co₈₀Ni₂₀

Recorded tracks in a Co₈₀Ni₂₀ video tape are seen in Fig. 17. The recording medium is evaporated onto an aluminum coated PET polymer. The thickness is about 150 nm. The recording was done at a constant frequency, yielding an average domain width of ~ 4.3 µm. Due to the writing process of the video recording unit the domains in adjacent tracks are tilted by 15°. The tape transport direction is nearly parallel to the vertical picture edge. Two different writing heads are used to record a pair of tracks separated by 5 µm. The next track pair is written 10 µm away. Due to the production process the easy axes is parallel to the transport direction. Deviations from that direction were found for the
Figure 17. Recorded tracks in a Co80Ni20 video tape. a) Image size of 200x200 µm², b) Enlarged section from a). Size 50x50 µm², c) Enlarged section from b). Size: height 22 µm, width 25 µm; 220x250 pixel, d) Topographic image of Fig. 17b, obtained from the same set of data as Fig. 17b. The topographic image results from the sum of the diffraction beam intensities.

The magnetization of the domains in the tracks tilted against the transport direction. The magnetization orientation was parallel to the track direction, thus a tilt of ~15° to the easy axes exist. The other tracks exhibit domains magnetized nearly parallel to the easy axis. No magnetization component perpendicular to the tape was found. These findings will effect the smallest size of stored domains, respectively the attainable storage density. At the edge of the tracks the domains deviate strongly from the ideal bar size. This is caused by the writing as the heads write only over a distance of approximately 17 µm in the track centre. In Fig. 17c some weak crosstalk, i.e. a coupling of domain structures of adjacent tracks via a magnetization of the material in between, is visible.

Fig. 17d is the topographical image taken simultaneously with the domain image of Fig. 17b. It is obtained from the sum of the count rates used to measure the asymmetry. Cracks in the evaporated storage material as well as some particles on the surface can be seen. Intensity fluctuations yield horizontal stripes in the image. This is due to a high frequency flickering of the field emission source. Nothing of this real and noise-induced structure of the intensity image is seen in the magnetic domain image.
Imaging of Magnetic Microstructures at Surfaces

This demonstrates that topographical as well as intensity fluctuations are eliminated due to the normalization in the asymmetry formula.

Vertical recording medium: Co_{70}Cr_{30}

Polycrystalline CoCr thin films with vertical magnetization are promising candidates for ultrahigh density storage media (Iwasaki, 1984), as the transition regions between oppositely magnetized domains are very narrow. The thin CoCr films exhibit a columnar structure. The columnar grains show an hcp crystal structure with the c-axis normal to the films. This special feature is responsible for a high uniaxial anisotropy perpendicular to the film, which means that the spontaneous magnetization tends to align with the film normal direction. Such a desired alignment can be suppressed by the demagnetizing field, which can turn the magnetization into the film plane, if the saturation magnetization is high. To achieve a high uniaxial anisotropy as well as a low saturation magnetization a certain amount of chromium is necessary. For storage media purposes a chromium concentration of 18-24% has been recommended in the literature.

A recorded track in such a new storage medium is to be seen in Fig. 18a,b. The film has a thickness of 400 nm and is exactly the same as used for actual data storage devices, but without the protective layer. The two images (Fig. 18a,b) show the domain pattern obtained with the in-plane component of magnetization (parallel to the vertical picture axis) in Fig. 18a and with the vertical magnetization component (Fig. 18b). Due to the low saturation magnetization (and thus polarization signal) the contrast is very weak. The vector sum of both components yields about one tenth of the signal found with iron. As mentioned above (see discussion about contrast) the contrast that can be achieved with such samples is strongly limited by the low polarization signal. Nevertheless the images demonstrate the feasibility of imaging magnetic domain structures even in such a worst case situation. Moreover, our investigation yields new insight into the magnetic properties of this material as will be discussed in the following.

Comparing both images it is obvious that the in-plane component exhibits a better contrast than the vertical one, indicating that the in-plane signal is higher. This conjecture is confirmed by the analysis of the measured polarization values, from which a tilt of the magnetization vector against the film plane of about 30° can be deduced. This finding is very surprising in the light of the above considerations on the properties of such material. As our technique is surface sensitive, that finding has to be attributed to the surface properties. It demonstrates that at the surface, in spite of the strong vertical anisotropy and low saturation magnetization, the magnetization has the tendency to form closure structures. This should affect the stray fields above the surface and thus the reading process. One could also think of an influence on the achievable storage density.

The investigation of the CoCr storage medium is another important proof for the necessity of measuring directly the magnetic properties, i.e. the magnetization orientation. Several other techniques have been used for studying domain structures in CoCr storage media, such as Kerr-microscopy (Schmidt and Hubert, 1986) Bitter-technique (Iwasaki et al., 1980) as well as magnetic force microscopy (Grüter et al., 1989), but no deviation from a vertical magnetization orientation was observed. This is mainly due to the techniques used, measuring secondary effects, related to the magnetization, but not proportional to it.

Figure 18. Recorded track in a CoCr storage medium. The image size is 20x20 µm². The dwell time per pixel was 30 ms. a) Domain structure obtained with the in-plane component of magnetization. b) Domain structure obtained with the vertical component of magnetization.
Conclusion

In this paper the advantages and limitations of scanning electron microscopy with spin polarization analysis have been discussed. Many more examples of features of this type of microscope can be found in papers on special topics in the literature. Clearly there are limitations of the technique, but its advantages prevail. The development of several other microscopes of this type is the best indication for its capabilities. In many applications the spin polarization provides the essential information on magnetic properties not available with other dominant imaging techniques. The high spatial resolution and the capability of studying semi-infinite samples bear its relevance for the application in the study of new storage media. The capability of studying ultrathin films will gain more and more importance for basic research and technological developments in the near future.

Acknowledgement

We wish to acknowledge the collaboration of C.M. Schneider and P. Bressler (Freie Universität Berlin) and M. Benning (IGV/Dtlich) for their help and support in the production of the ultrathin films. Helpful discussions with Professor H. Ibach are gratefully acknowledged. Special thanks go to A. Berger for his assistance with the iron measurements and to J. Larscheid and K. Hieble for their technical assistance. We wish to thank Siemens Research Laboratories, Erlangen, for the CoCr storage medium.

References

Hámos LV, Thiessen PA (1931) Über die Sichtbarmachung von Bezirken verschiedenen ferromagnetischen Zustandes fester Körper. (Visualization of domains of different ferromagnetic states in solids.) Z. Phys. 71, 442-444.

H.P. Oepen and J. Kirschner
Imaging of Magnetic Microstructures at Surfaces

Discussion with Reviewers

J. Unguris: It is not obvious without doing the necessary convolutions of analyzer response with secondary electron polarization and intensity energy dependence what the optimal energy acceptance is. Was the 0 to 6 eV analyzer window selected in this manner? If not, what is the optimal energy window?

Authors: We did not do a convolution of analyzer response with the distribution of polarization and intensity of the secondary electrons, as both distributions are not well enough known for the geometry and extraction voltage used. We have performed some experimental checks however: An increase of the pass energy by a factor of 1.5 (i.e. ΔE = 9 eV) gives a small increase in intensity (15%), while the measured polarization drops. A decrease in the energy window, on the other hand, causes a strong decrease in intensity while the polarization slightly increases. As we checked this in steps of 1 eV only, the P2I value might be slightly higher anywhere around 6 eV. The setting we use, however, is very close to the optimum for our analyzer including its electron optics.

R. Allenspach: You give a short discussion on possible influence of stray magnetic fields (of the column) on measured spin direction due to spin precession. In that respect it would be nice to have some numbers concerning the stray field at the sample, and maybe some estimate why this influence is so small.

Authors: Calculations of the spin-rotation in the stray magnetic field of the column give a spin precession of less than 5° in our configuration. Some of the parameters taken for the calculation are: i) Working distance: 10 mm ii) E_p = 5 KeV iii) Stray magnetic field B = 2.66 10^-4T at the sample iv) Accelerating of the SE into the electron optics within a field of 50 V/mm v) Worst case: P1B always and B = const, i.e. equal to the stray field at the sample.

K. Koike: In Fig. 17 and 18, you show the recorded pattern on magnetic storage media of both in-surface-plane and perpendicular recording. These samples have relatively large leakage magnetic field near the sample surface. The field would influence the image contrast in two ways, i.e., rotation of secondary electron spin and deflection of secondary electron trajectory which would result in a scattering asymmetry in a polarization detector. Have you estimated these effects for the analysis of magnetization distribution?

Authors: We have made some worst case calculations for the spin precession as well as for deflection due to the Lorentz force. For CoCr we obtain a spin rotation of less than 5°, with M_S = 1/4 M_s(Fe) and for CoNi we calculated this angle to be < 8° (M_S = 1/2,75 M_s(Fe)). For the calculation we took P1B always with the magnetic field of a periodic structure and the magnetic field of a charged line. Due to the periodicity, or the small width of the line respectively, the field drops strongly with increasing distance from the surface and the influence of the sample stray field on the secondary electron polarization is very small.

The deflection of the electrons by the Lorentz force is negligibly small. For CoCr the...
Authors: The SEII are of minor importance for the domain structure and the obtained contrast as long as the domain size is large compared to the emission region of the SEII (e.g. for $E_p = 10\text{ KV}$ the size of this area is about μm). The SEII do not effect the signal nor the noise in that case as they have the same polarization. The resolution, however, may be altered by them and one has to take backscattered electrons into account in high resolution studies. One point to overcome this problem (e.g. in domain wall investigation) is to lower the primary electron energy (the lower the better).

J.N. Chapman: Secondary electrons are created by back-scattered electrons as well as by primaries. What effect do they have? Do they just add to the noise and, if so, how are the formulae 13 realistically affected?

Authors: The SEII are of minor importance for the domain structure and the obtained contrast as long as the domain size is large compared to the emission region of the SEII (e.g. for $E_p = 10\text{ KV}$ the size of this area is about μm). The SEII do not effect the signal nor the noise in that case as they have the same polarization. The resolution, however, may be altered by them and one has to take backscattered electrons into account in high resolution studies. One point to overcome this problem (e.g. in domain wall investigation) is to lower the primary electron energy (the lower the better).

J.N. Chapman: Why does $P_{(\text{max})}$ not equal 25, as does $P_s(\text{max})$? I think hard magnetic materials are best for a resolution test. Do the authors agree?

Authors: We think that, within the error margin, $P_{(\text{max})}$ is the same as $P_s(\text{max})$. Please note the fluctuation in "$+"$ as well. The line in "$+"$ is meant to guide the eye. You are right with the hard magnetic material. One appropriate candidate for that would be the prism plane of a Co single crystal.

R. Allenspach: Fig. 12: Why does $P_{(\text{max})}$ not equal 25, as does $P_s(\text{max})$? I think hard magnetic materials are best for a resolution test. Do the authors agree?

Authors: We think that, within the error margin, $P_{(\text{max})}$ is the same as $P_s(\text{max})$. Please note the fluctuation in "$+"$ as well. The line in "$+"$ is meant to guide the eye. You are right with the hard magnetic material. One appropriate candidate for that would be the prism plane of a Co single crystal.

J.N. Chapman: I would find a schematic of what the authors think is the magnetization distribution in CoCr useful.

Authors: We are sorry about the missing explanation and we cannot give any. Firstly, we did not get enough information about the material properties from our supplier. Secondly, the industrial company is not interested in seeing these details published. The only reliable information we have, is that exactly the same material has been used for prototype storage media.

R. Allenspach: For the non-expert in the field it would be nice to have some relevant parameters to judge the easiness or difficulty of the experiment. This holds in particular for Fig. 18 where the polarization values would be interesting since this image seems to show the present limit of the technique.

Authors: The measured polarization values are (i) For the in-plane component (Fig. 18a) $P = \pm 3.2\%$, i.e. a scattering asymmetry of $A = \pm 0.8\%$. (ii) For the vertical component (Fig. 18b) $P = \pm 1.6\%$ ($A = \pm 0.4\%$).

O.C. Wells: I would like to see some discussion of signal-to-noise ratio. It would seem that the signal conversion efficiency of the detector is not very good. Is this a fundamental limit, or is there hope to improve on this? In the ordinary SEM it is hard enough to get good spatial resolution even with a highly efficient detector of the secondary electrons, and it must be much more difficult here. For time-resolved studies, the beam must be pulsed with a small duty cycle to follow rapid changes in the specimen. How would this affect the spatial resolution here?

Authors: The sensitivity of the polarization detection is one great limitation of the technique. For all existing detectors the figure of merit is of the order of 10^{-4} while it could, in principle, be of order 10^{-1}. Unfortunately, nobody has yet invented such a device, which would greatly improve the performance of this type of microscopy.