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Preface

This book was conceived after numerous discussions with my colleague Ian
Anderson about what to teach in an introductory one semester course in
differential geometry. We found that after covering the classical differential
geometry of curves and surfaces that it was difficult to make the transition to
more advanced texts in differential geometry such as [4], or to texts which use
differential geometry such as in differential equations [9] or general relativity
[11], [13]. This book aims to make this transition more rapid, and to prepare
upper level undergraduates and beginning level graduate students to be able
to do some basic computational research on such topics as the isometries of
metrics in general relativity or the symmetries of differential equations.

This is not a book on classical differential geometry or tensor analysis,
but rather a modern treatment of vector fields, push-forward by mappings,
one-forms, metric tensor fields, isometries, and the infinitesimal generators
of group actions, and some Lie group theory using only open sets in IR n.
The definitions, notation and approach are taken from the corresponding
concept on manifolds and developed in IR n. For example, tangent vectors
are defined as derivations (on functions in IR n) and metric tensors are a field
of positive definite symmetric bilinear functions on the tangent vectors. This
approach introduces the student to these concepts in a familiar setting so
that in the more abstract setting of manifolds the role of the manifold can
be emphasized.

The book emphasizes liner algebra. The approach that I have taken is to
provide a detailed review of a linear algebra concept and then translate the
concept over to the field theoretic version in differential geometry. The level of
preparation in linear algebra effects how many chapters can be covered in one
semester. For example, there is quite a bit of detail on linear transformations
and dual spaces which can be quickly reviewed for students with advanced
training in linear algebra.

v
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The outline of the book is as follows. Chapter 1 reviews some basic
facts about smooth functions from IR n to IRm, as well as the basic facts
about vector spaces, basis, and algebras. Chapter 2 introduces tangent vec-
tors and vector fields in IR n using the standard two approaches with curves
and derivations. Chapter 3 reviews linear transformations and their matrix
representation so that in Chapter 4 the push-forward as an abstract linear
transformation can be defined and its matrix representation as the Jacobian
can be derived. As an application, the change of variable formula for vector
fields is derived in Chapter 4. Chapter 5 develops the linear algebra of the
dual space and the space of bi-linear functions and demonstrates how these
concepts are used in defining differential one-forms and metric tensor fields.
Chapter 6 introduces the pullback map on one-forms and metric tensors from
which the important concept of isometries is then defined. Chapter 7 inves-
tigates hyper-surfaces in IR n, using patches and defines the induced metric
tensor from Euclidean space. The change of coordinate formula on overlaps
is then derived. Chapter 8 returns to IR n to define a flow and investigates
the relationship between a flow and its infinitesimal generator. The theory
of flow invariants is then investigated both infinitesimally and from the flow
point of view with the goal of proving the rectification theorem for vector
fields. Chapter 9 investigates the Lie bracket of vector-fields and Killing vec-
tors for a metric. Chapter 10 generalizes chapter 8 and introduces the general
notion of a group action with the goal of providing examples of metric tensors
with a large number of Killing vectors. It also introduces a special family of
Lie groups which I’ve called multi-parameter groups. These are Lie groups
whose domain is an open set in IR n. The infinitesimal generators for these
groups are used to construct the left and right invariant vector-fields on the
group, as well as the Killing vectors for some special invariant metric tensors
on the groups.
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Chapter 1

Preliminaries

1.1 Open sets

The components (or Cartesian coordinates ) of a point x ∈ IR n will be
denoted by

x = (x1, x2, . . . , xn).

Note that the labels are in the up position. That is x2 is not the square
of x unless we are working in IR 1, IR 2, IR 3 where we will use the standard
notation of x, y, z. The position of indices is important, and make many
formulas easier to remember or derive. The Euclidean distance between the
points x = (x1, . . . , xn) and y = (y1, . . . , yn) is

d(x,y) =
√

(x1 − y1)2 + . . .+ (xn − yn)2.

The open ball of radius r ∈ IR + at the point p ∈ IR n is the set Br(p) ⊂
IR n, defined by

Br(p) = { x ∈ IR n | d(x, p) < r}.

A subset U ⊂ IR n is an open set if given any point p ∈ U there exists
an r ∈ IR + (which depends on p) such that the open ball Br(p) satisfies
Br(p) ⊂ U . The empty set is also taken to be open.

Example 1.1.1. The set IR n is an open set.

Example 1.1.2. Let p ∈ IR n and r ∈ IR +. Any open ball Br(p) is an open
set.

1
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Example 1.1.3. The upper half plane is the set

U = { (x, y) ∈ IR 2 | y > 0 }

and is open.

Example 1.1.4. The set

V = { (x, y) ∈ IR 2 | y ≥ 0 }

is not open. Any point (x, 0) ∈ V can not satisfy the open ball condition.

Example 1.1.5. The unit n-sphere Sn ⊂ IR n+1 is the subset

Sn = { x ∈ IR n+1 | d(x, 0) = 1 }

and Sn is not open. No point x ∈ Sn satisfies the open ball condition. The
set Sn is the boundary of the open ball B1(0) ⊂ IR n+1.

Roughly speaking, open sets contain no boundary point. This can be
made precise using some elementary topology.

1.2 Smooth functions

In this section we recall some facts from multi-variable calculus. A real-valued
function f : IR n → IR has the form,

f(x) = f(x1, x2, . . . , xn).

We will only be interested in functions whose domain Dom(f), is either all
of IR n or an open subset U ⊂ IR n. For example f(x, y) = log xy is defined
only on the set U = {(x, y) ∈ IR 2 | xy > 0}, which is an open set in IR 2,
and Dom(f) = U .

A function f : IR n → IR is continuous at p ∈ IR n if

lim
x→p

f(x) = f(p).

If U ⊂ IR n is an open set, then C0(U) denotes the functions defined on U
which are continuous at every point of U .
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Example 1.2.1. Let U = { (x, y) | (x, y) 6= (0, 0) }, the function

f(x, y) =
1

x2 + y2

is continuous on the open set U ⊂ IR 2

Note that if f ∈ C0(IR n) then f ∈ C0(U) for any open subset U ⊂ IR n.

The partial derivatives of f at the point p = (x1
0, . . . , x

n
0 ) in the xi direction

is

∂f

∂xi

∣∣∣∣
p

= lim
h→0

f(x1
0, x

2
0, . . . , x

i
0 + h, xi+1

0 , . . . , xn0 )− f(x1
0, x

2
0, . . . , x

i
0, x

i+1
0 , . . . , xn0 )

h

which is also written (∂xif)|p. Let U ⊂ IR n be an open set. A function
f : U → IR is said to be C1(U) if all the partial derivatives ∂xif, 1 ≤ i ≤ n
exists at every point in U and these n-functions are continuous at every point
in U .

The partial derivatives of order k are denoted by

∂kf

∂xi1∂xi2 . . . ∂xik

where 1 ≤ i1, i2, . . . , ik ≤ n. We say for a function f : U → IR , U an
open set in IR n, that f ∈ Ck(U) if all the partial derivatives up to order k
exist at every point in the open set U and they are also continuous at every
point in U . A function f : U → IR is said to be smooth or f ∈ C∞(U) if
f ∈ Ck(U) for all k ≥ 0. In other words a function is smooth if its partial
derivatives exist to all orders at every point in U , and the resulting functions
are continuous.

Example 1.2.2. Let i ∈ {1, . . . , n}. The coordinate functions f i : IR n → IR ,
where f i(x) = xi (so the ith coordinate) satisfy f i ∈ C∞(IR n), and are
smooth functions. The coordinate functions f i will just be written as xi.
Any polynomial in the coordinate functions

P (x) = a0 +
∑

1≤i≤n

aix
i +

∑
1≤i1,i2≤n

ai1i2x
i1xi2 + . . . up to finite order

satisfies P (x) ∈ C∞(IR n), and are smooth functions.



4 CHAPTER 1. PRELIMINARIES

Example 1.2.3. Let U ⊂ IR n be an open set and define the functions
1U , 0U : U → IR by

(1.1)
1U = { 1, for all x ∈ U },
0U = { 0, for all x ∈ U }.

The function 1U , 0U ∈ C∞(U). The function 1U is the unit function on U ,
and 0U is the 0 function on U . All the partial derivatives are 0 for these
functions.

One reason we work almost exclusively with smooth functions is that if
f ∈ C∞(U) then ∂xif ∈ C∞(U), 1 ≤ i ≤ n, and so all the partial deriva-
tives are again smooth functions. While working with this restricted class of
functions is not always necessary, by doing so the exposition is often simpler.

The set of functions Ck(U) have the following algebraic properties [12].

Proposition 1.2.4. Let f, g ∈ Ck(U) (k ≥ 0 including k = ∞), and let
α ∈ IR . Then

1. (αf)(x) = αf(x) ∈ Ck(U),

2. (f + g)(x) = f(x) + g(x) ∈ Ck(U),

3. (fg)(x) = f(x)g(x) ∈ Ck(U),

4. (f
g
)(x) = f(x)

g(x)
∈ Ck(V ), where V = { x ∈ U | g(x) 6= 0 }.

Example 1.2.5. Let P (x) and Q(x) be polynomials on IR n. Then by 4 in
Lemma 1.2.4

f(x) =
P (x)

Q(x)

is a smooth function on the open set V = { x ∈ IR n | Q(x) 6= 0 }.

A function Φ : IR n → IRm is written in components as

Φ(x) = (Φ1(x),Φ2(x), . . . ,Φm(x)), x ∈ IR n.

The function Φ is smooth or Φ ∈ C∞(IR n, IRm) if each component Φ1,Φ2, . . .Φn ∈
C∞(IR n). If U ⊂ IR n is open, then C∞(U, IRm) denotes the C∞ functions
f : U → IR n.
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Example 1.2.6. The function Φ : IR 2 → IR 3 given by

Φ(x, y) = (x+ y, x− y, x2 + y2)

has components

Φ1(x, y) = x+ y, Φ2(x, y) = x− y, Φ3(x, y) = x2 + y2.

Therefore Φ ∈ C∞(IR 2, IR 3).

1.3 Smooth Curves

parametrized
Let a, b ∈ IR , a < b then I = (a, b) is the open interval

I = {x ∈ IR | a < x < b}.

A function σ ∈ C∞(I, IR n) is a mapping σ : I → IR n, and is called a smooth
(parameterized) or C∞ curve. If t denotes the coordinate on I the curve σ
has components

σ(t) = (σ1(t), σ2(t), . . . , σn(t)).

The derivative σ̇(t) of the curve σ(t) is

σ̇(t) =
dσ

dt
=

(
dσ1

dt
,
dσ1

dt
, . . . ,

dσn

dt

)
.

If t0 ∈ I then σ̇(t0) is the tangent vector to σ at the point σ(t0). The
Euclidean arc-length of a curve σ (when it exists) is

L(σ) =

∫ b

a

√√√√ n∑
i=1

(
dσi

dt

)2

dt =

∫ b

a

||σ̇||dt

where ||σ̇|| =
√∑n

i=1(σ̇i)2.

Example 1.3.1. Let σ : IR → IR 3 be the smooth curve

σ(t) = (cos t, sin t, t) , t ∈ IR
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which is known as the helix. The tangent vector at an arbitrary t value is

σ̇(t) =
dσ

dt
= (− sin t, cos t, 1).

When t = π
4

we have the tangent vector (− 1√
2
, 1√

2
, 1), which looks like,

diagram

The arc-length of σ doesn’t exists on IR . If we restrict the domain of σ to
I = (0, 2π) we get

L(σ) =

∫ 2π

0

√
sin2 t+ cos2 t+ 1dt = 2

√
2π

1.4 Composition and the Chain-rule

An easy way to construct smooth functions is through function composition.
Let m,n, k ∈ Z+ and let Φ : IR n → IRm, Ψ : IRm → IR l. The composition
of the two functions Ψ and Φ is the function Ψ ◦ Φ : IR n → IR l defined by

(Ψ ◦ Φ)(x) = Ψ(Φ(x)) for all x ∈ IR n.

Note that unless l = n the composition of Φ ◦Ψ cannot be defined.
Let (xi)1≤i≤n be coordinates on IR n, (ya)1≤a≤m be coordinates on IRm

and (uα)1≤α≤l be coordinates on IR l. In terms of these coordinates the com-
ponents of the functions Φ and Ψ can be written

ya = Φa(x1, . . . , xn) 1 ≤ a ≤ m,

uα = Ψα(y1, . . . , ym) 1 ≤ α ≤ l.

The components of the composition Ψ ◦ Φ are then

uα = Ψα(Φ(x1, . . . , xn)) 1 ≤ α ≤ l.

Example 1.4.1. Let σ : IR → IR 3 be the helix from example 1.3.1, and let
Φ : IR 3 → IR 2 be

(1.2) Φ(x, y, z) = (xy + 2yz, x+ y).
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The composition Φ ◦ σ : IR → IR 2 is the curve

Φ ◦ σ(t) = (sin t cos t+ 2t sin t, cos t+ sin t).

Now let Ψ : IR 2 → IR 2 be given by

(1.3) Ψ(u, v) = (u− v, uv).

The composition Ψ ◦ Φ : IR 3 → IR 2 is then

(1.4) Ψ ◦ Φ(x, y, z) = (xy + 2yz − x− y, x2y + 2xyz + xy2 + 2y2z).

The formula for first partial derivatives of a composition of two functions
is known as the chain-rule.

Theorem 1.4.2. (The chain-rule). Let Φ ∈ C1(IR n, IRm), and Ψ ∈ C1(IRm, IR l).
Then Ψ ◦ Φ ∈ C1(IR n, IR l), and

(1.5)
∂(Ψ ◦ Φ)α

∂xi
=

m∑
a=1

∂Ψα

∂ya

∣∣∣∣
ya=Φa(x)

∂Φa

∂xi
, 1 ≤ i ≤ n, 1 ≤ α ≤ l.

Example 1.4.3. We verify the chain-rule for the functions Ψ and Φ in ex-
ample 1.4.1. For the left side of equation 1.5, we have using equation 1.4,

(1.6) ∂x(Ψ ◦ Φ) = (y − 1, 2xy + 2yz + y2).

While for the right side we need
(1.7)
∂Ψ

∂u

∣∣∣∣
(u,v)=Φ(x,y,z)

= (∂uΦ
1, ∂uΦ

2)|(u,v)=Φ(x,y,z) = (1, v)|(u,v)=Φ(x,y,z) = (1, x+ y)

∂Ψ

∂v

∣∣∣∣
(u,v)=Φ(x,y,z)

= (∂uΦ
1, ∂uΦ

2)|(u,v)=Φ(x,y,z) = (−1, u)|(u,v)=Φ(x,y,z) = (−1, xy + 2yz)

and

(1.8) ∂xΦ = (y, 1).

Therefore the two terms on the right side of 1.5 for α = 1, 2 can be computed
from equations 1.7 and 1.8 to be

∂Ψ1

∂u

∂Φ1

∂x
+
∂Ψ1

∂v

∂Φ2

∂x
= y − 1

∂Ψ2

∂u

∂Φ1

∂x
+
∂Ψ2

∂v

∂Φ2

∂x
= (x+ y)y + (xy + 2yz)

which agrees with 1.6.
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Theorem 1.4.2 generalizes to the composition of Ck functions.

Theorem 1.4.4. Let k ≥ 0 (including k =∞), and let U ⊂ IR n, V ⊂ IRm

be open sets. If Φ ∈ Ck(U, V ) and Ψ ∈ Ck(V, IR l), then Ψ ◦ Φ ∈ Ck(U, IR l).

Therefore the composition of two smooth functions is again a smooth
function.

Example 1.4.5. Let g(x, y, z) = x2 + y2 + z2. Clearly g ∈ C∞(IR 3) because
any polynomial is C∞. Let h(u) = eu, and h ∈ C∞(IR ). Therefore by
Theorem 1.4.4 above ex

2+y2+z2 ∈ C∞(IR 3). Likewise all the compositions in
example 1.4.1 are C∞.

Example 1.4.6. The function

f(x, y, z) = log(x+ y + z)

is smooth on U = {(x, y, z) | x+ y + z > 0 }.

Example 1.4.7. Let σ : I → IR n be a smooth curve in IR n defined on an
open interval I ⊂ IR . Let Φ ∈ C∞(IR n, IRm) then Ψ ◦ σ ∈ C∞(I, IRm) and
is a smooth curve in IRm. This composition produces a smooth curve in the
range space of Φ. The chain-rule produces

(1.9)
d

dt
Φa(σ(t)) =

n∑
i=1

∂Φa

∂xi

∣∣∣∣
σ(t)

dσi

dt

The next theorem is technical but will be needed in Chapter 3.

Theorem 1.4.8. Let f ∈ C∞(U) where U ⊂ IR n is an open set, and let
p = (x1

0, . . . , x
n
0 ) ∈ U . There exists an open ball Br(p) ⊂ U and n functions

gi ∈ C∞(Br(p)), 1 ≤ i ≤ n such that

(1.10) f(x) = f(p) +
n∑
i=1

(xi − xi0)gi(x) for all x ∈ Br(p)

and where

(1.11) gi(p) =
∂f

∂xi

∣∣∣∣
p

.
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Proof. Let Br(p) be an open ball about p contained in U . Let x ∈ Br(p)
then the line l : [0, 1]→ IR n from p to x given by

l(t) = p+ t(x− p),

has the properties l(t) ⊂ Br(p), 0 ≤ t ≤ 1 and l(0) = p, l(1) = x.

XXXXXXXXXXXXXXX Picture XXXXXXXXXXXXXXXXXXXX

Therefore we can evaluate f(l(t)), and use the fundamental theorem of
calculus to write,

(1.12)

f(x) = f(p) +

∫ 1

0

d

dt
f(p+ t(x− p))dt

= f(p) + f(l(1))− f(l(0))

= f(x).

We expand out the derivative on the first line in equation 1.12 using the
chain-rule 1.4.2 to get

(1.13)
d

dt
f(l(t)) =

d

dt
f(p+ t(x− p)) =

n∑
i=1

(xi − xi0)
∂f

∂ξi

∣∣∣∣
ξ=p+t(x−p)

,

where p = (x1
0, . . . , x

n
0 ). Substituting from equation 1.13 into the first line in

equation 1.12 gives

(1.14)

f(x) = f(p) +

∫ 1

0

d

dt
f(p+ t(x− p))dt,

= f(p) +
n∑
i=1

(xi − xi0)

∫ 1

0

∂f

∂ξi

∣∣∣∣
ξ=p+t(x−p)

dt.

Therefore let

(1.15) gi(x) =

∫ 1

0

∂f

∂ξi

∣∣∣∣
ξ=p+t(x−p)

dt,

which satisfy 1.10 on account of equation 1.14. The smoothness property of
the functions gi(x) follows by differentiation under the integral sign (see [12]
where this is justified).

Finally substituting x = p into equation 1.15 gives

gi(p) =

∫ 1

0

∂f

∂ξi

∣∣∣∣
ξ=p

dt =
∂f

∂xi

∣∣∣∣
x=p

which verifies equation 1.11.
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1.5 Vector Spaces, Basis, and Subspaces

We begin by reviewing the algebraic properties of matrices. Let Mm×n(IR )
denotes the set of m×n matrices with real entries where m,n ∈ Z+. A matrix
A ∈Mm×n(IR ) has m rows and n columns. The components or entries of A
are given by Aaj , 1 ≤ a ≤ m, 1 ≤ j ≤ n. If A,B ∈ Mm×n(IR ) and c ∈ IR
then A+B, cA ∈Mm×n(IR ), where in components

(1.16)
(A+B)aj = Aaj +Ba

j ,

(cA)aj = cAaj , 1 ≤ a ≤ m, 1 ≤ j ≤ n.

If A ∈Mm×n(IR ), B ∈Mn×p(IR ) then the product of A and B is the matrix
AB ∈Mm×p(IR ) defined by

(AB)as =
n∑
j=1

Aaj B
j
s , 1 ≤ a ≤ m, 1 ≤ s ≤ p.

Example 1.5.1. Let x ∈ IR n and let A ∈ Mm×n(IR ). If we view x as
x ∈ Mn×1(IR ) (so having n rows and one column) then Ax ∈ Mm×1(IR )
is a vector having m-components. The vector Ax is given by just standard
matrix vector multiplication.

The transpose of A ∈ Mm×n(IR ) is the matrix AT ∈ Mn×m with the
property

(AT )ia = Aai , 1 ≤ i ≤ n, 1 ≤ a ≤ m.

If A ∈ Mn×n(IR ) and AT = A then A is a symmetric matrix , if AT = −A
then A is a skew-symmetric matrix . Finally if A ∈Mn×n(IR ) then the trace
of A is

trace(A) =
n∑
i=1

Aii

which is the sum of the diagonal elements of A.

Definition 1.5.2. A vector space V over IR is a non-empty set with a
binary operation + : V ×V → V , and a scalar multiplication · : IR ×V → V
which satisfy

V1) (u+ v) + w = (u+ v) + w,
V2) u+ v = v + u,
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V3) there exists 0 ∈ V such that u+ 0 = u,
V4) for all u there exists v such that u+ v = 0,
V5) 1 · u = u,
V6) (ab) · u = a · (b · u),
V7) a · (u+ v) = a · u+ a · v
V8) (a+ b) · u = a · u+ b · v.

for all u, v, w ∈ V , a, b ∈ IR .

For vector-spaces we will drop the symbol · in a · u and write au instead.
For example rule V8 is then (a+ b)u = au+ bu.

Example 1.5.3. Let V = IR n, and let + be ordinary component wise addi-
tion and let · be ordinary scalar multiplication.

Example 1.5.4. Let V = Mm×n(IR ), and let + be ordinary matrix addition,
and let · be ordinary scalar multiplication as defined in equation 1.16. With
these operations Mm×n(IR ) is a vector-space.

Example 1.5.5. Let f, g ∈ Ck(U) and c ∈ IR , and let

(f + g)(x) = f(x) + g(x), (c · f)(x) = cf(x) for all x ∈ U,
Properties 1 and 2 in Lemma 1.2.4 show that f+g, c·f ∈ Ck(U). Let 0 = 0U ,
the zero function on U defined in equation 1.1. With these definitions Ck(U)
is a vector-space over IR (for any k including k =∞).

Let S be a non-empty subset of V . A vector v ∈ V is a linear combination
of elements of S is there exists ci ∈ IR (recall an up index never means to
the power), and vi ∈ S such that

v =
k∑
i=1

civi.

Note that the zero-vector 0 will always satisfy this condition with c1 = 0, v1 ∈
S. The set of all vector which are a linear combination of S is called the span
of S and denoted by span(S) .

A subset S ⊂ V is linearly independent if for every choice {vi}1≤i≤k ⊂ S,
the only combination

(1.17)
k∑
i=1

civi = 0

is ci = 0, 1 ≤ i ≤ k. The empty set is taken to be linear independent.
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Example 1.5.6. Let V = IR 3, and let

(1.18) S =

{1
2
1

 ,
 1

0
−1

 ,
0

1
1

}, and v =

2
3
1

 ,
1. Is v a linear combination of elements in S?

2. Is S a linearly independent set?

To answer the first question, we try to solve the system of equations

c1

1
2
1

+ c2

 1
0
−1

+ c3

0
1
1

 =

1
2
1


for c1, c2, c3 ∈ IR . This is the matrix equation

(1.19)

1 1 0
2 0 1
1 −1 1

c1

c2

c3

 =

2
3
1

 ,
The augmented matrix and row reduced form are,1 1 0 | 2

2 0 1 | 3
1 −1 1 | 1

 rref →

1 0 1
2
| 3

2

0 1 −1
2
| 1

2

0 0 0 | 0

 .
The system of equations in consistent. Therefore v is a linear combination of
vectors in S. We can determine the values of c1, c2, c3 from the row reduced
form of the coefficient matrix. This corresponding reduced form gives the
equations

c1 +
1

2
c3 =

3

2

c2 −
1

2
c3 =

1

2

There are an infinite number of solutions, given in parametric form byc1

c2

c3

 =

3
2
1
2

0

+ t

−1
2

1
2

1

 t ∈ IR .
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In this solution we let c3 be the parameter t. If we choose for example t = 0,
then c1 = 3

2
and c2 = 1

2
and we note that

3

2

1
2
1

+
1

2

 1
0
−1

 =

2
3
1

 .
To answer the second questions on whether S is linearly independent we

check for solution to equation 1.17, by looking for solutions to the homoge-
neous form of the systems of equations in (1.19),

(1.20)

1 1 0
2 0 1
1 −1 1

c1

c2

c3

 =

0
0
0

 ,
If the only solution is c1 = c2 = c3 = 0, then the set S is a linearly inde-
pendent set. The row reduced echelon form of the coefficient matrix for this
system of equations is 1 0 1

2

0 1 −1
2

0 0 0

 .
Therefore, there are an infinite number of solutions to the system (1.20),
given by c1

c2

c3

 = t

−1
2

1
2

1

 t ∈ IR .

For example choosing t = 1 gives,

−1

2

1
2
1

+
1

2

 1
0
−1

+

0
1
1

 =

0
0
0

 .
Therefore S is not a linearly independent set.

A subset S ⊂ V is a spanning set if every v ∈ V is a linear combination
of elements of S, or span(S) = V .

Example 1.5.7. Continuing with example 1.5.6 we determine if S in exam-
ple 1.18 is a spanning set. In order to do so, we try to solve the system of
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equations

c1

1
2
1

+ c2

 1
0
−1

+ c3

0
1
1

 =

ab
c


for c1, c2, c3 ∈ IR where the right hand side is any vector in IR 3. This is the
matrix equation

(1.21)

1 1 0
2 0 1
1 −1 1

c1

c2

c3

 =

ab
c

 ,
The augmented matrix and a reduced form are,1 1 0 | a

2 0 1 | b
1 −1 1 | c

→
1 1 0 | a

0 −2 1 | b− 2a
0 0 0 | c− b+ a

 .
Therefore if c−b+a 6= 0, the system has no solution and S is not a spanning
set.

Lastly, a subset β ⊂ V is a basis if β is linearly independent and a
spanning set for V . We will always think of a basis β as an ordered set.

Example 1.5.8. The set S in equation 1.18 of example 1.5.6 is not a basis
for IR 3. It is not linearly independent a linearly independent set, nor is it a
spanning set.

Example 1.5.9. Let V = IR n, and let

β = {e1, e2, . . . , en},

where

(1.22) ei =



0
0
...
0
1
0
...
0


1 in the ith row, 0 otherwise.

The set β is the standard basis for IR n, and the dimension of IR n is n.
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Example 1.5.10. Let V = IR 3, and let

S =

{1
2
1

 ,
 1

0
−1

 ,
0

1
0

}

Is S a basis for IR 3? We first check if S is a linearly independent set. As in
the example above we need to find the solutions to the homogeneous system
c1v1 +c2v2 +c3v3 = 0 (where v1, v2, v3 are the three vectors in S given above).
We get 1 1 0

2 0 1
1 −1 0

 rref →

1 0 0
0 1 0
0 0 1

 .
Therefore the only solution to c1v1 + c2v2 + c3v3 = 0 (the homogeneous
system) is c1 = 0, c2 = 0, c3 = 0. The row reduced form of the coefficient
matrix also shows that S is a spanning set. Also see the theorem below.

Example 1.5.11. Let V = Mm×n(IR ), the vector-space of m× n matrices.
Let Ei

j ∈ V, 1 ≤ i ≤ m, 1 ≤ j ≤ n be the matrices

Ei
j =

{
1 in the ith row jth column
0 everywhere else

1 ≤ i ≤ m, 1 ≤ j ≤ n.

The collection {Ei
j}1≤i≤m,1≤j≤n forms a basis for Mm×n(IR ) called the stan-

dard basis. We order them as β = {E1
1 , E

1
2 , . . . , E

2
1 , . . . , E

m
n }

A vector space is finite dimensional if there exists a basis β containing
only a finite number of elements. It is a fundamental theorem that any two
basis for a finite dimensional vector space have the same number of elements
(cardinality) and so we define the dimension of V to be the cardinality of
a basis β. A second fundamental theorem about finite dimensional vector
spaces is the following

Theorem 1.5.12. Let V be an n-dimensional vector space.

1. A spanning set S has at least n elements.

2. If S is a spanning set having n elements, then S is a basis.

3. A linearly independent set S has at most n elements.
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4. If S is a linearly independent set with n elements, then S is a basis.

Using part 4 of Theorem 1.5.12, we can concluded that S in example
1.5.10 is a basis, since we determined it was a linearly independent set. The
set S in example 1.5.6 is not a basis for IR 3 by 4 of Theorem 1.5.12.

A useful property of a basis is the following.

Theorem 1.5.13. Let V be an n-dimensional vector-space with basis β =
{vi}1≤i≤n. Then every vector v ∈ V can be written as a unique linear combi-
nation of elements of β.

Proof. Since β is a spanning set, suppose that v ∈ V can be written as

(1.23) v =
n∑
i=1

civi and v =
n∑
i

divi.

Taking the difference of these two expressions gives,

0 =
n∑
i=1

(ci − di)vi.

Since the set β is a linearly independent set, we conclude ci − di = 0, and
the two expressions for v in (1.23) agree.

The (unique) real numbers c1, . . . , cn are the coefficients of the vector v
in the basis β. Also note that this theorem is true (and not hard to prove)
for vector-spaces which are not necessarily finite dimensional.

A subset W ⊂ V is a subspace if the set W is a vector-space using the
vector addition and scalar-multiplication from V . The notion of a subspace
is often more useful than that of a vector-space on its own.

Lemma 1.5.14. A subset W ⊂ V is a subspace if and only if

1. 0 ∈ W ,

2. u+ v ∈ W, for allu, v ∈ W ,

3. cu ∈ W, for allu ∈ W, c ∈ IR .
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Another way to restate these conditions is that a non-empty subset W ⊂
V is a subspace if and only if it is closed under + and scalar multiplication.
In order to prove this lemma we would need to show that W satisfies the
axioms V 1) through V 8). This is not difficult because the set W inherits
these properties from V .

Example 1.5.15. Let S ⊂ V non-empty, and let W = span(S). Then W is
a subspace of V . We show this when S is finite, the infinite case is similar.

Let v1 ∈ S, then 0v1 = 0 so 1) in Lemma 1.5.14 is true. Let v, w ∈ span(S)
then

v =
k∑
i=1

civi w =
k∑
i=1

divi

where S = {v1, . . . , vk}. Then

v + w =
k∑
i=1

(ci + di)vi

and so v+w ∈ span(S), and 2) in Lemma 1.5.14 hold. Property 3) in Lemma
1.5.14 is done similarly.

1.6 Algebras

Definition 1.6.1. An algebra (over IR ) denoted by (V, ∗), is a vector space
V (over IR ) together with an operation ∗ : V × V → V satisfying

1. (av1 + bv2) ∗ w = a(v1 ∗ w) + b(v2 ∗ w),

2. v ∗ (aw1 + bw2) = av ∗ w1 + bv ∗ w2.

The operation ∗ in this definition is called vector-multiplication. Proper-
ties 1 and 2 are referred to as the bi-linearity of ∗.

An algebra is associative if

(1.24) v1 ∗ (v2 ∗ v3) = (v1 ∗ v2) ∗ v3,

commutative if

(1.25) v1 ∗ v2 = v2 ∗ v1,
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and anti-commutative if
v1 ∗ v2 = −v2 ∗ v1

for all v1, v2, v3 ∈ V .

Example 1.6.2. Let V = IR 3 with its usual vector-space structure. Let
the multiplication on V be the cross-product. Then (V,×) is an (anti-
commutative) algebra which is not associative.

Example 1.6.3. Let n ∈ Z+ and let V = Mn×n(IR ) be the vector-space
of n × n matrices with ordinary matrix addition and scalar multiplication
defined in equation 1.16. Let ∗ be matrix multiplication. This is an algebra
because of the following algebraic properties of matrix multiplication:

(cA+B) ∗ C = cA ∗ C +B ∗ C
A ∗ (cB + C) = cA ∗B + A ∗ C

for all c ∈ IR , A,B,C ∈ Mn×n(IR ). These are properties 1 and 2 in Def-
inition 1.6.1. This algebra is associative because matrix multiplication is
associative.

Example 1.6.4. Let V = Ck(U), where U is an open set in IR n. This is
vector-space (see example 1.5.5). Define multiplication of vectors by f ∗ g =
f ·g by the usual multiplication of functions. Part 3) in Lemma 1.2.4 implies
f ∗ g ∈ Ck(U). Therefore Ck(U) is an algebra for any k (including k =∞).
This algebra is associative and commutative.

Example 1.6.5. Let V = IR 2 with the standard operations of vector addi-
tion and scalar multiplication. We define vector multiplication by consider-
ing V as the complex plane. The multiplication is determined by multiplying
complex numbers,

(x+ iy)(u+ iv) = xu− yv + i(xv + yu).

Therefore on V we define (x, y) ∗ (u, v) = (xu − yv, xv + yu) which makes
V = IR 2 into a commutative and associative algebra.

Now let V = IR 4 and consider points in V as pairs of complex numbers
(z1, z2). We can define a multiplication on V = IR 4 in the following way,

(1.26) (z1, z2) ∗ (w1, w2) = (z1w1 − z2w̄2, z1w2 + z2w̄1)

where w̄1 and w̄2 are the complex conjugates. This make V = IR 4 into an
algebra called the quaternions.
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If (V, ∗) is an algebra and W ⊂ V is a subset, then W is called a sub-
algebra if W is itself an algebra using the operation ∗ from V .

Lemma 1.6.6. A subset W ⊂ V of the algebra (V, ∗) is a subalgebra if and
only if

1. W is a subspace of V and

2. for all w1, w2 ∈ W , w1 ∗ w2 ∈ W .

Proof. If W ⊂ V is a subalgebra, then it is necessarily a vector-space, and
hence a subspace of V . In order that ∗ be well-defined on W it is necessary
that for all w1, w2 ∈ W , that w1 ∗w2 ∈ W . Therefore conditions 1 and 2 are
clearly necessary.

Suppose now that W ⊂ V and conditions 1 and 2 are satisfied. By Lemma
1.5.14 condition 1 implies that W is a vector-space. Condition 2 implies that
∗ is well-defined on W , while the bi-linearity of ∗ on W follows from that on
V . Therefore conditions 1 and 2 are sufficient.

Example 1.6.7. Let W ⊂M2×2(IR ) be the subset of upper-triangular 2× 2
matrices. The set W is a subalgebra of M2×2(IR ) with ordinary matrix
multiplication (see example 1.6.3). Properties 1 and 2 in Lemma 1.6.6 are
easily verified.

Lemma 1.6.8. Let W ⊂ V be a subspace and β = {wi}1≤i≤m a basis for W .
Then W is a subalgebra if and only if wi ∗ wj ∈ W, 1 ≤ i, j ≤ m.

Proof. If W is a subalgebra then clearly wi ∗wj ∈ W, 1 ≤ i, j ≤ m holds, and
the condition is clearly necessary. We now prove that it is sufficient.

By Lemma 1.6.6 we need to show that if u, v ∈ W , then u∗ v ∈ W . Since
β is a basis, there exist ai, bi ∈ IR , 1 ≤ i ≤ m such that

u =
m∑
i=1

aiwi, v =
m∑
i=1

biwi.

Then using bi-linearity of ∗

(1.27) u ∗ v =
n∑

i,j=1

aibiwi ∗ wj.

By hypothesis wi ∗ wj ∈ W , and since W is a subspace the right side of
equation 1.27 is in W . Therefore by Lemma 1.6.6 W is a subalgebra.
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Let (V, ∗) be a finite-dimensional algebra, and let β = {ei}1≤i≤n be a basis
of V . Since ei ∗ ej ∈ V , there exists ck ∈ IR such that

(1.28) ei ∗ ej =
n∑
k=1

ckek.

Now equation (1.28) holds for each choice 1 ≤ i, j ≤ n we can then write, for
each 1 ≤ i, j ≤ n there exists ckij ∈ IR , such that

(1.29) ei ∗ ej =
n∑
k=1

ckijek.

The real numbers ckij are called the structure constants of the algebra in the
basis β.

Example 1.6.9. Let β = {E1
1 , E

1
2 , E

2
1 , E

2
2} be the standard basis forM2×2(IR ).

Then
(1.30)

E1
1 ∗ E1

1 = E1
1 , E1

1 ∗ E1
2 = E1

2 , E1
1 ∗ E2

1 = 0, E1
1 ∗ E2

2 = 0,

E1
2 ∗ E1

1 = 0, E1
2 ∗ E1

2 = 0, E1
2 ∗ E2

1 = E1
1 , E1

2 ∗ E2
2 = E1

2 ,

E2
1 ∗ E1

1 = E2
1 , E2

1 ∗ E1
2 = E2

2 , E2
1 ∗ E2

1 = 0, E2
1 ∗ E2

2 = 0,

E2
2 ∗ E1

1 = 0, E2
2 ∗ E1

2 = 0, E2
2 ∗ E2

1 = E2
1 , E2

2 ∗ E2
2 = E2

2 ,

which can also be written in table form

* E1
1 E1

2 E2
1 E2

2

E1
1 E1

1 E1
2 0 0

E1
2 0 0 E1

1 E2
2

E2
1 E2

1 E2
2 0 0

E2
2 0 0 E2

1 E2
2

Therefore the non-zero structure constants (equation 1.29) are found from
equation 1.30 to be

c1
11 = 1, c2

12 = 1, c1
22 = 1, c1

23 = 1, c1
24 = 1, c2

31 = 1, c4
32 = 1, c3

43 = 1, c4
44 = 1.



1.7. EXERCISES 21

1.7 Exercises

1. Let Φ : IR 2 → IR 2, and Ψ : U → IR 2 be

Φ(x, y) = (x+ y, x2 + y2),Ψ(x, y) = (
x

y
, x− y)

where U = {(x, y) | y 6= 0}.

(a) Why are Φ and Ψ smooth functions?

(b) Compute Ψ ◦ Φ and find its domain, and state why it is C∞.

(c) Compute Φ ◦Ψ and find its domain.

(d) Verify the chain-rule (1.5) for Ψ ◦ Φ.

2. Find the functions g1(x, y), g2(x, y) at p = (1, 2) for f(x, y) = ex−y in
Theorem 1.4.8 and verify equation 1.10.

3. Let σ(τ) : I → IR n be a smooth curve where I = (a, b), a, b ∈ IR .
Define the function s : (a, b)→ IR by

(1.31) s(t) =

∫ t

a

||dσ
dτ
||dτ t ∈ I.

Note that the image of I is the open interval (0, L(σ)), that

ds

dt
= ||σ̇||,

and if ||σ̇|| 6= 0 then s(t) is an invertible function.

Suppose that the inverse function of the function s(t) in 1.31 exists
and is C∞. Call this function t(s), and let γ : (0, L(σ)) → IR n be the
curve γ(s) = σ ◦ t(s). This parameterization of the curve σ is called
the arc-length parameterization . The function κ : (0, L(σ))→ IR

κ = ||d
2γ

ds2
||

is called the curvature of γ.

(a) Compute the arc-length parameterization for the helix from ex-
ample 1.3.1 on I = (0, 2π).
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(b) Compute ||γ′|| for the helix ( ′ is the derivative with respect to s).

(c) Prove ||γ′|| = 1 for any curve σ.

(d) Compute κ (as a function of s) for the helix.

(e) Show that κ ◦ s(t) for a curve σ can be computed by

(1.32) κ(t) =

(
ds

dt

)−1

||dT
dt
||

where T = ||σ̇||−1σ̇ is the unit tangent vector of σ(t). (Hint:
Apply the chain-rule to γ(s) = σ(t(s)).)

(f) Compute κ(t) for the helix using the formula in 1.32.

(g) Compute the curvature for the curve

σ(t) = (et cos t, et sin t, t), t ∈ (0, 2π).

4. Compute the matric products AB and BA if they are defined.

(a)

A =

[
1 −1
2 1

]
B =

1 −1
2 3
1 1


(b)

A =

1 3
2 2
3 1

 B =

[
1 −2 3
−1 1 1

]

5. Which of the following sets β of vector define a basis for IR 3. In cases
when β is not a basis, state which property fails and prove that it fails.

(a) β =

{1
1
1

 ,
−1

2
3

 ,
2

3
1

}.
(b) β =

{1
0
1

 ,
−2

2
3

 ,
−1

2
4

}.
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(c) β =

{2
2
1

 ,
1

1
1

}.
(d) β =

{1
1
1

 ,
2

3
1

 ,
1

1
0

 ,
4

2
1

}.
6. Show that IR 3 with the cross-product is an algebra. Show that it is

not associative.

7. In example 1.6.5 a multiplication on IR 4 is defined by equation 1.26.
Compute the multiplication table for the standard basis for IR 4. Show
that this multiplication is not commutative.

8. Show that algebra Mn×n(IR ) with matrix multiplication is an algebra
and that it is also associative (see 1.24). Is it a commutative algebra
(see 1.25)?

9. Let M0
n×n(IR ) ⊂Mn×n(IR ) be the subset of trace-free matrices,

(1.33) M0
n×n(n, IR ) = { A ∈Mn×n(IR ) | trace(A) = 0 }.

Show that,

(a) trace(cA+B) = c trace(A) + trace(B), c ∈ IR , A,B ∈Mn×n(IR ),

(b) trace(AB) = trace(BA), A,B ∈Mn×n(IR ),

(c) M0
n×n(n, IR ) ⊂Mn×n(IR ) is a subspace, and

(d) that for n > 1, M0
n×n(n, IR ) ⊂ Mn×n(IR ), is not a subalgebra of

the algebra in example 1.6.3.

10. Consider the vector-space V = Mn×n(IR ) and define the function [ , ] :
V × V → V by

[A,B] = AB −BA A,B ∈Mn×n(IR ).

(a) Show that (Mn×n(IR ), [ , ]) is an algebra. This algebra is called
gl(n, IR ), where gl stands for general linear.

(b) Is gl(n, IR ) commutative or anti-commutative? (Consider n =
1, n > 1 separately.)
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(c) Is gl(n, IR ) associative for n > 1?

(d) Show [A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0, for allA,B,C ∈
Mn×n(IR ). Compare this with problem (b) above. (This is called
the Jacobi identity for gl(n, IR ).)

11. Compute the structure constants for gl(2, IR ) using the standard basis
for M2×2(IR ).

12. Let sl(n, IR ) ⊂ gl(n, IR ) be the subspace of trace-free matrices (see
equation 1.33, and problem 7c),

(a) Show that sl(n, IR ) is a subalgebra of gl(n, IR ). Compare with
problem 7. (Hint Use part a and b of problem 7)

(b) Find a basis for the subspace sl(2, IR ) ⊂ gl(2, IR ), and compute
the corresponding structure constants. (Hint: sl(2, IR ) is 3 di-
mensional)



Chapter 2

Linear Transformations

2.1 Matrix Representation

Let V and W be two vector spaces. A function T : V → W is a linear
transformation if

T (au+ bv) = aT (u) + bT (v) for all u, v ∈ V, a, b ∈ IR .

The abstract algebra term for a linear transformation is a homomorphism (of
vector-spaces).

Example 2.1.1. The function T : IR 2 → IR 3,

(2.1) T

([
x
y

])
=

2x+ 3y
x+ y
x− y


is a linear transformation. This is easily check by computing,

T

(
a

[
x
y

]
+ b

[
x′

y′

])
=

2(ax+ bx′) + 3(ay + by′)
ax+ bx′ + ay + by′

ax+ bx′ − ay − by′

 = aT

([
x
y

])
+bT

([
x′

y′

])
.

Example 2.1.2. Let A ∈ Mm×n(IR be a m × n matrix and define LA :
IR n → IRm by

LA(x) = Ax

where Ax is matrix vector multiplication (see example 1.5.1). It follows
immediately from properties 1.16 of matrix multiplication that the function
LA is a linear transformation.

25
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Note that in example 2.1.1

T

([
x
y

])
=

2 3
1 1
1 −1

[x
y

]

Let V be an n dimensional vector-space with basis β = {v1, . . . , vn}, and
let W be an m dimensional vector space with basis γ = {w1, . . . , wm}. Given
a linear transformation T : V → W a linear transformation, we begin by
applying T to the vector v1, so that T (v1) ∈ W . Since γ is a basis for W ,
there exists real numbers A1

1, A
2
1, . . . , A

m
1 such that

T (v1) =
m∑
a=1

Aa1wa.

The role of the “extra index” 1 the coefficients A will be clear in a moment.
Repeating this argument with all of the basis vector vj ∈ β we find that for
each j, 1 ≤ j ≤ n there A1

j , A
2
j , . . . , A

m
j ∈ IR such that

(2.2) T (vj) =
m∑
a=1

Aaj wa.

The set of numbers Aaj , 1 ≤ j ≤ n, 1 ≤ a ≤ m form a matrix (Aai ) with m
rows, and n columns (so an m×n matrix). This is the matrix representation
of T in the basis’ β and γ and is denoted by

(2.3) [T ]γβ = (Aaj ).

Example 2.1.3. Continuing with T : IR 2 → IR 3 in example 2.1.1 above, we
compute [T ]γβ where

β =

{[
1
0

]
,

[
0
1

]}
, γ =

{1
0
0

 ,
0

1
0

 ,
0

0
1

}.
So β and γ are the standard basis for IR 2 and IR 3 respectively.

T

([
1
0

])
=

2
1
1

 = 2

1
0
0

+ 1

0
1
0

+ 1

0
0
1


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and

T

([
0
1

])
=

 3
1
−1

 = 3

1
0
0

+ 1

0
1
0

− 1

0
0
1

 .
Therefore

[T ]γβ =

2 3
1 1
1 −1

 .
Note that the coefficients of T (e1) in the basis γ are in the first column,
and those of T (e2) are in the second column. We now compute [T ]γβ in the

following basis’

(2.4) β =

{[
1
−1

]
,

[
1
0

]}
, γ =

{1
2
1

 ,
 1

0
−1

 ,
0

1
0

}

We get,

T

([
1
−1

])
=

−1
0
2

 =
1

2

1
2
1

− 3

2

 1
0
−1

−
0

1
0


and

T

([
1
0

])
=

2
1
1

 =
3

2

1
2
1

+
1

2

 1
0
−1

− 2

0
1
0

 .
Therefore

(2.5) [T ]γβ =

 1
2

3
2

−3
2

1
2

−1 −2


Again note that the coefficients of T (v1) in the basis γ are in the first column,
and those of T (v2) are in the second column.

Expanding on the remark at the end of the example, the columns of [T ]γβ
are the coefficients of T (v1), T (v2), . . . , T (vn) in the basis γ!

Example 2.1.4. Let A ∈Mm×n and let LA : IR n → IRm be linear transfor-
mation in example 2.1.2. Let β = {e1, . . . , en} be the standard basis for IR n
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and let γ = {f1, . . . , fm} be the standard basis for IRm. Then

(2.6) LA(ej) =


A1
j

A2
j

...
Amj


m∑
a=1

Aajfa,

and therefore
[LA]γβ = A.

The following lemma shows that the above example essentially describes
all linear transformations from IR n to IRm.

Lemma 2.1.5. Let T : IR n → IRm be a linear transformation. There exists
a matrix A ∈Mm×n(IR ) such that

T (x) = LA(x) for all x ∈ IR n.

Suppose now that T : V → W is a linear transformation between the
finite dimensional vector spaces V and W . Let β = {vi}1≤i≤n be a basis for
V and γ = {wa}1≤a≤n for W . Let v ∈ V which in the basis β is

(2.7) v =
n∑
i=1

ξi vi,

where ξi ∈ IR , 1 ≤ i ≤ n are the coefficients of v in the basis β. Now let
w = T (v). Then w ∈ W and so can be written in terms of the basis γ as

w =
m∑
a=1

ηa fa

where ηa ∈ IR , 1 ≤ a ≤ m. We then find

Lemma 2.1.6. The coefficients of the vector w = T (v) are given by

ηa =
n∑
i=1

Aai ξ
i

where A is the m× n matrix A = [T ]γβ.
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Proof. We simply expand out T (v) using equation (2.7), and using the lin-
earity of T to get

T (v) = T (
n∑
i=1

ξi vi) =
n∑
i=1

ξi T (vi).

Now substituting for T (vi) =
∑m

a=1A
a
iwa, we get

(2.8) T (v) =
n∑
i=1

ξi

(
m∑
a=1

Aai wa

)
=

m∑
a=1

(
n∑
i=1

Aai ξ
i

)
wa.

Since {wa}1≤a≤m is a basis the coefficients of wa in equation 2.8 must be the
same, and so

(2.9) ηa =
n∑
i=1

Aai ξ
i.

The m-coefficients ηa of w can be thought of as an column vector, and
the n coefficients ξi of v can be thought of as a column vector. Equation
(2.9) then reads η

1

...
ηm

 = A

ξ
1

...
ξn


where the right side is standard matrix vector multiplication. This can also
be written,

(2.10) [w]γ = A[v]β

where [w]γ is the column m-vector of coefficients of w in the basis γ, and [v]β
is the column n-vector of the coefficients of v in the basis β.

What we have just seen by Lemma 2.1.6 is that every linear transfor-
mation T ∈ L(V,W ) where V is dimension n and W is dimension m is
completely determined by its value on a basis, or by its matrix representa-
tion. That is if β = {vi}1≤i≤n is a basis then given T (vi) we can compute
T (v) where v =

∑n
i=1 ξ

ivi, ξ
i ∈ IR to be

T (
n∑
i=1

ξivi) =
n∑
i=1

ξiT (vi).



30 CHAPTER 2. LINEAR TRANSFORMATIONS

Conversely any function T̂ : β → W extends to a unique linear transforma-
tion T : V → W defined by

T (
n∑
i=1

ξivi) =
n∑
i=1

ξiT̂ (vi)

which agrees with T̂ on the basis β. We have therefore proved the following
lemma.

Lemma 2.1.7. Let β be a basis for the vector space V . Every linear trans-
formation T ∈ L(V,W ) uniquely determines a function T̂ : β → W . Con-
versely every function T̂ : β → W determines a unique linear transformation
T ∈ L(V,W ) which agrees with T̂ on the basis β.

A simple corollary is then

Corollary 2.1.8. Let T, U ∈ L(V,W ), with the dimension of V being n and
the dimension of W being m. Then T = U if and only if [T ]γβ = [U ]γβ for any
(and hence all) basis β for V and γ for W .

2.2 Kernel, Rank, and the Rank-Nullity The-

orem

Let T : V → W be a linear transformation the kernel of T (denoted ker(T ))
or the null space of T is the set

ker(T ) = { v ∈ V | T (v) = 0W }

where 0W is the zero-vector in W . The image or range of T (denoted R(T ))
is

R(T ) = { w ∈ W | w = T (v) for some v ∈ V }.

Lemma 2.2.1. Let T : V → W be a linear transformation, then ker(T ) is a
subspace of V , and R(T ) is a subspace of W .

Proof. We need to show that ker(T ) satisfies conditions 1),2),3) from the
subspace Lemma 1.5.14. We begin by computing

T (0) = T (a0) = aT (0) for all a ∈ IR .
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Therefore T (0) = 0W , and 0 ∈ ker(T ). Now suppose u, v ∈ ker(T ), then

T (au+ v) = aT (u) + T (v) = 0W + 0W = 0.

This shows property 2) and 3) hold from Lemma 1.5.14, and so ker(T ) is a
subspace of V .

The proof that R(T ) is a subspace is left as an exercise.

The rank of T denoted by rank(T ), is defined to be the dimension of
R(T ),

rank(T ) = dimR(T ).

The nullity of T denoted by nullity(T ), is defined to be

nullity(T ) = dim ker(T ).

Example 2.2.2. Let LA : IR n → IRm be the linear transformation LA(x) =
Ax from example 2.1.2. Let β = {ei}1≤i≤n is the standard basis for IR n

defined in 1.22. Then x = x1e1 + x2e2 + . . . xnen and

(2.11) LA(x) = A(
n∑
i=1

xi ei) =
n∑
i=1

xiA(ei).

The kernel of LA is also called the the kernel of A, that is

(2.12) ker(A) = { x ∈ IR n | Ax = 0}.

where 0 is the zero vector in IRm.
The range space R(LA) of LA is then found from equation 2.11 to be

R(LA) = span{A(e1), . . . , A(en)}.

By equation 2.6 we have

(2.13) R(LA) = span



A1

1

A2
1

...
Am1

 , . . . ,

A1
n

A2
n
...
Amn




or R(LA) is the span of the columns of A.
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Example 2.2.3. Let Z : IR 5 → IR 4 be the linear transformation

(2.14) Z



v
w
x
y
z


 =


v + 2w + 3y − 2z
w + 2x+ 3y + 3z
v + w − x+ y − 3z
w + 3x+ 4y + 5z

 .
To find ker(Z) we therefore need to solve

v + 2w + 3y − 2z
w + 2x+ 3y + 3z
v + w − x+ y − 3z
w + 3x+ 4y + 5z

 =


0
0
0
0

 .
The parametric solution to these equation is

v
w
x
y
z

 = t1


1
1
1
−1
0

+ t2


0
1
−2
0
1

 .
Note that ker(Z) is a two-dimensional subspace with basis

βker(T ) =




1
1
1
−1
0

 ,


0
1
−2
0
1


 .

Writing the linear transformation as

Z



v
w
x
y
z


 =


1 2 0 3 −2
0 1 2 3 3
1 1 −1 1 −3
0 1 3 4 5



v
w
x
y
z


then from equation 2.13

R(Z)span




1
0
1
0

 ,


2
1
1
1

 ,


0
2
−1
3

 ,


3
3
1
4

 ,

−2
3
−3
5


 .
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We leave as an exercise the following lemma.

Lemma 2.2.4. Let T : V → W be a linear transformation with β =
{vi}1≤i≤n a basis for V and γ = {wa}1≤a≤m a basis for W . The function
T is injective if and only if (see equation 2.12),

ker(A) = 0

where 0 is the zero vector in IR n.

The next proposition provides a good way to find a basis for R(T ).

Proposition 2.2.5. Let T : V → W be a linear transformation, where
dimV = n and dimW = m. Suppose β1 = {v1, . . . , vk} form a basis
for kerT , and that β = {v1, . . . , vw, uk+1, . . . , un} form a basis for V , then
{T (uk+1), . . . , T (un)} form a basis for R(T ).

In practice this means we first find a basis for ker(T ) and then extend it
to a basis for V . Apply T to the vectors not in the kernel, and these are a
basis for R(T ).

Example 2.2.6. Let Z : IR 5 → IR 4 be the linear transformation in equation
2.14 in example 2.2.3. We extend kerZ to a basis as in Lemma 2.2.5

β =




1
1
1
−1
0

 ,


0
1
−2
0
1

 ,


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0


 .

(Exercise: Check this is a basis!). We then find

Z




1
0
0
0
0


 =


1
0
1
0

 , Z




0
1
0
0
0


 =


2
1
1
1

 , Z



0
0
1
0
0


 =


0
2
−1
3

 ,
which by Lemma 2.2.5 form a basis for R(Z). Note that rank(Z) = 3.

By counting the basis elements for V in the Lemma 2.2.5 leads to a
Theorem known as the rank-nullity theorem, or the dimension theorem.

Theorem 2.2.7. If V is a finite dimensional vector-space and T : V → W
is a linear transformation, then

dimV = dim ker(T ) + dimR(T ) = nullity(T ) + rank(T ).
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2.3 Composition, Inverse and Isomorphism

The composition of two linear transformations plays a significant role in linear
algebra. We begin with a straight-forward proposition.

Proposition 2.3.1. Let U, V,W be vector-spaces, and let T : U → V , and
S : V → W be linear transformations. The composition S ◦ T : U → W is a
linear transformation.

Proof. Exercise 3.

Example 2.3.2. Let S : IR 4 → IR 2 be the linear transformation

(2.15) S



w
x
y
z


 =

[
2w + 4y + 4z

x− 2z

]
.

Let T be the linear transformation given in equation 2.1 in example 2.1.1.
Compute T ◦ S or S ◦ T if they are defined. Only T ◦ S is defined and we
have,
(2.16)

T ◦ S



w
x
y
z


 = T

([
2w + 4y + 4z

x− 2z

])
=

2(2w + 4y + 4z) + 3(x− 2z)
2w + 4y + 4z + x− 2z

2w + 4y + 4z − (x− 2z)



=

4w + 3x+ 8y + 2z
2w + x+ 4y + 2z
2w − x+ 4y + 6z


Note that it is not possible to compute S ◦ T .

Finally, suppose that T : U → V , S : V → W are linear transformations
and that

β = {u1, . . . , un}, γ = {v1, . . . , vm}, δ = {w1, . . . , wp}

are basis for U, V and W respectively. Let

[T ]γβ = (Ba
j ) 1 ≤ a ≤ m, 1 ≤ j ≤ n
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and

[S]δγ = (Aαa ) 1 ≤ α ≤ p, 1 ≤ a ≤ m,

and

[S ◦ T ]δβ = (Cα
j ) 1 ≤ α ≤ p, 1 ≤ j ≤ n

be the matrix representations of T (m× n),S (p× n) and S ◦ T (p× n).

Theorem 2.3.3. The coefficients of the p× n matrix C are

(2.17) Cα
j =

m∑
b=1

AαaB
a
j .

Proof. Let’s check this formula. We compute

S ◦ T (uj) = S

(
m∑
a=1

Ba
j va

)

=
m∑
a=1

Ba
j S(va) by linearity of S

=
m∑
a=1

Ba
j

(
p∑

α=1

Aαawα

)

=

p∑
α=1

(
m∑
a=1

AαaB
a
j

)
wα rearrange the summation.

This is formula (2.17).

This theorem is the motivation on how to define matrix multiplication.
If A ∈ Mp×m(IR ) and B ∈ Mm×n(IR ) then the product AB ∈ Mp×n is the
p× n matrix C whose entries are given by (2.17).

Example 2.3.4. Let T and S be from equations (2.1) and (2.15), we then
check (2.17) using the standard basis for each space. That is we check [T ◦
S] = [T ][S] where these are the matrix representations in the standard basis.
We have

[T ] =

2 3
1 1
1 −1

 , [S] =

[
2 0 4 4
0 1 4 6

]
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while from equation (2.16),

[T ◦ S] =

4 3 8 2
2 1 4 2
2 −1 4 6

 .
Multiplying,

[T ][S] =

2 3
1 1
1 −1

[2 0 4 4
0 1 4 6

]
=

4 3 8 2
2 1 4 2
2 −1 4 6

 .
so we have checked (2.17) in the standard basis.

We check formula (2.17) again but this time we will use the basis (2.4) for
IR 2, IR 3, and δ = {e1, e2, e3, e4} is again the standard basis for IR 4. We’ve
got [T ]γβ is equation (2.5), so we need to compute [S]βδ . This is

[S]βδ =

[
0 −1 0 2
2 1 4 2

]
while using (2.16), we have

[T ◦ S]γδ =

 3 1 6 4
1 2 2 −2
−4 −1 −8 −6

 =

 1
2

3
2

−3
2

1
2

−1 −2

[0 −1 0 2
2 1 4 2

]
This verifies equation (2.16).

A linear transformation T : V → W is an isomorphism if T is an invertible
function. That is T is a bijective function, and so one-to-one and onto.

Proposition 2.3.5. A linear transformation T : V → W between two n-
dimensional vector spaces is an isomorphism if and only if ker(T ) = {0}.

Proof. By exercise 2 in this chapter T is injective if and only if ker(T ) = {0}.
By the dimension Theorem 2.2.7 dim ker(T ) = 0 if and only if R(T ) = W .
In other words T is injective if and only if T is surjective.

An n × n matrix A is invertible if there exists an n × n matrix B such
that

AB = BA = I

where I is the n× n identity matrix, in which case we write B = A−1.
The standard test for invertibility is the following.
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Proposition 2.3.6. A matrix A ∈Mn×n is invertible if and only if det(A) 6=
0. Furthermore if A is invertible then A−1 is obtained by row reduction of
the augmented system

( A | I )→ ( I | A−1 )

The invertibility of a matrix and an isomorphism are related by the next
lemma.

Proposition 2.3.7. Let T : V → W be an isomorphism from the n-dimensional
vector-space V to the m dimensional vector-space W , with β a basis for V
and γ a basis for W . Then

1. W is n-dimensional, and

2. T−1 : W → V is linear.

3. [T−1]βγ =
(
[T ]γβ

)−1
, where

(
[T ]γβ

)−1
is the inverse matrix of [T ]γβ.

Example 2.3.8. Let T : IR 2 → IR 2 be the linear transformation,

T

([
x
y

])
=

[
2x+ y
x+ y

]
.

We have according to Lemma 2.3.7,

[T ] =

[
2 1
1 1

]
, and [T ]−1 =

[
1 −1
−1 2

]
Therefore,

T−1

([
x
y

])
= [T ]−1

[
x
y

]
=

[
x− y
2y − x

]
.

Double checking this answer we compute

T ◦ T−1

([
x
y

])
= T

([
x− y
2y − x

])
=

([
2(x− y) + 2y − x
x− y + 2y − x

])
=

[
x
y

]
By applying the dimension theorem we have a simple corollary.

Corollary 2.3.9. A function T ∈ L(V,W ) with dimV = dimW is an iso-
morphism if and only if kerT = {0}.
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Let L(V,W ) be the set of all linear transformations from V to W .

Lemma 2.3.10. Let S, T ∈ L(V,W ) and a ∈ IR then aS + T ∈ L(V,W )
where

(aS + T )(v) = aS(v) + T (v).

In particular this makes L(V,W ) is a vector-space.

Proof. We need to show aS+T is indeed linear. Let v1, v2 ∈ V , c ∈ IR , then

(aS + T )(cv1 + v2) = aS(cv1 + v2) + T (cv1 + v2)

= acS(v1) + aS(v2) + cT (v1) + T (v2)

= c(aS + T )(v1) + (aS + T )(v2)

Therefore aS + T ∈ L(V,W ). The fact that L(V,W ) is a vector-space can
be shown in a number of ways.

We now find

Lemma 2.3.11. Let V be an n dimensional vector-space and W an m di-
mensional vector space. Then

dimL(V,W ) = nm

Proof. Let β = {vi}{1 ≤ i ≤ n} and γ = {wa}1≤a≤m be basis for V and W
respectively. Define Φ : L(V,W )→Mm×n(IR ) by

(2.18) Φ(T ) = [T ]γβ.

We claim Φ is an isomorphism. First Φ is a linear transformation, which is
an exercise. It follows from Corollary 2.1.8, that Φ(T0) = 0m×n is the unique
linear transformation with the 0 matrix for its representation, and so Φ is
injective. If A ∈Mm×n then

T̂ (vi) =
m∑
a=1

Aaiwa ,

by Lemma 2.1.7 extends to a linear transformation T : V → W with [T ]γβ =
A. Therefore Φ is onto, and so an isomorphism.



2.4. EXERCISES 39

2.4 Exercises

1. A transformation T : IR 3 → IR 2 is defined by

(2.19) T (

xy
z

) =

[
x+ y − z

2y + z

]
.

(a) Show that T is linear.

(b) Find the matrix representing T for each of the following basis.

i.

{1
0
0

 ,
0

1
0

 ,
0

0
1

} and

{[
1
0

]
,

[
0
1

]}
.

ii.

{1
0
0

 ,
0

1
1

 ,
2

1
3

} and

{[
1
0

]
,

[
0
1

]}
.

iii.

{1
0
0

 ,
0

1
0

 ,
0

0
1

} and

{[
1
2

]
,

[
1
3

]}
.

iv.

{0
0
1

 ,
0

1
0

 ,
1

0
0

} and

{[
0
1

]
,

[
1
0

]}
.

(c) Compute the kernel of T using the matrix representations in (i),
(ii) and (iii). Show that you get the same answer in each case.

2. Prove that if T : V → W is a linear transformation, then T is injective
if and only if kernel(T ) = 0V .

3. Prove Lemma 2.2.4. (Hint use exercise 2.)

4. Let T : V → W be a linear transformation. Prove that R(T ) ⊂ W is a
subspace.

5. For the linear transformation S in equation 2.15 from example 2.3.2,
find a basis for ker(S) and R(S) using lemma 2.2.5
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6. (a) Find a linear transformation T : IR 4 → IR 3 with

ker(T ) = span

{
1
1
1
0

 ,

−1
0
−1
2

 ,} and image(T ) = span

{2
0
1

 ,
1

1
1

}.
Express your answer as T (xe1 + ye2 + ze3 + we4).

(b) Is your answer unique?

(c) Can you repeat a) with

ker(T ) = span

{
1
1
1
0

 ,


1
0
−1
2

 ,


0
2
3
1

} andR(T ) = span

{2
0
1

 ,
1

1
1

 ,}?

7. Prove Lemma 2.1.5.

8. Prove Proposition 2.2.5.

9. If T : V → W and S : W → U are linear transformations, show that
S ◦ T : V → U is a linear transformation.

10. Let S : IR 2 → IR 2 be given by S(

[
x
y

]
) =

[
x− y
2y − x

]
.

(a) Show that S is a linear transformation.

(b) Find S ◦T

xy
z

, where T is the linear transformation given in

equation 2.19 of problem 1.

(c) Find [T ], [S], and [S ◦ T ] the matrices of these linear transforma-
tions with respect to the standard basis for IR 3 and IR 2

(d) Check that [S ◦ T ] = [S][T ].

(e) Find the matrix for the linear transformation S2 = S ◦ S.

(f) Find the inverse function S−1 : IR 2 → IR 2. Show that S−1 is
linear and that [S−1] = [S]−1.
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11. Prove that Φ : L(V,W ) → Mm×n(IR ) defined in equation 2.18 is a
linear transformation, by showing

Φ(aT + S) = aΦ(T ) + Φ(S) , a ∈ IR , T, S ∈ L(V,W ).
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Chapter 3

Tangent Vectors

In multi-variable calculus a vector field on IR 3 is written

v = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k

where P,Q,R ∈ C∞(IR 3). While in differential geometry the same vector
field would be written as a differential operator

v = P (x, y, z)∂x +Q(x, y, z)∂y +R(x, y, z)∂z.

This chapter will show why vector fields are written as differential operators
and then examine their behavior under a changes of variables.

3.1 Tangent Vectors and Curves

Let p ∈ IR n be a point. We begin with a preliminary definition that a tangent
vector at p is an ordered pair (p , a) where a ∈ IR n which we will write as
(a)p. The point p is always included - we can not think of tangent vectors as
being at the origin of IR n unless p is the origin.

Let Vp be the set of tangent vectors at the point p. This set has the
structure of a vector space over IR where we define addition and scalar mul-
tiplication by

c(a)p + (b)p = (ca + b)p, c ∈ IR , a,b ∈ IR n.

This purely set theoretical discussion of tangent vectors does not reflect the
geometric meaning of tangency.

43
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Recall that a smooth curve is function σ : I → IR n, where I ⊂ IR is an
open interval. Let t0 ∈ I, and let p = σ(t0). The tangent vector to σ at
p = σ(t0) ∈ IR n is

(a)p =

(
dσ

dt

∣∣∣∣
t=t0

)
σ(t0)

= (σ̇(t0))σ(t0) .

Example 3.1.1. For the helix σ(t) = (cos t, sin t, t) the tangent vector at
t = π

4
,is

(3.1)

(
dσ

dt

∣∣∣∣
t=π

4

)
( 1√

2
, 1√

2
,π
4

)

=

(
− 1√

2
,

1√
2
, 1

)
( 1√

2
, 1√

2
,π
4

)

.

Consider the curve

α(t) =

(
− 1√

2
t+

1√
2
,

1√
2
t+

1√
2
, t+

π

4

)
The tangent vector to α(t) at t = 0 is exactly the same as that in (3.1). Two
completely different curves can have the same tangent vector at a point.

A representative curve of a given vector (a)p ∈ Vp is a smooth curve
σ : I → IR n defined on a non-empty open interval I that satisfies σ(t0) = p
and σ̇(t0) = a for some t0 ∈ I.

Example 3.1.2. Let (a)p ∈ Vp. The curve σ : IR → IR n given by

(3.2) σ(t) = p+ ta

satisfies σ(0) = p and σ̇(0) = a, and is a representative of the tangent vector
(a)p. The curve with components

(3.3) σi(t) = xi0 + ea
i(t−1)

where p = (xi0)1≤i≤n is also a representative of (a)p with t0 = 1
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3.2 Derivations

The second geometric way to think about tangent vectors is by using the
directional derivative. Let (a)p be a tangent vector at the point p and let
σ : I → IR n be representative curve (so σ(t0) = p, σ̇(t0) = a). Recall that
the directional derivative at p of a smooth function f ∈ C∞(IR n) along (a)p
and denoted Daf(p) is

(3.4)

Daf(p) =

(
d

dt
f ◦ σ

)∣∣∣∣
t=t0

=
n∑
i=1

∂f

∂xi

∣∣∣∣
σ(t0)

dσi

dt

∣∣∣∣
t=t0

=
n∑
i=1

ai
∂f

∂xi

∣∣∣∣
p

,

where the chain-rule 1.4.2 was used in this computation. Using this for-
mula let’s make a few observations about the mathematical properties of the
directional derivative.

Lemma 3.2.1. Let (a)p ∈ Vp, then the directional derivative given in equa-
tion 3.4 has the following properties:

1. Daf(p) ∈ IR ,

2. The directional derivative of f only depends only the tangent vector
(a)p and not on the curve σ used to represent it.

3. The function f in equation 3.4 need not be C∞ everywhere but only C∞

on some open set U in IR n with p ∈ U .

4. If g is a smooth function defined on some open set V with p ∈ V we
can compute the directional derivatives

(3.5)
Da(cf + g)(p) = cDaf(p) +Dag(p)

Da(fg)(p) = Da(f)(p)g(p) + f(p)Dag(p)

where c ∈ IR .



46 CHAPTER 3. TANGENT VECTORS

Proof. These claims are easily verified. For example, to verify the second
property in equation 3.5,

Da(fg)(p) =
d

dt
(f ◦ σ g ◦ σ) |t=t0

=
n∑
i=1

∂f

∂xi

∣∣∣∣
σ(t0)

dσi

dt

∣∣∣∣
t=t0

g(σ(t0)) + f(σ(t0))
∂g

∂xi

∣∣∣∣
σ(t0)

dσi

dt

∣∣∣∣
t=t0

= Daf(p)g(p) + f(p)Dag(p) by equation 3.4.

The directional derivative leads to the idea that a tangent vector at a
point p is something that differentiates smooth function defined in an open
set about that point, and satisfies properties 1-4 above. This is exactly what
is done in modern differential geometry and we now pursue this approach.

The next definition, which is a bit abstract, is motivated by point 3 in
Lemma 3.2.1 above. Let p ∈ IR n, and define

C∞(p) =
⋃

U⊂IR n

C∞(U), where p ∈ U and U is open.

If f ∈ C∞(p) then there exists an open set U containing p and f ∈ C∞(U).
Therefore C∞(p) consists of all functions which are C∞ on some open set
containing p.

The set C∞(p) has the similar algebraic properties as C∞(U). For exam-
ple if f, g ∈ C∞(p) with Dom(f) = U and Dom(g) = V , then define

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x), x ∈ U ∩ V,

Note that p ∈ U∩V , U∩V is an open set, and therefore f+g and fg ∈ C∞(p).
We now come to the fundamental definition.

Definition 3.2.2. A derivation of C∞(p) is a function Xp : C∞(p) → IR
which satisfies for all f, g ∈ C∞(p) and a, b ∈ IR ,

(3.6)
linearity Xp(af + bg) = aXp(f(x)) +Xp(g),

Leibniz Rule Xp(fg) = Xp(f)g(p) + f(p)Xp(g) .

Let Der(C∞(p)) denote the set of all derivations of C∞(p).
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If Xp, Yp ∈ Der(C∞(p)) and a ∈ IR we define aXp + Yp ∈ Der(C∞(p))
by

(3.7) (aXp + Yp)(f) = aXp(f) + Yp(f), for allf ∈ C∞(p).

Lemma 3.2.3. With the operations 3.7 the set Der(C∞(p)) is a vector-space.

Proof. The zero vector 0p is the derivation

0p(f) = 0.

The vector-space properties are now easy to verify.

Example 3.2.4. Let f ∈ C∞(p) and letXp(f) = ∂xif |p, where i ∈ {1, . . . , n}.
Then Xp ∈ Der(C∞(IR n)). More generally, if (ξi)1≤i≤n ∈ IR n then

Xp = (ξ1∂1 + ξ2∂2 + . . .+ ξn∂n)|p

satisfies Xp ∈ Der(C∞(p)).

Example 3.2.5. Let p ∈ IR n and let (a)p ∈ Vp. Define the function T :
Vp → Der(C∞(p)) by

(3.8) T ((a)p)(f) = Daf(p).

The function T takes the vector (a)p to the corresponding directional deriva-
tive. We need to check that T ((a)p) is in fact a derivation. This is clear
though from property 4 in Lemma 3.2.1.

Lemma 3.2.6. The function T : Vp → Der(C∞(p)) is an injective linear
transformation.

Proof. The fact that T is linear is left as an exercise. To check that it is
injective we use exercise 2 in Chapter 2. Suppose T ((a)p) = 0p is the zero
derivation. Then

T ((a)p)(x
i) = Dax

i(p) = ai = 0.

Therefore (a)p = (0)p and T is injective.

We now turn towards proving the important property that Der(C∞(p)) is
an n-dimensional vector-space. In order to prove this, some basic properties
of derivations are needed.
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Lemma 3.2.7. Let Xp ∈ Der(C∞(p)) then

1. for any open set U containing p, Xp(1U) = 0 where 1U is defined in
equation 1.1, and

2. Xp(c) = 0, for all c ∈ IR

Proof. We prove 1 by using the Leibniz property from 3.6,

Xp(1U) = Xp(1U1U) = Xp(1U)1 +Xp(1U)1 = 2Xp(1U).

Therefore Xp(1U) = 0. To prove 2, use linearity from equation 3.6 and part
1,

Xp(c) = Xp(c · 1) = cXp(1) = 0 for all , c ∈ IR .

Corollary 3.2.8. If f ∈ C∞(p) and U ⊂ Dom(f) then Xp(f) = Xp(1U · f).

Corollary 3.2.9. If f, g ∈ C∞(p) and there exists an open set V ⊂ IR n with
p ∈ V , and f(x) = g(x), for all x ∈ V , then Xp(f) = Xp(g).

Proof. Note that 1V · f = 1V · g. The result is then immediate from the
previous corollary.

The main theorem is the following.

Theorem 3.2.10. Let Xp ∈ Der(C∞(p)), then there exists ξi ∈ IR , 1 ≤ i ≤
n such that

(3.9) Xp(f) =
∑

1≤i≤n

ξi
∂f

∂xi

∣∣∣∣
p

.

The real numbers ξi are determined by evaluating the derivation Xp on the
coordinate functions xi,

ξi = Xp(x
i),

and

(3.10) Xp =
n∑
i=1

ξi∂xi |p.
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Proof. Let f ∈ C∞(p), and let U = Dom(f) be open, and p = (x1
0, . . . , x

n
0 ).

By Lemma 1.4.8 there exists functions gi ∈ C∞(p), 1 ≤ i ≤ n, defined on an
open ball Br(p) ⊂ U such that the function F : Br(p)→ IR given by

(3.11) F (x) = f(p) +
n∑
i=1

(xi − xi0)gi(x), x ∈ Br(p),

where

gi(p) =
∂f

∂xi

∣∣∣∣
p

,

agrees with f(x) on Br(p). Since f and F agree on Br(p), Corollary 3.2.9
implies

Xp(f) = Xp(F ).

Finally by using the properties for Xp of linearity, Leibniz rule and
Xp(f(p)) = 0 (Lemma 3.2.7) in equation 3.11 we have

(3.12)

Xp(f) = Xp(F ) = Xp

(
n∑
i=1

(xi − xi0)gi(x)

)

=
n∑
i=1

Xp(x
i − xi0)gi(p) + (xi − xi0)|x=pXp(g

i)

=
n∑
i=1

Xp(x
i)gi(p).

Property 2 in Lemma 1.4.8 gives gi(p) = (∂xif)|p which in equation 3.12 gives
equation 3.9 and the theorem is proved.

Corollary 3.2.11. The set β = {∂xi |p}1≤i≤n forms a basis for Der(C∞(p)).

Corollary 3.2.11 leads to the modern definition of the tangent space.

Definition 3.2.12. Let p ∈ IR n. The tangent space at p denoted by TpIR
n

is the n-dimensional vector-space Der(C∞(p).

The linear transformation T : Vp → TpIR
n given in equation 3.8 is then an

isomorphism on account of Lemma 3.2.6 and the dimension theorem (2.2.7).
If σ : I → IR n is a curve with tangent vector (σ̇(t0))σ(t0) then the correspond-
ing derivation Xp = T ((σ̇(t0))σ(t0) is

(3.13) Xp =
n∑
i=1

dσi

dt

∣∣∣∣
t=t0

∂

∂xi

∣∣∣∣
p=σ(t0)

.
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Example 3.2.13. Let p = (1, 1, 1) ∈ IR 3 and let (1,−2, 3)p ∈ Vp. The curve

σ(t) = (1 + t, e−2t, 1 + 3t)

is a representative curve for (1,−2, 3)p. The corresponding tangent vector
Xp ∈ TpIR 3 is

Xp = (∂x − 2∂y + 3∂z)p .

Example 3.2.14. Let p = (1, 2) ∈ IR 2. Find Xp ∈ Der(C∞(p)) = TpIR
2 in

the coordinate basis where Xp(x
2 + y2) = 3 and Xp(xy) = 1. We begin by

writing Xp = a∂x + b∂y, a, b ∈ IR , then note by Theorem 3.2.10 above, that
a = Xp(x) and b = Xp(y). Applying the two rules of derivations in definition
3.2.2 we get

Xp(x
2 + y2) = (2x)|(1,2)Xp(x) + (2y)|(1,2)Xp(y)

= 2Xp(x) + 4Xp(y)

and
Xp(xy) = = (y)|(1,2)Xp(y) + (x)|(1,2)Xp(y)

= 2Xp(x) +Xp(y)

Using Xp(x
2 + y2) = 3, Xp(xy) = 1 this gives the system of equations for

a = Xp(x) and b = Xp(y) to be(
2 4
2 1

)(
a
b

)
=

(
3
1

)
The solution to which is(

a
b

)
=

(
2 4
2 1

)−1(
3
1

)
=

(
1
6
2
3

)
.

Therefore

Xp =

(
1

6
∂x +

2

3
∂y

)
p

Example 3.2.15. Generalizing the previous example, suppose we want to
find Xp ∈ TpIR n = Der(C∞(IR n)), where f 1, f 2, . . . , fn ∈ C∞(p) are given
together with

(3.14) Xp(f
1) = c1, Xp(f

2) = c2, . . . , Xp(f
n) = cn.
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Under what conditions on f i, 1 ≤ i ≤ n do these equations completely de-
termine Xp? By Theorem 3.2.10 or Corollary 3.2.11 above we know that
Xp =

∑n
i=1 ξ

i∂xi |p. Applying this to (3.14) we find

(3.15)

n∑
i=1

ξi
∂f 1

∂xi

∣∣∣∣
p

= c1

n∑
i=1

ξi
∂f 2

∂xi

∣∣∣∣
p

= c2

...
n∑
i=1

ξi
∂fn

∂xi

∣∣∣∣
p

= cn

This system of equations can be written as a matrix/vector equation

Jξ = c

where ξ = (ξ1, . . . , ξn), c = (c1, . . . , cn) and J is the n× n Jacobian matrix

J ji =
∂f j

∂xi

∣∣∣∣
p

,

and Jξ is standard matrix vector multiplication. Equation (3.2.15) has a
unique solution if and only if J is invertible, in other words if and only if
det J 6= 0.

A set of n-functions f 1, f 2, . . . , fn ∈ C∞(p) which satisfy

det

(
∂f j

∂xi

∣∣∣∣
p

)
6= 0,

are said to be functionally independent at p. The term functionally indepen-
dent will be discussed in more detail in Section 8.3.

3.3 Vector fields

A vector field X on IR n is a function that assigns to each point p ∈ IR n a
tangent vector at that point. That is X(p) ∈ TpIR n. Therefore there exists



52 CHAPTER 3. TANGENT VECTORS

functions ξi(x), 1 ≤ i ≤ n on IR n such that,

X =
n∑
i=1

ξi(x)∂xi |x, x ∈ IR n.

We will write this as X =
∑n

i=1 ξ
i(x)∂xi (dropping the |x) since the point

at which ∂xi is evaluated can be inferred from the coefficients. The vector
field X is smooth or a C∞ vector field if the coefficients ξi(x) are smooth
functions. Vector fields will play a prominent role in the rest of the book.

Example 3.3.1. The vector field X on IR 3 given by

X = xy2∂x + xz∂y + ey+z∂z

is smooth.

Vector fields have algebraic properties that are similar to tangent vectors.
Let U ⊂ IR n be an open set. A function X : C∞(U) → C∞(U) is called a
derivation of C∞(U) if for all f, g ∈ C∞(U) and a, b ∈ IR ,

(3.16)
linearity X(af + bg) = aX(f) +X(g),

Leibniz rule X(fg) = X(f)g + fX(g).

We let Der(C∞(U)) be the set of all derivations of C∞(U).

Example 3.3.2. Consider ∂xi where i ∈ {1, . . . , n}, and C∞(IR n). The
partial derivatives ∂xi satisfy properties one and two in equation 3.16, and
so ∂xi ∈ Der(C∞(IR n)). More generally, let

X = ξ1(x)∂x1 + ξ2(x)∂x2 + . . .+ ξn(x)∂xn

where ξ1(x), . . . , ξn(x) ∈ C∞(U). The first order differential operator X is a
derivation of C∞(U). In IR 3 the differential operator

X = yz∂x + x(y + z)∂z

is a derivation of C∞(IR 3), and if f = xeyz, then

X(f) = (yz∂x + x(y + z)∂z)(xe
yz) = yzeyz + xy(y + z)eyz.
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Example 3.3.3. Let X ∈ Der(C∞(IR )), and n ∈ Z+ then

X(xn) = nxn−1X(x)

where xn = x · x · x . . . · x. This is immediately true for n = 1. While by the
Leibniz rule,

X(xxn−1) = X(x)xn−1 + xX(xn−1).

It then follows by induction that

X(xn) = xn−1X(x) + x(n− 1)xn−2X(x) = nxn−1X(x).
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3.4 Exercises

1. Let (σ̇(t0))σ(t0) be the tangent vector to the curve at the indicated
point as computed in section 3.1. Give two other representative curves
for each resulting tangent vector (different than in equations 3.2 and
3.3), and give the corresponding derivation in the coordinate basis (see
example 3.2.13).

(a) x = t3 + 2 , y = t2 − 2 at t = 1,

(b) r = et , θ = t at t = 0,

(c) x = cos(t), y = sin(t) , z = 2t , at t = π/2.

2. Let Xp be a tangent vector at a point p in IR n. Use the properties of a

derivation to prove that X(
1

f
) = −X(f)

f(p)2
, f ∈ C∞(p), f(p) 6= 0. Hint:

Write 1 = f · ( 1

f
).

3. Let p = (3, 2, 2) ∈ IR 3 and suppose Xp ∈ TpIR
3 is a tangent vector

satisfying Xp(x) = 1, Xp(y) = 1, Xp(z) = 2.

(a) Calculate Xp(x
2 + y2) and Xp(z/y) using just the properties of a

derivation.

(b) Calculate Xp(f) where f(x, y, z) =
√
x2 − zy − 1 using just the

properties of a derivation. Hint: Find a formula for Xp(f
2).

(c) Find the formula for Xp as a derivation in the coordinate basis.

4. With p = (3,−4) ∈ IR 2 find Xp ∈ TpIR 2 (with (x, y) coordinates) such

that Xp(x+ xy) = 4 and Xp(
√
x2 + y2) = 1

5
.

5. With p = (1,−1) ∈ IR 2 find all Xp ∈ TpIR 2 (with (x, y) coordinates)
such that Xp(x

2 + y2) = 2.

6. Prove Corollary 3.2.11.

7. Let f1 = x + y + z, f2 = x2 + y2 + z2, f3 = x3 + y3 + z3 be functions
on IR 3.
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(a) Show f1, f2, f3 are functionally independent at all point (a, b, c)
such that (a− b)(b− c)(c− a) 6= 0.

(b) Find the derivation Xp at the point p = (0,−1, 1) such that
Xp(f1) = 2, Xp(f2) = 3, Xp(f3) = −4.

8. Given the vector fields X, Y on IR 3,

X = x∂x − 3y∂y + z∂z, Y = ∂x + x∂y − ∂z

and the functions

f = x2yz, g = y2 − x+ z2,

compute

(a) X(f),X(g), Y (f), and Y (g),

(b) Y (X(f)), X(Y (f), and

(c) X(Y (g))− Y (X(g)).

9. Let X, Y be any two vector fields on IR n and define X◦Y : C∞(IR n)→
C∞(IR n) by

X ◦ Y (f) = X(Y (f)).

Does X ◦ Y define a derivation?

10. Another common way to define tangent vectors uses the notion of
germs. On the set C∞(p) define two functions f, g ∈ C∞(p) to be equiv-
alent if there exists an open set V with p ∈ V , and V ⊂ Dom(f), V ⊂
Dom(g) such that f(x) = g(x), for allx ∈ V . Show that this is an
equivalence relation on C∞(p). The set of equivalence classes are called
germs of C∞ functions at p. The tangent space TpIR

n is then defined
to be the vector-space of derivations of the germs of C∞ functions at
p.
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Chapter 4

The push-forward and the
Jacobian

Let Φ : IR n → IRm be a C∞ function and let p ∈ IR n. The goal of this
section is to use the function Φ to define a function

Φ∗,p : TpIR
n → TΦ(p)IR

m.

The map Φ∗,p is called the push-forward, the differential, or the Jacobian
of Φ at the point p. In section 4.2 we give a second definition of Φ∗,p and
show it agrees with the first. The first definition has a simple geometric
interpretation, while the second definition is more convenient for studying
the properties of Φ∗,p.

4.1 The push-forward using curves

Before giving the definition we consider an example.

Example 4.1.1. Let Φ : IR 2 → IR 3 be given as in 4.17 by

(4.1) Φ(x, y) = (u = x2 + y2, v = x2 − y2, w = xy).

Let σ : IR → IR 2 be the curve

σ(t) = (1 + 3t, 2− 2t),

which has the tangent vector at t = 0 given by

(4.2) (σ̇(0))σ(0) = (3,−2)(1,2).

57
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The image curve Φ ◦ σ : IR → IR 3 is given by

Φ(σ(t)) =
(
((1 + 3t)2 + (2− 2t)2), ((1 + 3t)2 − (2− 2t)2), (1 + 3t)(2− 2t)

)
.

The tangent vector to the image curve Φ ◦ σ when t = 0 is then

(4.3)

(
d

dt
Φ(σ(t)

∣∣∣∣
t=0

)
Φ(σ(0))

= (−2, 14, 4)(5,−3,2).

The map Φ∗,p we define below has the property that if (σ̇(t0))σ(t0) is the
tangent vector to the curve σ at p = σ(t0) with corresponding derivation Xp

as in equation 3.13, then Yq = Φ∗,pXp is the derivation Yq corresponding to
the tangent vector Φ ◦ σ at the image point Φ(p) = Φ(σ(t0))! In example
4.1.1 this means with p = (1, 2) and Xp = (3∂x − 2∂y)(1,2) from 4.2, and
Yq = (−2∂u + 14∂v + 4∂w)(5,−3,2) from 4.3, that Yq = Φ∗,pXp.

Let Xp ∈ TpIR n and let σ : I → IR n be a smooth curve which represents
Xp by σ̇(t0) = Xp. By composing Φ : IR n → IRm with σ we get the image
curve Φ ◦ σ : I → IRm from which we prove

Definition 4.1.2. The pushforward of the tangent vector to σ at p = σ(t0)
is the tangent vector of the image curve Φ(σ) at q = Φ(σ(t0)). That is,

(4.4) Ψ∗,pσ̇(t0) =

(
d

dt
Φ ◦ σ

)∣∣∣∣
t=0

XXXXXXXXXXXXXXXX Diagram XXXXXXXXXXXXXXXX
We now derive a formula for Φ∗,pXp for the tangent vector Xp = σ̇(t0)

where p = σ(t0), and in coordinates

(4.5) Xp =
n∑
i=1

dσi

dt

∣∣∣∣
t=t0

∂

∂xi

∣∣∣∣
p

.

For the curve Φ(σ(t)), let Yq be the tangent vector at q = Φ(σ(t0)) which is

(4.6) Yq =
n∑
i=1

dΦi(σ(t))

dt

∣∣∣∣
t=t0

∂

∂yi

∣∣∣∣
q

=
n∑
i=1

(
n∑
j=1

∂Φi

∂xj

∣∣∣∣
p

dσj)

dt

∣∣∣∣
t=t0

)
∂

∂yi

∣∣∣∣
.

where (yi)1≤i≤n denotes the coordinates on the image space of Φ.
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4.2 The push-forward using derivations

Let Xp ∈ TpIR n be a tangent vector which by definition is completely deter-
mined by its action on C∞(p). In order that Φ∗,p(Xp) to be a tangent vector
at q = Φ(p) ∈ IRm we need to define

Φ∗,p(Xp)(g) for all g ∈ C∞(q),

and show that the result is a derivation (see 3.2.2). Before giving the def-
inition we make the following simple observation. Let g ∈ C∞(q) which is
a function on the image space of Φ. The composition g ◦ Φ : IR n → IR ,
is a smooth function on an open subset of IR n which contains p, and so
Xp(g ◦ Φ) is well defined! Using this calculation, we are now ready to define
Φ∗,p(Xp).

Theorem 4.2.1. Let Φ : IR n → IRm be a smooth function, let p ∈ IR n and
q = Φ(p). Given Xp ∈ TpIR n define Φ∗,p(Xp) : C∞(q)→ IR by

(4.7) Φ∗,p(Xp)(g) = Xp(g ◦ Φ) for all g ∈ C∞(q).

Then Φ∗,p(Xp) ∈ TqIR n.

Proof. The function g ∈ C∞(q) in 4.7 is arbitrary and so Φ∗,p(Xp) : C∞(q)→
IR . Denote this function by Yq = Φ∗,p(Xp). If we check that Yq is a derivation
of C∞(q), then by definition 3.2.2 Yq ∈ TqIRm. This is easy and demonstrates
the power of using derivations.

Let g, h ∈ C∞(q) a, b ∈ IR , then we compute using the fact that Xq is a
derivation,

Yq(ag + bh) = Xq(ag ◦ Φ + bh ◦ Φ)

= aXp(g ◦ Φ) + bXp(h ◦ Φ)

= aYq(g) + bYq(h)

and using · for multiplication of functions we have,

Yq(g · h) = Xp(g ◦ Φ · h ◦ Φ)

= Xp(g ◦ Φ) · h ◦ Φ(p) + g ◦ Φ(p) ·Xp(h ◦ Φ)

= Yq(g) · h(q) + g(q) · Yq(h).

Therefore Yq in (4.7) is derivation of C∞(q) and so is an element of TqIR
m.

We now check that Φ∗,p is a linear transformation.
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Theorem 4.2.2. The function Φ∗,p : TpIR
n → TΦ(p)IR

m is a linear transfor-
mation.

Proof. Let Xp, Yp ∈ TpIR n and a ∈ IR . We use equation 4.7 to compute

Φ∗,p(aXp + Yp)(g) = (aXp + Yp)(g ◦ Φ)

= aXp(g ◦ Φ) + Yp(g ◦ Φ)

= aΦ∗,pXp(g) + Φ∗,pYp(g).

Therefore Φ∗,p(aXp + Yp) = aΦ∗,pXp + Φ∗,pYp.

To gain a better understanding of definition (4.7) we now write out this
equation in coordinates using the coordinate basis.

Proposition 4.2.3. Let Φ : IR n → IRm be a smooth function and let q =
Φ(p). Let β = {∂xi|p}1≤i≤n be the coordinate basis for TpIR

n and let γ =
{∂ya |q}1≤a≤m be the coordinate basis for TqIR

m. If Xp ∈ TpIR n is given by

(4.8) Xp =
n∑
i=1

ξi ∂xi |p, ξi ∈ IR ,

then

(4.9) Φ∗,pXp =
m∑
a=1

(
n∑
i=1

ξi
∂Φa

∂xi

∣∣∣∣
p

)
∂

∂ya

∣∣∣∣
q

Proof. By definition we have

(4.10) (Φ∗,pXp)(g) =

(
n∑
i=1

ξi∂xi|p

)
(g ◦ Φ)

If we expand out the derivative term in 4.10 using the chain rule we get,

∂g ◦ Φ

∂xi

∣∣∣∣
p

=
m∑
a=1

∂g

∂ya

∣∣∣∣
q

∂Φa

∂xi

∣∣∣∣
p

.

Using this in (4.10), we get

(4.11)

Xp(g ◦ Φ) =
n∑
i=1

ξi

(
m∑
a=1

∂g

∂ya

∣∣∣∣
q

∂Φa

∂xi

∣∣∣∣
p

)

=
m∑
a=1

(
n∑
i=1

ξi
∂Φa

∂xi

∣∣∣∣
p

)
∂g

∂ya

∣∣∣∣
q
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where in the second line we have switched the order of the summations. By
taking the coefficients of ∂ya|q equation 4.9 now follows directly from 4.11.

The following corollary gives us the important interpretation of the func-
tion Φ∗,p.

Corollary 4.2.4. The matrix representation of the linear transformation
Φ∗,p : TpIR

n → TqIR
m in the basis β = {∂xi |p}1≤i≤n for TpIR

n and the basis
γ = {∂ya|q}1≤a≤m for TΦ(p)IR

m is given by the Jacobian

(4.12) [Φ∗,p] =
∂Φa

∂xi

∣∣∣∣
p

Proof. Suppose the matrix representation of Φ∗,p is given by the matrix
(Jai ) ∈Mm×n(IR ) (see equation 2.3)

(4.13) Φ∗,p(∂xi |p) =
m∑
a=1

Jai ∂ya |q.

This entries in the matrix Jai are easily determined using equation 4.9 which
gives

(4.14) Φ∗,p(∂xi |p) =
m∑
a=1

∂Φa

∂xi

∣∣∣∣
p

∂ya |q,

therefore

(4.15) [Φ∗,p] =
∂Φa

∂xi

∣∣∣∣
p

.

A particulary useful way to compute Φ∗,p is the next corollary.

Corollary 4.2.5. The coefficients of the image vector Yq = Φ∗,pXp in the
coordinate basis γ = {∂ya |q}1≤a≤m are given by

(4.16) ηa = Φ∗,pXp(y
a) =

n∑
i=1

∂Φa

∂xi

∣∣∣∣
p

ξi.
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Example 4.2.6. Let Φ : IR 2 → IR 3 be given by

(4.17) Φ(x, y) = (u = x2 + y2, v = x2 − y2, w = xy).

Letp = (1, 2) and Xp = (3∂x− 2∂y)|p. Compute Φ∗,pXp first using derivation
approach 4.7, and then the Jacobian (4.15.

With q = Φ(p) = (5,−3, 2) we now find the coefficients of Yq = (a∂u +
b∂v+c∂w)|q = Φ∗,pXp by using the definition 4.7 in the form of equation 4.16,

a = Φ∗,p(Xp)(u) = (3∂x − 2∂y)(1,2)(x
2 + y2) = 6− 8 = −2

b = Φ∗,p(Xp)(v) = X(1,2)(x
2 − y2) = 6 + 8 = 14

c = Φ∗,p(Xp)(w) = X(1,2)(xy) = 6− 2 = 4.

This gives

(4.18) Yq = (−2∂u + 14∂v + 4∂w)|q.

We now compute Φ∗,pXp using the Jacobian matrix at (1, 2), which is

[
∂Φa

∂xi

]
(1,2)

=

2x 2y
2x −2y
y x


(1,2)

=

2 4
2 −4
2 1

 ,
and the coefficients of Φ∗,p(Xp) are2 4

2 −4
2 1

[ 3
−2

]
=

−2
14
4

 .
This gives the same coefficients for Φ∗,pXp in the coordinate basis {∂u|q, ∂v|q, ∂w|q}
as in equation (4.18).

Remark 4.2.7. Note that the definition of Φ∗,p in 4.7 was given independent
of coordinates! Then the coordinate dependent formulas 4.16 and 4.12 for
Φ∗,p were derived from its definition. This is what we strive for when giving
definitions in differential geometry.
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4.3 The Chain rule, Immersions, Submersions,

and Diffeomorphisms

Let Φ : IR n → IRm and let

(4.19) TIR n =
⋃
p∈IR n

TpIR
n.

The set TIR n consists of all possible tangent vectors at every possible point
and an element of TIR n is just a tangent vector Xp at a particular point
p ∈ IR n. We now define the map Φ∗ : TIR n → TIRm by the point-wise
formula

(4.20) Φ∗(Xp) = Φ∗,pXp.

At a generic point p = (x1, . . . , xn) ∈ IR n with standard basis {∂xi |p}1≤i≤n
for TpIR

n and basis {∂ya |Φ(p)}1≤a≤m for TΦ(p)IR
m the matrix representation

of Φ∗ is again computed by using 4.2.4 to give the m× n functions on IR n

(4.21) [Φ∗] =

[
∂Φa

∂xi

]
.

Example 4.3.1. Let α : IR → IR n be a smooth curve. Then

α∗∂t =
n∑
i=1

dαi

dt

∂

∂xi

∣∣∣∣
α(t)

for all t ∈ IR .

This formula agrees with the point-wise given formula in equation 3.13.

We now prove the chain-rule using the derivation definition of Φ∗.

Theorem 4.3.2. (The chain rule) Let Φ : IR n → IRm and let Ψ : IRm →
IR p. Then

(4.22) (Ψ ◦ Φ)∗ = (Ψ∗) ◦ (Φ∗)

Proof. It suffices to check this point-wise on account of 4.20. Let p ∈ IR n,
r = Ψ ◦ Φ(p), and let g ∈ C∞(r). Let Xp ∈ TpIR n then by definition 4.7

(Ψ ◦ Φ)∗,pXp(g) = Xp (g ◦Ψ ◦ Φ) .
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On the right side we get by definition 4.7

((Ψ∗) ◦ (Φ∗)Xp) (g) = (Φ∗Xp) (g ◦ Φ)

= Xp(g ◦ Φ ◦Ψ).

We have shown (Ψ ◦ Φ)∗Xp(g) = ((Ψ∗) ◦ (Φ∗)Xp) (g) for all g ∈ C∞(r).
Therefore (Ψ ◦Φ)∗Xp = ((Ψ∗) ◦ (Φ∗))Xp for all Xp ∈ TIR n and the theorem
is proved.

Recall in section 3.1 that the rank of a linear transformation T is the
dimension of R(T ), the range space of T .

Let Φ : U → V , where U ⊂ IR n and V ⊂ IRm be a C∞ function.

Definition 4.3.3. The function Φ is an immersion at p ∈ U if the rank
of Φ∗,p : TpU → TΦ(p)V is n. The function Φ is an immersion if it is an
immersion at each point in p ∈ U .

By fact that dimTpU is n-dimensional, the dimension Theorem 2.2.7
shows that the map Φ∗ is an immersion if it is injective at each point p ∈ U .
This also implies by exercise 2 in the section 3 that the kernel Φ∗,p at each
point p ∈ U consists of only the zero tangent vector at p.

Example 4.3.4. Let Φ : IR 2IR 3 be given by

(4.23) Φ(x, y) = (u = x2 + y2, v = x2 − y2, w = xy).

At a generic point p = (x, y) ∈ IR 2 with standard basis {∂x|p, ∂y|p} for TpIR
2

and basis {∂u|Φ(p), ∂v|Φ(p), ∂w|Φ(p)} for TΦ(p)IR
3 the matrix representation of

Φ∗ is (see equation 4.21)

[Φ∗] =

2x 2y
2x −2y
y x

 .
According to Lemma 2.2.4 (see also exercise 2), Φ∗ is injective if and only if
ker[Φ∗] is the zero vector in IR 2. This fails to happen only when x = y = 0.
Therefore Φ is an immersion at every point except the origin in IR 2.

Definition 4.3.5. The function Φ is a submersion at p ∈ U if the rank
of Φ∗,p : TpU → TΦ(p)V is m. The function Φ is an submersion if it is a
submersion at each point in p ∈ U .
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In other words, Φ is a submersion if Φ∗,p is surjective for each point
p ∈ IR n.

For the next definitions we consider the case m = n.

Definition 4.3.6. A smooth function Φ : U → V , U, V ⊂ IR n which is
invertible, with inverse function Φ−1 : V → U , which is also smooth, is a
diffeomorphism

A less restrictive notion is a local diffeomorphism.

Definition 4.3.7. A smooth function Φ : U → V is a local diffeomorphism
at p ∈ U if there exists an open set W with W ⊂ U and p ∈ W , such that
Φ : W → Φ(W ) is a diffeomorphism.

Theorem 4.3.8. Inverse Function Theorem. Let Φ : U → V be C∞. The
function Φ is a local diffeomorphism at p ∈ U if and only if Φ∗,p : TpU →
TΦ(p)V is an isomorphism.

Proof. The proof that this condition is necessary is simple. If W ⊂ U is
an open set on which Φ restricts to a diffeomorphism, let Z = Φ(W ), and
Ψ : Z → W be the inverse of Φ. By the chain-rule

(Ψ ◦ Φ)∗,p = Ψ∗,Φ(p)Φ∗,p = I

and so Φ∗,p is an isomorphism at p ∈ W .

The proof of converse is given by the inverse function theorem and can
be found in many texts [12].

Example 4.3.9. Let f : IR → IR be

f(t) = t3

then

f−1(t) = t
1
3 .

We have for W = IR −0, the function f : W → IR is a local diffeomorphism.
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4.4 Change of Variables

Let U, V ⊂ IR n be open sets. A change of coordinates is a diffeomorphism
Φ : U → V . If x1, . . . , xn are coordinates on U and y1, . . . , yn are coordinates
on V , then the map Φ is given by

yi = Φi(x1, . . . , xn), 1 ≤ i ≤ n.

If p ∈ U and it has x-coordinates (x1
0, . . . , x

n
0 ), then yi0 = Φi(x1

0, . . . , x
n
0 ) are

the y-coordinates of Φ(p).
Since Φ is a diffeomorphism, then Φ−1 : V → U is a diffeomorphism.

Example 4.4.1. Let V = IR 2−{(x, 0), x ≥ 0} and let U = IR +× (0, 2π)
then

(4.24) Φ(r, θ) = (x = r cos θ, y = r sin θ)

is a change of coordinates.

Example 4.4.2. Let V = IR 3 − {(x, 0, z), x ≥ 0} and let U = IR + ×
(0, 2π)× (0, π) then

Φ(ρ, θ, φ) = (x = ρ cos θ sinφ, y = ρ sin θ sinφ, ρ = cosφ)

is a change of coordinates.

We now look at how vector-fields behave under a change of coordinates.
Let U, V ⊂ IR n and Φ : U → V be a change of coordinates, and let X be a
vector-field on U . Since for each point p ∈ U , Xp is a tangent vector, we can
map this tangent vector to the image using Φ∗,p as in sections 4.1, 4.2

Φ∗,pX(p) ∈ TΦ(p)V.

If we do this for every point p ∈ U , and use the fact that Φ is a diffeomorphism
(so one-to-one and onto) we find that Φ∗,p applied to X defines a tangent
vector at each point q ∈ V , and therefore a vector-field. To see how this
is defined, let q ∈ V , and let p ∈ U be the unique point in U such that
p = Φ−1(q). We then define the vector-field Y point-wise on V by

Yq = Φ∗,p(Xp).
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Let’s give a coordinate version of this formula. Suppose (xi)1≤i≤n are coor-
dinates on U , and (yi)1≤i≤n are coordinates on V . We have a vector-field

X =
n∑
i=1

ξi(x)
∂

∂xi
,

and want to find the vector-field

Y =
n∑
i=1

ηi(y)
∂

∂yi
.

Let p ∈ U , and q = Φ(p) the formula we have is Yq = (Φ∗,pXp)p=Φ−1(q) and
by equation 4.9 is

(4.25) Yq =
n∑
j=1

(
n∑
i=1

ξi(p)
∂Φj

∂xi

∣∣∣∣
p

)∣∣∣∣∣
p=Φ−1(q)

∂

∂yj

∣∣∣∣
q

.

The coefficients of the vector-field Y are then

(4.26) ηj(q) =

(
n∑
i=1

ξi(p)
∂Φj

∂xi

∣∣∣∣
p

)∣∣∣∣∣
p=Φ−1(q)

,

or by equation 4.16

(4.27) ηj(q) = Y (yj)||p=Φ−1(q) = X(Φj)||p=Φ−1(q),

The formulas 4.26 and 4.27 for Y is called the change of variables formula
for a vector-field. The vector-field Y is also called the push-forward by Φ of
the vector-field X and is written Y = Φ∗X.

Example 4.4.3. The change to polar coordinates is given in 4.24 in example
4.4.1 above. Let

X = r∂r.

We find this vector-field in rectangular coordinates, by computing Φ∗X using
equation 4.27.This means

Φ∗X = a∂x + b∂y
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where a = Φ∗X(x)|Φ−1(x,y) and b = Φ∗X(y)|Φ−1(x,y). We compute these to be

a = Φ∗X(x) = (r∂r(r cos θ)) |Φ−1(x,y) = x

b = Φ∗X(y) = (r∂r(r sin θ)) |Φ−1(x,y) = y

This gives the vector-field,

(4.28) Φ∗(r∂r) = x∂x + y∂y.

Similarly we find

(4.29) Φ∗(∂θ) = −y∂x + x∂y.

We now compute Φ−1
∗ ∂x and Φ−1

∗ ∂y. Using the formula Φ−1(x, y) = (r =√
x2 + y2, θ = arctan(yx−1), gives

(Φ−1
∗ ∂x)(r) =

x

r

(Φ−1
∗ ∂x)(θ) = − y

r2
.

Therefore

(4.30) Φ−1
∗ ∂x = cos θ∂r −

sin θ

r
∂θ.

Similarly we have

(4.31) Φ−1
∗ ∂y = sin θ∂r +

cos θ

r
∂θ.

There is a simple way to compute Φ−1
∗ without having to compute Φ−1

directly which we now describe. Suppose we are given Φ : U → V a diffeo-
morphism, we have for the push forward of the vector-fields ∂xj from equation
4.25,

Φ∗(∂xj) =
n∑
i=1

∂Φi

∂xj

∣∣∣∣
Φ−1(y)

∂

∂xi
.

Similarly we have

(4.32) Φ−1
∗ (∂yj) =

n∑
i=1

∂(Φ−1)i

∂yj

∣∣∣∣
Φ(x)

∂

∂xi
.
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However by the chain-rule Φ∗ ◦ Φ−1
∗ = I∗ and therefore in a basis this yields

[Φ∗][Φ
−1
∗ ] = In which in the coordinate basis yields

(4.33)

[
∂(Φ−1)i

∂yj

]
Φ(x)

=

[
∂Φi

∂xj

]−1

.

Therefore using equation 4.33 in equation 4.32 we have

(4.34) Φ−1
∗ ∂yj =

n∑
i=1

[
∂Φi

∂xj

]−1
∂

∂xi
.

Example 4.4.4. Continuing from example 4.4.3 we have[
∂Φa

∂xi

]
=

[
cos θ −r sin θ
sin θ r cos θ

]
and [

∂Φa

∂xi

]−1

=

[
cos θ sin θ
− sin θ

r
cos θ
r

]
.

Therefore equation 4.34 yields

Φ−1
∗ ∂x = [∂r, ∂θ]

[
cos θ sin θ
− sin θ

r
cos θ
r

]
= cos θ∂r −

sin θ

r
∂θ,

which agrees with 4.30. A similar computation reproduces Φ−1
∗ ∂y (compare

with in equation 4.31)

Example 4.4.5. Let Φ be the change to spherical coordinates

Φ(ρ, θ, φ) = (x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ),

from example 4.4.2. We compute Φ∗ by using equation 4.26,

(Φ∗∂ρ)(x) = ∂ρ(ρ cos θ sinφ) = cos θ sinφ

(Φ∗∂ρ)(y) = ∂ρ(ρ sin θ sinφ) sin θ sinφ

(Φ∗∂ρ)(z) = ∂ρ(ρ cosφ) cosφ.

Therefore substituting Φ−1(x, y, z) gives

Φ∗∂ρ = (cos θ sinφ∂x + sin θ sinφ∂y + cosφ∂z)Φ−1(ρ,θ,φ)

=
1√

x2 + y2 + z2
(x∂x + y∂y + z∂z) .
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Similarly we get

Φ∗∂θ = −y∂x + x∂y,

and using ρ sinφ =
√
x2 + y2 we get

Φ∗∂φ =
z√

x2 + y2
(x∂x + y∂y)−

√
x2 + y2∂z.

Finally suppose we have a vector-field

X = Aρ∂ρ + Aθ∂θ + Aφ∂φ

where Aρ, Aθ, Aφ are functions of ρ, θ, φ. We then compute Φ∗X = Ax∂x +
Ay∂y + Az∂z which is a vector-field in rectangular coordinates by

Φ∗(A
ρ∂ρ + Aθ∂θ + Aφ∂φ) =

Aρ√
x2 + y2 + z2

(x∂x + y∂y + z∂z) +

+ Aθ(−y∂x + x∂y) + Aφ(
z√

x2 + y2
(x∂x + y∂y)−

√
x2 + y2∂z) =(

xAρ√
x2 + y2 + z2

− yAθ +
xzAφ√
x2 + y2

)
∂x+(

yAρ√
x2 + y2 + z2

+ xAθ +
yzAφ√
x2 + y2

)
∂y+(

zAρ√
x2 + y2 + z2

−
√
x2 + y2Aφ

)
∂z.

Therefore (see Appendix VII, [3]),

Ax =
xAρ√

x2 + y2 + z2
− yAθ +

xzAφ√
x2 + y2

Ay =
yAρ√

x2 + y2 + z2
+ xAθ +

yzAφ√
x2 + y2

Az =
zAρ√

x2 + y2 + z2
−
√
x2 + y2Aφ,

where Aρ, Aθ, Aφ are expressed in terms or x, y, z.
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Example 4.4.6. Let U = { (x, y, z) ∈ IR 3 | z 6= 0 } and let Φ : U → V be

Φ(x, y, z) = (x− y2

2z
, z,

y

z
).

where V = { (u, v, w) ∈ IR 3 | v 6= 0 }. We write the vector-field

X = y∂x + z∂y.

in (u, v, w) coordinates by computing

Φ∗(X)(u) = (y∂x + z∂y)(x−
y2

2z
) = 0

Φ∗(X)(v) = (y∂x + z∂y)(z) = 0

Φ∗(X)(u) = (y∂x + z∂y)(
y

z
) = 1.

Therefore
Φ∗X = ∂w.

Remark 4.4.7. Given a smooth function Φ : IR n → IRm, it is not possible to
push-forward a generic vector-field X on IR n and get another vector-field on
IRm unless m = n.
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4.5 Exercises

1. For each of the following maps and derivations compute Φ∗,p(X) using
the definition of Φ∗,p in terms of derivations defined in Theorem 4.2.1
(see Example 4.2.6).

(a) Φ(x, y) = (u = xy, v = x2y, w = y2), p = (1,−1), Xp = 3∂x−2∂y.

(b) Φ(x, y, z) = (r = x/y, s = y/z), p = (1, 2,−2), Xp = ∂x−∂y+2∂z.

(c) Φ(t) = (x = exp(3t) sin(πt), y = exp(t) cos(2πt), z = t), p =
(0), X = ∂t.

2. Repeat question 1 by choosing a curve σ with σ̇(t0) = Xp and using
Definition 4.1.2.

3. Let

Φ(x, y) = (u = x3 + 3xy2, v = 3x2y + y3),

and let p = (1,−1). Compute the matrix representation of Φ∗,p :
TpIR

2 → TΦ(p)IR
2 with respect to the basis {X1, X2} for the tangent

space for TpR
2 and {Y1, Y2} for TΦ(p)R

2.

(a) X1 = ∂x|p, X2 = ∂y|p, Y1 = ∂u|q, Y2 = ∂v|q.
(b) X1 = (∂x − 2∂y)|p, X2 = (∂x + ∂y)|p, Y1 = ∂u|q, Y2 = ∂v|q.
(c) X1 = (∂x − 2∂y)|p, X2 = (∂x + ∂y)|p, Y1 = (2∂u + 3∂v)|q, Y2 =

(∂u + 2∂v)|q.

4. (a) Write the tangent vector Xp =
∂

∂x

∣∣∣∣
p

− ∂

∂y

∣∣∣∣
p

p = (1, 1), in polar

coordinates using the coordinate basis.

(b) Write the tangent vector Xp = −2
∂

∂r

∣∣∣∣
p

+ 3
∂

∂θ

∣∣∣∣
p

, p = (r = 1, θ =

π/3) given in polar coordinates, in Cartesian coordinates using
the coordinate basis.

(c) Let

Φ(u, v) =

(
uv,

1

2
(v2 − u2)

)
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be the change to parabolic coordinates. Write the tangent vector

Xp =
∂

∂u

∣∣∣∣
p

− ∂

∂v

∣∣∣∣
p

, p = (u = 1, v = 1) given in parabolic

coordinates, in Cartesian coordinates using the coordinate basis.

(d) Write the tangent vector Xp in part c) in polar coordinates using
the coordinate basis.

5. Check the chain rule (Ψ ◦ Φ)∗,p = Ψ∗,p ◦ Φ∗,p for each of the following
maps at the point indicated. You may calculate in the coordinate basis.

(a) Φ(x, y) = (x2−y2, xy, x+y+2), Ψ = (u, v, w) = (1/u, 1/v, 1/w), p =
(2, 1)

(b) Φ(t) = (t, t2, t3), Ψ = (u, v, w) = (u/v, v/w, uw), p = (1)

(c) Φ(t) = (t, t2, t3), Ψ = (u, v, w) = (u2 + v2 + w2), p = (1)

6. Find the inverses of the following maps Φ and check that (Φ∗,p)
(−1) =

(Φ(−1))∗,p at the indicated point.

(a) Φ(x, y, z) = (x+ 1, y + x2, z − xy), p = (1, 1, 2).

(b) Φ(x, y) = (1
2
(x2 − y2), xy) p = (2, 1), on U = {(x, y) ∈ IR 2 | x >

y > 0}.

7. Find the points, if any, in the domain of the following maps about
which the map fails to be a local diffeomorphism.

(a) Φ(x, y) = (x3 − 3xy2,−y3 + 3x2y).

(b) Φ(x, y, z) = (x2 + y + z, y2 − z + y, y − z).

8. Show that the following maps are immersions.

(a) Φ(u, v) = (u+ v, u− v, u2 + v2)

(b) Φ(u, v, w) = (u+v+w, u2+v2+w2, u3+v3+w3, u4+v4+w4), w >
v > u.

9. Show that the following maps are submersions.

(a) Φ(x, y, z) = (x+ y − z, x− y)
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(b) Φ(x, y, z) = (x2 + y2 − z2, x2 − y2) y > 0.

10. Let F : IR 3 → IR 3 be given by

F (x, y, z) = (x2 + y2, x2 + 2z, x− y + z)

(a) Find the kernel of F∗,p : T(0,0,0)IR
3 → T(0,0,0)IR

3.

(b) Does there exists a vector Xp ∈ T(1,0,1)IR
3 such that F∗,pXp = Yq

where Yq = (2∂x − 3∂y + ∂z)(1,3,2)

(c) Compute F∗,p(∂x − ∂z)|(1,1,1) in two different ways.

(d) Determine the set of points where F is an immersion, submersion,
and local diffeomorphism. Are these three answers different? Why
or why not.

11. Let Φ(u, v) =
(
x = uv, y = 1

2
(v2 − u2)

)
be the change to parabolic co-

ordinates.

(a) Find u∂u + v∂v in rectangular coordinates using the coordinate
basis ∂x, ∂y.

(b) Find u∂v − v∂u in rectangular coordinates.

(c) Find y∂x − x∂y in parabolic coordinates.

12. Let X = Ax∂x + Ay∂y + Az∂z be a vector-field in rectangular.

(a) Compute ∂x, ∂y and ∂z in spherical coordinates using the technique
from example 4.4.4.

(b) Suppose Y = Aρ∂ρ + Aθ∂θ + Aφ∂φ is the formula for X in spher-
ical coordinates. Write Aρ, Aθ, Aφ in terms of Ax, Ay, Az. (See
appendix VII, [3])



Chapter 5

Differential One-forms and
Metric Tensors

5.1 Differential One-Forms

Recall that if V is an n dimensional vector space W is an m dimensional
vector-space that L(V,W ) the set of linear transformations from V to W was
shown in Lemma 2.3.11 to be an mn dimensional vector-space. If W = IR
then L(V, IR ) is n dimensional and is called the dual space to V , denoted V ∗.
The set V ∗ is also called the space of linear functionals on V , the co-vectors
on V or the one-forms on V .

Example 5.1.1. Let V = IR 3, then

(5.1) α

xy
z

 = x+ 2y + z

satisfies T ∈ V ∗. That is α is a linear transformation from V to IR . In fact it
is not difficult to show (see Exercise 1 that if α ∈ V ∗, there exists a, b, c ∈ IR
such that

(5.2) α

xy
z

 = ax+ by + cz.

Suppose that β = {vi}1≤i≤n is a basis for the n dimensional vector-space
V is an n−dimensional vector-space. By Lemma 2.1.7 every linear trans-
formation is uniquely determined by its values on a basis. In particular if

75
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α ∈ V ∗, then α is determined by the real numbers α(vi), and again by Lemma
2.1.7 every function α̂ : β → IR extends to a unique element α ∈ V ∗ (which
agrees with α̂ on β). Define the function α̂1 : β → IR by

α̂1(v1) = 1
α̂1(vi) = 0 2 ≤ i ≤ n,

which extends to a unique linear transformation α1 : V → IR , where

α1(
n∑
i

civ
i) = c1.

We can then define a sequence of functions αi, 1 ≤ i ≤ n in a similar way.
For each fixed i ∈ {1, . . . , n}, let αi be the unique element of V ∗ satisfying

(5.3) αi(vj) = δij =

{
1 if i = j,
0 otherwise.

Example 5.1.2. Let

(5.4) β =

v1 =

 1
0
−1

 , v2 =

1
1
0

 , v3 =

1
1
1

 .

be a basis for IR 3. We compute α1, α2, α3 and express them in the form of
equation 5.2. One way to do this is to note

e1 = v1 − v2 + v3, e2 = 2v2 − v1 − v3, e3 = v3 − v2.

Then using the properties in equation 5.3 we get,

α1(e1) = α1(v1 − v2 + v3) = 1, α1(e2) = −1, α1(e3) = 0.

Therefore

(5.5) α1

xy
z

 = α1(xe1 + ye2 + ze3) = x− y.

Similarly

(5.6) α2

xy
z

 = −x+ 2y − z, α3

xy
z

 = x− y + z.
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Theorem 5.1.3. The set of linear transformations α1, . . . , αn ∈ V ∗ defined
by equation 5.3 form a basis for V ∗. If α ∈ V ∗ then

(5.7) α =
n∑
i=1

α(vi)α
i.

Proof. To show that these are linearly independent, suppose

Z =
n∑
i=1

ciα
i

is the zero element of V ∗. The zero element is the linear transformation
which maps every vector in V to 0 ∈ IR . Therefore

0 = Z(v1) = (
n∑
i=1

ciα
i)(v1) =

n∑
i=1

ciα
i(v1) = c1α

1(v1) = c1

and so c1 = 0. Likewise applying Z to the rest of the basis elements vj we
get zero. That is,

0 = Z(vj) = cj

and so cj = 0, and {αi}1≤i≤n is a linearly independent set.

To prove that {αi}1≤i≤n are a spanning set, let α ∈ V ∗ and consider
τ ∈ V ∗,

τ =
n∑
i=1

α(vi)α
i.

Then

τ(vj) =
n∑
i=1

α(vi)α
i(vj) =

n∑
i=1

α(vi)δ
i
j = α(vj).

Therefore the two linear transformation τ, α ∈ V ∗ agree on a basis and so by
Lemma 2.1.7 are equal. This proves equation 5.7 holds and that {αi}1≤i≤n
is a spanning set.

Given the basis β the basis {αi}1≤i≤n for V ∗ in 5.3 is called the dual basis.
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Example 5.1.4. Let α : IR 3 → IR be the linear functional in equation 5.1
and let β∗ = {α1, α2, α3} be the dual basis given in equations 5.5, 5.6 to β
in equation 5.4. Then by equation 5.7 we have

α = α

 1
0
−1

α1 + α

1
1
0

α2 +

1
1
1

α3

= 3α2 + 4α3.

We now consider the case V = TpIR
n and the corresponding dual space

T ∗p IR
n which is called the space of one-forms, co-vectors, or dual vectors at

the point p ∈ IR n. In this case it turns out that elements in T ∗p IR
n appear in

a natural way. Recall that if Xp ∈ TpIR n, then Xp is a derivation of C∞(p).
Let f ∈ C∞(p) and so there exists an open set U ⊂ IR n with p ∈ U and
f ∈ C∞(U), p ∈ U . Then by definition

(5.8) Xp(f) ∈ IR .

If Yp ∈ TpIR n then

(5.9) (aXp + Yp)(f) = aXp(f) + Yp(f).

Now in the formula Xp(f) ∈ IR from equation 5.8, we change the way we
think of this formula - instead of this formula saying Xp : f → IR so that
f is the argument of Xp, we instead think of Xp as being the argument of the
function f ! That is “f ′′ : TpIR

n → IR . We use a new notation to distinguish
this way of thinking of f . Define the function dfp : TpIR

n → IR by

(5.10) dfp(Xp) = Xp(f).

Proposition 5.1.5. The function dfp satisfies dfp ∈ T ∗p IR n.

Proof. We need to prove that dfp is a linear function. That is we need to
show

(5.11) dfp(aXp + Yp) = a dfp(Xp) + dfp(Yp).

The left side of this on account of equation 5.10 is

(5.12) dfp(aXp + Yp) = (aXp + Yp)(f)
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while again on account of 5.10 is

(5.13) a dfp(Xp) + dfp(Yp) = aXp(f) + Yp(f).

Equation 5.12 and 5.13 agree by equation 5.9.

Example 5.1.6. Let f ∈ C∞(IR ) be given by f(x, y) = xy2, and let p =
(1, 2) ∈ IR 2. We compute and dfp(Xp) where Xp = (3∂x − 2∂y)p by equation
5.10,

dfp(Xp) = (3∂x − 2∂y)(xy
2)|(1,2) = 4.

We know that for each point p ∈ IR n the set β = {∂xi}1≤i≤n is a basis for
TpIR

n. Let’s calculate the dual basis. We begin by considering the function

f 1(x1, . . . , xn) = x1

which we just call x1. Then by equation 5.10

dx1
p(∂x1|p) = ∂x1(x

1) = 1, dx1
p(∂x2|p) = ∂x2(x

1)0, . . . , dx1
p(∂xn|p) = 0.

This leads to the general case

(5.14) dxip(∂xj |p) = δij,

where δij is the Kronecker delta. From equation 5.14 we conclude that for
each p ∈ IR n the set of one-forms

(5.15) β∗ = {dxip}1≤i≤n

form a basis for T ∗p IR
n which satisfies equation 5.3. Equation 5.15 is the dual

basis to the coordinate basis β = {∂xi}1≤i≤n to the tangent space TpIR
n. We

will call the basis {dxip} the coordinate basis for T ∗p IR
n.

We now express dfp ∈ T ∗p IR n in terms of our basis β∗ in equation 5.15.
Let p ∈ U then by Theorem 5.1.3 we have

dfp =
n∑
i=1

ci ∈ IR ,

where ci = dfp(∂xi |p) = ∂xi |p(f). Therefore

(5.16) dfp =
n∑
i=1

∂f

∂xi

∣∣∣∣
p

dxip

holds at each point p ∈ U .
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Example 5.1.7. Let f : IR 3 → IR be

f(x, y, z) = x2ey−z,

and p = (1, 1, 1).

dfp =
(
2xey−zdx+ x2ey−zdy − x2ey−zdz

)
p
,

= 2dxp + dyp − dzp

Let Xp = (2∂x − ∂y − 3∂z)|p, and we compute dfp(Xp) in two ways. First
by definition 5.10 we have

dfp(Xp) = Xp(x
2ey−z) = 4− 1 + 3 = 6.

The second way we use the properties of the vector space T ∗p IR
3 we have

dfp(Xp) = (2dxp + dyp − dzp)(2∂x|p − ∂y|p − 3∂z|p)
= 2dxp(2∂x|p − ∂y|p − 3∂z|p) + dyp(2∂x|p − ∂y|p − 3∂z|p)
− dzp(2∂x|p − ∂y|p − 3∂z|p)

= 4− 1 + 3 = 6.

In this computation the fact that dxp(∂x|p) = 1, dxp(∂y|p) = 0, dxp(∂z|p) =
0, . . . , dzp(∂z|p) = 1 has been used.

In direct analogy with a vector-field on IR n being a smoothly varying
choice of a tangent vector at each point we define a differential one-form (or
a one-form field ) on IR n as a smoothly varying choice of one-form at each
point. Since {dxi|p}1≤i≤n form a basis for T ∗p IR

n at each point then every
differential one-form α can be written

α =
n∑
i=1

αi(x)dxi|x

where αi(x) are n smooth functions on IR n. As with vector-fields we will
drop the subscript on dxi, and write α =

∑n
i=1 αi(x)dxi.

Example 5.1.8. On IR 3,

α = ydx− xdy + zydz

is a one-form field. At the point p = (1, 2, 3),

αp = 2dxp − dyp + 6dzp
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If f ∈ C∞(IR n) then for each p ∈ IR n, by equation 5.10, dfp ∈ T ∗p IR n.
This holds for each p ∈ IR n and so df is then a one-form field called the
differential of f . The expansion of df in terms of the differential one-forms
dxi which form the dual basis at each point is obtained from equation 5.16
to be

(5.17) df =
n∑
i=1

∂f

∂xi
dxi.

Example 5.1.9. Find the differential of f = x2yexz ∈ C∞(IR 3). By equation
5.17

df = (2xy + x2yz)exzdx+ x2exzdy + x3yexzdz.

5.2 Bilinear forms and Inner Products

In the previous section we began by with the linear algebra of linear functions
T : V → IR . A generalization of this is to consider a function B : V ×V → IR
which satisfies the properties

(5.18)
B(a1v1 + a2v2, w) = a1B(v1, w) + a2B(v2, w),

B(v, a1w1 + a2w2) = a1B(v, w1) + a2B(v, w2).

These equations imply that B is linear as a function of each of its two ar-
guments. A function B which satisfies these conditions is called a bilinear
form.

Example 5.2.1. Let A ∈Mn×n(IR ). Define B : IR n × IR n → IR by

B(x,y) =
n∑

i,j=1

xiAijy
j = xTAy,

where xT is the transpose of the column vector x. The function B is easily
checked to be bilinear form.

Let B,C : V ×V → IR be bilinear forms. Then aB+C is a bilinear form
where

(5.19) (aB + C)(v, w) = aB(v, w) + C(v, w).
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Denote by B(V ) the space of bilinear forms, which is a vector-space (see
exercise 5 in this chapter).

For the rest of this section, let V be a finite dimensional vector-space with
basis β = {vi}1≤i≤n. Let B ∈ B(V ) be a bilinear form. The n × n matrix
(Bij) whose entries are

(5.20) Bij = B(vi, vj) , 1 ≤ i, j ≤ n,

is the matrix representation of the bilinear form B in the basis β.

Example 5.2.2. Let B : IR 3 × IR 3 → IR be the bilinear function

B

x1

x2

x3

 ,
y1

y2

y3

 = 2x1y1 − x1y2 + x1y3 − x2y1 − x2y2 + x3y1 + x3y3.

Using the basis

(5.21) β =

v1 =

 1
0
−1

 , v2 =

1
1
0

 , v3 =

1
1
1

 .

we compute the entries of the matrix representation Bij = B(vi, vj). We find

(5.22)

B(v1, v1) = 1, B(v1, v2) = 0, B(v1, v3) = 0,

B(v1, v2) = 0, B(v2, v2) = −1, B(v2, v3) = 0,

B(v3, v1) = 0, B(v3, v2) = 0, B(v3, v3) = 2

and so the matrix representation of B in the basis β = {v1, v2, v3} is

(5.23) [Bij] =

 1 0 0
0 −1 0
0 0 2

 .
Example 5.2.3. As in example 5.2.1 let B : IR n × IR n → IR be given by
B(x,y) = xTAy where A ∈Mn×n(IR ). In the standard basis β = {ei}1≤i≤n,

B(ei, ej) = Aij

the entry in the ith row and jth column of A.
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Theorem 5.2.4. Let v, w ∈ V with

(5.24) v =
n∑
i=1

ai vi, w =
n∑
i=1

bi vi.

Then

(5.25) B(v, w) =
n∑

i,j=1

Bija
ibj = [v]T (Bij)[w],

where [v] = [ai], [w] = [bi] are the column vectors of the components of v and
w in (5.24).

Proof. We simply expand out using (5.24), and the bi-linearity condition,

B(v, w) = B

(
n∑
i=1

ai vi,
n∑
j=1

bj vj

)

=
n∑
i=1

aiB

(
vi,

n∑
j=1

bj vj

)
=

n∑
i=1

n∑
j=1

aibjB (vi, wj) .

This is the formula in equation 5.25 in the theorem.

An easy consequence of this theorem is the following.

Corollary 5.2.5. Let B,C ∈ B(V ). The bilinear forms satisfy B = C if
and only if for any basis β, Bij = Cij.

A bilinear form B ∈ B(V ) is symmetric if B(w, v) = B(v, w) for all
v, w ∈ V . The bilinear for B is skew-symmetric or alternating if B(w, v) =
−B(v, w) for all v, w ∈ V .

Example 5.2.6. Let V = IR n and let Qij be any symmetric matrix. Define

B(x,y) =
n∑

i,j=1

Qijx
iyj = xTQy.

Then the bilinear form B is symmetric.

We have the following simple proposition.
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Proposition 5.2.7. A bilinear form B : V × V → IR is symmetric if and
only if its matrix representation (in any basis) is a symmetric matrix. The
bilinear form B is skew-symmetric if and only if its matrix representation in
a basis is a skew-symmetric matrix.

It is easy to show that if the matrix representation of B is symmetric or
skew-symmetric in a basis, then it will have this property in every basis.

The matrix representation of the bilinear form B in example 5.2.2 is 5.23
and is symmetric. Therefore Proposition implies B is a symmetric bilinear
form.

Definition 5.2.8. An inner product is a bilinear form γ : V × V → IR that
satisfies

1. γ(v, w) = γ(w, v), and

2. γ(v, v) ≥ 0,

3. γ(v, v) = 0 if and only if v = 0V .

If γ is an inner product on V , then the length of a vector v ∈ V is

||v|| =
√
γ(v, v).

Theorem 5.2.9. (Cauchy-Schwarz) Let γ : V ×V → IR be an inner product.
Then

(5.26) |γ(v, w)| ≤ ||v||||w||.

A proof of the Cauchy-Schwarz inequality 5.26 can be found in most
books on linear algebra, see for example [6].

Given an inner product γ, the Cauchy-Schwartz inequality 5.26 allows us
to define the angle θ between v, w (in the plane W = span{v, w}) by the
usual formula

(5.27) γ(v, w) = cos θ ||v|| ||w||.

Example 5.2.10. Let V = IR n. The standard inner product is

γ(x,y) =
n∑
i=1

xiyi = xTy
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where x =
∑n

i=1 x
i ei, y =

∑n
i=1 y

i ei. which is often called the dot product.
It is easy to check that γ is an inner product. In the standard basis β =
{ei}1≤i≤n,

gij = γ(ei, ej) = δij, 1 ≤ i, j ≤ n,

and is the identity matrix. If v =
∑n

i=1 a
iei then

||v|| =
n∑
i=1

(ai)2.

Let β = {vi}1≤i≤n be a basis for V and let γ is an inner product. The
n× n matrix [gij] with entries

(5.28) gij = γ(vi, vj) , 1 ≤ i, j ≤ n,

is the matrix representation 5.20 of the bilinear form γ in the basis β. Prop-
erties 1 in 5.2.8 implies the matrix [gij] is symmetric.

Property 2 and 3 for γ in definition 5.2.8 can be related to properties of
its matrix representation [gij]. First recall that A real symmetric matrix is
always diagonalizable over the IR (Theorem 6.20 of [6]). This fact gives a
test for when a symmetric bilinear form γ is positive definite in terms of the
eigenvalues of a matrix representation of γ.

Theorem 5.2.11. Let γ be a bilinear form on V and let gij = γ(vi, vj) be the
coefficients of the matrix representation of γ in the basis β = {vi}1≤i≤n. The
bilinear form γ is an inner product if and only if its matrix representation
[gij] is a symmetric matrix with strictly positive eigenvalues.

The property that [gij] is symmetric with positive eigenvalues does not
depend on the choice of basis.

Example 5.2.12. Consider again the bilinear form β : IR 3×IR 3 → IR from
example 5.2.2,

B

x1

x2

x3

 ,
y1

y2

y3

 = 2x1y1 − x1y2 + x1y3 − x2y1 − x2y2 + x3y1 + x3y3.

In the basis in equation 5.21 the matrix representation is

[Bij] =

 1 0 0
0 −1 0
0 0 2

 .
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Therefore by proposition 5.2 B is a symmetric bilinear form. However by
Theorem 5.2.11 B is not positive definite, and hence B is not an inner prod-
uct.

Example 5.2.13. Let V = IR n and let Qij be any symmetric matrix with
positive eigenvalues. Define

γ(x,y) =
n∑

i,j=1

Qijx
iyj = xTQy.

Then by Theorem 5.2.11 the bilinear form γ is an inner product.

5.3 Tensor product

There is a very important way to construct bilinear forms using linear ones
called the tensor product. Let V be a vector-space and let α1, α2 ∈ V ∗. Now
define α1 ⊗ α2 : V × V → IR by

α1 ⊗ α2(v, w) = α1(v)α2(w), for all v, w ∈ V.

Theorem 5.3.1. The function α1 ⊗ α2 : V × V → IR is bilinear.

Proof. This is simple to check. Using the linearity of α1 we find,

α1 ⊗ α2(av1 + v2, w) = α1(av1 + v2)α2(w)

= aα1(v1)α2(w) + α1(v2)α2(w)

= aα1 ⊗ α2(v1, w) + α1 ⊗ α2(v2, w)

and so α1⊗α2 is linear in the first argument. The linearity of α1⊗α2 in the
second argument is shown using the linearity of α2.

Given α1, α2 ∈ V ∗, the bilinear form α1 ⊗ α2 and is called the tensor
product of α1 and α2. This construction is the beginning of the subject
multi-linear algebra, and the theory of tensors.

Let β = {vi}1≤i≤n be a basis for V and let β∗ = {αj}1≤j≤n be the dual
basis for V ∗, and let

(5.29) ∆ = {αi ⊗ αj}1≤i,j≤n.

The next theorem is similar to Theorem 5.1.3.
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Theorem 5.3.2. The n2 elements of ∆ in equation 5.29 form a basis for
B(V ). Moreover

(5.30) B =
∑

1≤i,j≤n

Bijα
i ⊗ αj

where Bij = B(vi, vj).

Proof. Let B ∈ B(V ), and let

Bij = B(vi, vj), vi, vj ∈ β

be the n × n matrix representation of B in the basis β. Now construct
C ∈ B(V ),

C =
∑

1≤i,j≤n

Bijα
i ⊗ αj.

We compute the matrix representation of C in the basis β by computing

C(vk, vl) =
∑

1≤i,j≤n

Bijα
i(vk)α

j(vl)

=
∑

1≤i,j≤n

Bijδ
i
kδ
j
l

= Bkl.

Here we have used αi(vk) = δik, α
j(vl) = δjl . Therefore by corollary 5.2.5

B = C, and so ∆ is a spanning set. The proof that ∆ is a linearly independent
set is left for the exercises.

Note that formula 5.30 for bilinear forms is the analogue to formula 5.7
for linear function.

Example 5.3.3. Let B : IR 3× IR 3 → IR be the bilinear form from example
5.2.2. Let {αi}1≤i≤3 be the dual basis of the basis in equation 5.21. Then by
Theorem 5.3.2 and equation 5.22 we have

(5.31) B = α1 ⊗ α1 − α2 ⊗ α2 + 2α3 ⊗ α3.

Let β = {vi}1≤i≤n be a basis for V and ∆ = {αi}1≤i≤n be a basis for the
dual space V ∗ and let B be symmetric bilinear form on V . Theorem 5.3.2
allows us to write the inner product B as in equation 5.30 we have

(5.32) B =
∑

1≤i,j≤n

Bijα
i ⊗ αj,
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where Bij = B(vi, vj). In equation 5.32 we note that by using the symmetry
Bij = Bji we can write

Bijα
i ⊗ αj +Bjiα

j ⊗ αi = Bij(α
i ⊗ αj + αj ⊗ αi).

Therefore we define

αiαj =
1

2
(αi ⊗ αj + αj ⊗ αi),

so that equation 5.32 can be written

(5.33) B =
∑

1≤i,j≤n

Bij α
i αj.

This notation will be used frequently in the next section. Equation 5.31 of
example we can be rewritten as

B = α1 ⊗ α1 − α2 ⊗ α2 + 2α3 ⊗ α3 = (α1)2 − (α2)2 + 2(α3)3.

Example 5.3.4. Let V be a vector-space and β = {vi}1≤i≤n a basis and
β∗ = {αj}1≤j≤n the dual basis. Let

γ =
n∑
i=1

ciα
i ⊗ αi =

n∑
i=1

ci(α
i)2 ci ∈ IR , ci > 0.

We claim γ is an inner-product on V . First γ is a sum of bilinear forms and
therefore bilinear. Let’s compute the matrix representation of γ in the basis
β. First note

γ(v1, v1) = (
n∑
i=1

ciα
i ⊗ αi)(v1, v1),

=
n∑
i=1

ciα
i(v1)⊗ αi(v1)

= c1

where we’ve used αi(v1) = 0, i 6= 1. Similarly then γ(v1, v2) = 0, and in
general

γ(vi, vi) = ci, and γ(vi, vj) = 0, i 6= j.

Therefore the matrix representation is the diagonal matrix,

[gij] = diag(c1, c2, . . . , cn).

By Theorem 5.2.11 and that ci > 0, γ is positive definite, and so an inner
product.
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5.4 Metric Tensors

Let p ∈ IR n and suppose we have an inner product γp : TpIR
n×TpIR n → IR

on the tangent space at p. The matrix representation 5.28 in the coordinate
basis {∂xi}1≤i≤n, is the n× n matrix [gij]1≤i,j≤n with entries

[γp]ij = gij = γp (∂xi |p, ∂xj |p) , gij ∈ IR .

If we use the dual basis {dxi|p}1≤i≤n, then equation 5.30 in Theorem 5.3.2
says

(5.34)

γ(p) =
∑

1≤i,j≤n

gij dx
i|p ⊗ dxj|p

=
∑

1≤i,j≤n

gij dx
i|pdxj|p by equation 5.33.

Definition 5.4.1. A metric tensor γ on IR n is a choice of inner product

γp : TpIR
n × TpIR n → IR

for each point p ∈ IR n, which varies smoothly with p.

A metric tensor γ is also called a Riemannian metric. It is a field of
bilinear forms on the tangent space satisfying the conditions of an inner
product at each point.

We now say precisely what it means for γ to vary smoothly. The deriva-
tions ∂xi form a basis at every point, therefore given a metric tensor γ, we
define the n2 functions gij : IR n → IR by

(5.35) gij(x) = γ(∂xi |x, ∂xj |x) for all x ∈ IR n.

A smooth metric tensor is one where the functions gij(x) are C∞ functions
on IR n. Using {dxi|p}1≤i≤n as the dual basis for ∂xi |p, applying the formula
5.34 pointwise for γ using equation 5.35 yields

(5.36) γ =
∑

1≤i,j≤n

gij(x) dxidxj.

Note that at each fixed point p ∈ IR n, the matrix [gij(p)] will be symmetric
and positive definite (by Theorem 5.2.11) because γp is an inner product.

Conversely we have the following.
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Theorem 5.4.2. Let [gij(x)] be a matrix of smooth functions on IR n with
the property that at each point p ∈ IR n that [gij(p)] is a positive definite
symmetric matrix, then

(5.37) γ =
n∑

i,j=1

gij(x)dxidxj

is a metric tensor on IR n.

This theorem then states that every metric tensor is of the form 5.37. The
functions gij(x) are be called the components of γ in the coordinate basis,
or the components of γ.

Given a metric tensor γ =
∑n

i,j=1 gij(x)dxidxj, a point p ∈ IR n and

vectors Xp =
∑n

i=1 ξ
i∂xi |p, Yp =

∑n
i=1 η

i∂xi |p, Theorem 5.2.4 gives,

(5.38) γp(Xp, Yp) = [Xp]
T [gij(p)][Yp] =

n∑
i,j=1

gij(p)ξ
iηj

where [Xp] = [ξi], [Yp] = [ηi] are the column vectors of the coefficients of Xp

and Yp in the coordinate basis.
Given two vector-fields X =

∑n
i=1 ξ

i(x)∂xi , Y =
∑n

i=1 η
i(x)∂xi on IR n we

can also evaluate

(5.39) γ(X, Y ) = [X]T [gij(x)][Y ] =
n∑

i,j=1

gij(x)ξi(x)ηj(x) ∈ C∞(IR n).

A metric tensor γ on an open set U ⊂ IR n is defined exactly as for IR n.

Example 5.4.3. Let U ⊂ IR 3 be the open set U = {(x, y, z) ∈ IR 3 | xz 6= 0 }.
Then

(5.40) γ =
1

x2
dx2 +

1

x2
dy2 − 2

y

zx2
dydz +

(
y2

x2z2
+

1

z2

)
dz2,

is a metric tensor on U . The components of γ are

[gij(x)] =

 1
x2

0 0
0 1

x2
− y
zx2

0 − y
zx2

y2

x2z2
+ 1

z2


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Let p = (1, 2,−1) and Xp = (∂x + ∂y − ∂z)|p, Yp = (∂x + ∂z)|p. Using
equation 5.38 we have

γp(Xp, Yp) = [1, 1,−1]

 1 0 0
0 1 2
0 2 5

 1
0
1

 = −2.

If X = z∂x + y∂y + x∂z and Y = y∂x − x∂y then equation 5.39 gives

γ(X, Y ) =
yz

x2
− y

x
+
y

z
.

Example 5.4.4. Let γ be a metric tensor on IR 2. By equation 5.36 there
exists functions E,F,G ∈ C∞(IR 2) such that

(5.41)
γ = E dx⊗ dx+ F (dx⊗ dy + dy ⊗ dx) +Gdy ⊗ dy

= E(dx)2 + 2Fdxdy +G(dy)2 = Edx2 + 2Fdxdy +Gdy2.

The matrix [gij(x) of components of γ are then

(5.42) [gij(x)] =

[
E F
F G

]
which is positive definite at each point in IR 2, since γ was assumed to be a
metric tensor field.

Example 5.4.5. On IR n let

(5.43) γE =
∑

(dxi)2.

The components of γE at a point p in the coordinate basis {∂xi |p}1≤i≤n are

γE(∂xi |p, ∂xj |p) = δij.

The metric γE is called the Euclidean metric tensor. If Xp, Yp ∈ TpIR n then
equation 5.38 gives

γEp (Xp, Yp) = [Xp]
T [Yp].

Example 5.4.6. Let U = { (x, y) ∈ IR 2 | y > 0 }, and let

(5.44) [gij] =

[ 1
y2

0

0 1
y2

]
.
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This 2× 2 matrix defines a metric tensor on U given by formula 5.37 by

γ =
1

y2
(dx⊗ dx+ dy ⊗ dy) =

dx2 + dy2

y2
.

Let p = (1, 2) ∈ U and let

(5.45) Xp = (2∂x − 3∂y)|p , Yp = (−∂x + ∂y)|p.

The real number γp(Xp, Yp) can be computed using formula 5.38 or by ex-
panding,

γ(Xp, Yp) =
1

4
(dx(Xp)dx(Xp) + dy(Xp)dy(Xp)) =

1

4
(2)(−1)+

1

4
(−3)(1) = −5

4

If the point were p = (2, 5) with Xp, Yp from equation 5.45 we would have

γ(Xp, Yp) =
1

25
(2)(−1) +

1

25
(−3)(1) = −1

5
.

Notice how the computation depends on the point p ∈ U .

Example 5.4.7. Let U ⊂ IR 2 an open set, and let

[gij] =

[
E F
F G

]
where E,F,G ∈ C∞(U) and this 2 × 2 matrix is positive definite at each
point in U . This 2× 2 matrix defines the metric tensor using equation 5.37
producing the metric in equation 5.41 on the open set U ⊂ IR 2.

Remark 5.4.8. In general relativity one is interested in symmetric bilinear
forms γ : V × V → IR which are non-degenerate (see exercise 9) but are not
positive definite. A famous example of a metric tensor in general relativity
is the Schwartzschild metric. This is the metric tensor whose coefficients in
coordinates (t, r, θ, φ) are given by

[gij(t, r, θ, φ)] =


−1 + 2M

r
0 0 0

0 1
1− 2M

r

0 0

0 0 r2 sin2 φ 0
0 0 0 r2

 ,
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which written in terms of differentials is

ds2 =

(
−1 +

2M

r

)
dt2 +

1

1− 2M
r

dr2 + r2 sin2 φdθ2 + r2dφ2.

This metric tensor is not a Riemannian metric tensor. It does not satisfy the
positive definite criteria as a symmetric bilinear form on the tangent space
at each point. It is however non-degenerate.

The Einstein equations in general relativity are second order differential
equations for the coefficients of a metric [gij], 1 ≤ i, j,≤ 4. The differen-
tial equations couple the matter and energy in space and time together with
the second derivatives of the coefficients of the metric. The idea is that the
distribution of energy determines the metric tensor [gij]. This then deter-
mines how things are measured in the universe. The Scwartzschild metric
represents the geometry outside of a fixed spherically symmetric body.

Remark 5.4.9. You need to be careful about the term metric as it is used
here (as in metric tensor). It is not the same notion as the term metric in
topology! Often in differential geometry the term metric is used, instead of
the full name metric tensor, which further confuses the issue. There is a
relationship between these two concepts - see remark 5.4.13 below.

5.4.1 Arc-length

Let γ =
∑n

i,j=1 gij(x)dxidxj be a metric tensor on IR n, and σ : [a, b] → IR n

a continuous curve on the interval [a, b], and smooth on (a, b). Denote by
σ(t) = (x1(t), x2(t), . . . , xn(t)) the components of the curve. At a fixed value
of t, σ̇ is the tangent vector (see equation 3.13), and it’s length with respect
to γ is compute using 5.38 to be

√
γ(σ̇, σ̇) =

√√√√ n∑
i,j=1

gij(σ(t))
dxi

dt

dxj

dt
.

Integrating this function with respect to t gives

(5.46) L(σ) =

∫ b

a

√
γ(σ̇, σ̇)dt =

∫ b

a

√√√√ n∑
i,j=1

gij(σ(t))
dxi

dt

dxj

dt
dt

which is the arc-length of σ with respect to the metric γ. Note that the
components gij(x) of the metric tensor are evaluated along the curve σ.
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Example 5.4.10. For the Euclidean metric tensor γE

L(σ) =

∫ b

a

√√√√ n∑
i

(
dxi

dt

)2

dt ,

as expected.

Example 5.4.11. Compute the arc-length of the line

σ(t) = (t+ 1, 2t+ 1) 0 ≤ t ≤ 1

with respect to the metric in equation (5.44). We get,∫ 1

0

√
1

(2t+ 1)2
(1 + 4)) dt =

√
5

2
log 3.

This is not the same as the arc-length using the Euclidean metric tensor
which is found to be ∫ 1

0

√
1 + 4dt =

√
5.

Remark 5.4.12. Another name for a metric tensor is a “line-element field”
(written ds2), because the metric can be used to measure the length of a line.

Remark 5.4.13. We now explain a relationship between metric tensors and
the term metric in topology. Recall a metric on a set U is a function d :
U × U → IR satisfying for all x, y, z ∈ U ,

1. d(x, y) = d(y, x),

2. d(x, y) ≥ 0,

3. d(x, y) = 0 if and only if y = x,

4. d(x, y) ≤ d(x, y) + d(y, z) (the triangle inequality).

Let γ be a metric tensor on IR n and let p, q ∈ IR n. Define d(p, q) by

(5.47) d(p, q) = infσ

∫ b

a

√
γ(σ̇, σ̇)dt

where σ : [a, b]→ IR n is a curve satisfying σ(a) = p, σ(b) = q. The function
d(p, q) in equation 5.47 defines a metric on IR n.
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5.4.2 Orthonormal Frames

Recall that a basis β = {ui}1≤i≤n for an n-dimensional vector space V with
inner product γ, is an orthonormal basis if

γ(ui, uj) = δij, 1 ≤ i, j ≤ n.

The theory of orthonormal frames begins with an extension of the Gram-
Schmidt process for constructing orthonormal basis on inner product spaces
which we now recall.

Starting with an basis β = {vi}1≤i≤n for the n-dimensional vector space
V with inner product γ, the Gram-Schmidt process constructs by induction
the set of vector β̃ = {wi}1≤i≤n by

w1 = v1,

wj = vj −
j−1∑
k=1

γ(vj, wk)

γ(wk, vw)
wk, 2 ≤ j ≤ n.

Theorem 5.4.14. The set of vector β̃ form a basis for V and are orthogonal
to each other

γ(wi, wj) = 0 i 6= j.

The proof of this is standard see [6]. From the set β′ the final step in the
Gram-Schmidt process is to let

ui =
1√

γ(wi, wi)
wi 1 ≤ i ≤ n

so that β = {ui}1≤i≤n is an orthonormal basis for V .
We now apply the Gram-Schmidt algorithm in the setting of a metric

tensor. Let β′ = {Xi}1≤i≤n be n vector-fields on IR n which are linearly in-
dependent at each point. A basis of TpIR

n is also called a frame, and the
collection of vector-fields β′ a frame field or moving frame. An orthonor-
mal basis of T pIR n is called an orthonormal frame and if the vector-fields
{Xi}1≤i≤n satisfy

γ(Xi, Xj) = δij

and so are are orthonormal at each point in IR n, then the collection β′ is
called an orthonormal frame field.
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We now show how to construct orthonormal frame fields using the Gram-
Schmidt process. Let γ be a Riemannian metric tensor on IR n. Construct
the following vector fields from the frame field β′ = {Xi}1≤i≤n,

(5.48)

Y1 = X1,

Yj = Xj −
j−1∑
k=1

γ(Xj, Yk)

γ(Yk, Yk)
Yk, 2 ≤ j ≤ n.

As in Theorem 5.4.14

Theorem 5.4.15. The vector-fields {Yi}1≤i≤n are smooth and linearly inde-
pendent at each point in IR n, and are mutually orthogonal at each point

γ(Yi, Yj) = 0, i 6= j.

Again as in the final step of the Gram-Schmidt process let

Zi =
1√

γ(Yi, Yi)
Yi 1 ≤ i ≤ n,

and the set β = {Zi}1≤i≤n is a set of vector-fields that form an orthonormal
basis with respect to γp for TpIR

n for each point p ∈ IR n, and so form an
orthonormal frame field.

Example 5.4.16. Let γ be the metric tensor on U = {(x, y, z) ∈ IR 3 | xz 6=
0} given by

γ =
1

x2
dx2 +

1

x2
dy2 − 2

y

zx2
dydz +

(
y2

x2z2
+

1

z2

)
dz2.

We find an orthornomal frame field starting with the coordinate frame ∂x, ∂y, ∂z
and then using equation 5.48. The first vector-field is Y1 = ∂x, the second is

Y2 = ∂y −
γ(∂y, Y1)

γ(Y1, Y1)
Y1 = ∂y,

and the third is

Y3 = ∂z −
γ(∂z, Y1)

γ(Y1, Y1)
Y1 −

γ(∂z, Y2)

γ(Y2, Y2)
Y2

= ∂z − 0∂x +
y

z
∂y.

Finally the resulting orthonormal frame field is

(5.49) Z1 = x∂x, Z2 = x∂y, Z3 = z∂z + y∂y.
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5.5 Raising and Lowering Indices and the Gra-

dient

Given a function f ∈ C∞(IR n) its differential df (see equation 5.10) defines
at each point p ∈ IR n an element of T ∗p IR

n. This is not the gradient of f .
We will show that when given a metric tensor-field γ on IR n, it can be used
to convert the differential one-form df into a vector-field X, which is called
the gradient of f (with respect to γ). This highlights the fact that in order
to define the gradient of a function a metric tensor is needed.

Again we need some linear algebra. Suppose that B is a bilinear form
on V (see exercise 9). In particular B could be an inner product. Now as a
function B requires two vectors as input. Suppose we fix one vector in the
input like B(v,−) and view this as a function of one vector. That is, let
v ∈ V be a fixed vector and define the function αv : V → IR by

(5.50) αv(w) = B(v, w) for all w ∈ V.

Alternatively we could have defined a function α̃v : V → IR by α̃v(w) =
B(w, v) for all w ∈ V , which if B is symmetric would be the same function
αv defined in 5.50.

The notation αv is used to emphasize that the form αv depends on the
initial choice of v ∈ V . Let’s check αv ∈ V ∗,

αv(aw1 + w2) = B(v, aw1 + w2)

= aB(v, w1) +B(v, w2)

= aαv(w1) + αv(w2) a ∈ IR ,w1, w2 ∈ V.

Therefore α ∈ V ∗. From this we see that given v ∈ V we can construct from
v an element αv ∈ V ∗ using the bilinear form B. That is we can use B to
convert a vector to an element of the dual space αv called the dual of v with
respect to B.

From this point of view the bilinear form B allows us to define a function
TB : V → V ∗ by

(5.51) TB(v)(w) = B(v, w), for all w ∈ V.

How does TB depend on V ? Let’s compute

TB(av1 + v2)(w) = B(av1 + v2, w) by 5.51

= aB(v1, w) +B(v2, w) = (aTB(v1) + TB(v2)) (w).
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Therefore TB(av1 +v2) = aTB(v2)+TB(v2) and TB is a linear transformation.
We now work out TB in a basis!

Proposition 5.5.1. Let β = {vi}1≤i≤n for V and let β∗ = {αi}1≤i≤n be the
dual basis. The matrix representation of TB : V → V ∗ is

[TB]β
∗

β = [gjk]

where gij = B(vi, vj).

Proof. We begin by writing

(5.52) TB(vi) =
n∑
k=1

gikα
k

and determine gik. By equation 5.51,

TB(vi)(vj) = B(vi, vj)

and therefore evaluating equation 5.52 on vj gives

B(vi, vj) =

(
n∑
k=1

gikα
k

)
(vj) = gij.

This proves the theorem.

Now let v ∈ V and αv = TB(v) which we write in the basis β and dual
basis β∗ as

(5.53)

v =
n∑
i=1

aivi, and

αv = TB(v) =
n∑
i=1

bi α
i, ai, bi ∈ IR ,

where we assume ai are known since v is given, and we want to find bj in
terms of ai. It follows immediately from Lemma 2.1.6 and Proposition that
the coefficients bj of the image form αv are

(5.54) bj =
n∑
i=1

gija
i.
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We can then write

(5.55) TB(v) =
n∑
j=1

(
n∑
i=1

gija
i

)
αj.

The form αv = TB(v) in equation 5.55 is called the dual of v with respect to
B, and this process is also sometimes called “lowering the index” of v with
B.

Another way to compute TB(v) is given by the following corollary (see
Theorem 5.3.2).

Corollary 5.5.2. Let

B =
n∑

i,j=1

gijα
i ⊗ αj

where gij = B(vi, vj). Then

(5.56) TB(v) =
n∑

i,j=1

gijα
i(v)αj.

Example 5.5.3. Let B be the symmetric non-degenerate bilinear form from
example 5.2.2

(5.57) B

x1

x2

x3

 ,
y1

y2

y3

 = 2x1y1−x1y2 +x1y3−x2y1−x2y2 +x3y1 +x3y3.

Let v = e1 − e2 + 2e3, then we compute αv = TB(v) by noting

αv(e1) = B(v, e1) = 5, αv(e2) = 0 αv(e3) = B(v, e3) = 3.

Therefore αv(xe1 + ye2 + ze3) = 5x+ 3z.

Theorem 5.5.4. If the bi-linear form B is non-degenerate then the linear
transformation TB in equation 5.51 is an isomorphism.

Proof. Suppose TB(v) = 0, where 0 ∈ V ∗, then

0 = TB(v)(w) = B(v, w) for all w ∈ V.

Since B is non-degenerate (see exercise 8), this implies v = 0. Which proves
the lemma.
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Suppose from now on that B is non-degenerate. Let T−1
B : V ∗ → V be

the inverse of TB, and let α ∈ V ∗ then by equation 5.51

TB ◦ T−1
B (α)(w) = B(T−1

B (α), w), for all w ∈ V.

However TB ◦ T−1
B = I the identity, and therefore

(5.58) α(w) = B(T−1
B (α), w), for all w ∈ V.

Let β = {vi}1≤i≤n be a basis for V , β∗ = {αi}1≤i≤n the dual basis, and
let α =

∑n
i=1 biα

i. We now find v = T−1
B (α) in the basis β. By Proposition

5.5 [TB]β
∗

β = [gij]. Using Proposition 2.3.7, [T−1
B ]ββ∗ = ([TB]β

∗

β )−1, and so let

[gij] denote the inverse matrix of [gij] = [TB]β
∗

β . Utilizing Lemma 2.1.6 the

coefficients aj of the image vector TB(α) in terms of the coefficients bi of α
are given by

(5.59) aj =
n∑
i=1

gijbi,

and

(5.60) v = T−1
B (α) =

n∑
j=1

(
n∑
i=1

gijbi

)
vj.

The vector v in formula 5.59 is called the dual of α with respect to B. The
process is also sometimes called “raising the index” with B.

Example 5.5.5. We continue with the example 5.5.3 and we compute the
dual of α(xe1 + ye2 + ze3) = 3x− y+ 2z with respect to B (raise the index).
From equation 5.57, we find the matrix [gij] = [gij]

−1 is

[gij] =
1

4

 1 −1 −1
−1 −3 1
1 −1 3

 .
Therefore

[T−1
B (α)] =

1

2
[1, 1, 5]

and

T−1
B (α) =

1

2
e1 +

1

2
e2 +

5

2
e3.
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In summary using TB : V → V ∗ we can map vectors to dual vectors, and
using the inverse T−1

γ : V ∗ → V we can map dual vectors to vectors. This
will be the essential part of the gradient.

Let γ be a Riemannian metric on IR n, and suppose X is a vector-field.
We can convert the vector-field X to a differential one-form αX by using the
formula 5.51 at each point

(5.61) αX(Yp) = γp(Xp, Yp), for all Tp ∈ TpIR n.

We then define Tγ from vector-fields on IR n to differential one-forms on IR n

by

Tγ(X)(Yp) = γ(X(p), Yp) for allYp ∈ TpIR n.

If X =
∑n

i=1 ξ
i(x)∂xi , and the metric components are

gij(x) = γ(∂xi , ∂xj)

then formula 5.55 or equation 5.56 applied point-wise for lowering the index
gives
(5.62)

αX = Tγ(X) =
n∑
j=1

(
n∑
i=1

gij(x)dxi(X)

)
dxj =

n∑
j=1

(
n∑
i=1

gij(x)ξi(x)

)
dxj.

The differential one-form αX is the called dual of the vector-field X with
respect to the metric γ.

The function Tγ is invertible (because γ is non-degenerate at each point),
and given a differential form α =

∑n
i=1 αi(x)dxi, then its dual with respect

to the metric γ is given by the raising index formula 5.60

(5.63) X = T−1
γ (α) =

n∑
j=1

(
n∑
i=1

gij(x)αi(x)

)
∂xj

where again [gij(x)] is the inverse of the matrix [gij(x)].

Example 5.5.6. Let

γ =
1

1 + ex
(dx2 + dy2)
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be a Riemannian metric on IR 2, and let X = x∂x + y∂y. The dual of X with
respect to γ is computed using 5.62

α =
1

1 + ex
dx(X)dx+

1

1 + ex
dy(Y )dy =

1

1 + ex
xdx+

1

1 + ex
ydy.

If α = ydx− xdy then by equation 5.63 the dual of α with respect to γ is

X = y(1 + ex)∂x − x(1 + ex)∂y.

More generally if

γ = Edx2 + 2Fdxdy +Gdy2 ,

is a metric tensor on IR 2 and and X = a∂x + b∂y a vector-field on U then
the dual of X is computed using 5.62 to be

Tγ(X) = (aE + bF )dx+ (aF + bG)dy.

If α = adx+ bdy is a differential one-form then by equation 5.63 its dual is

T−1
γ (α) =

1

EG− F 2
((aG− bF )∂x + (bE − aF )∂y)

where we have used,

[gij] =

(
E F
F G

)−1

=
1

EG− F 2

(
G −F
−F E

)
.

Finally we can define the gradient of a function. Let f ∈ C∞(U), and
γ a Riemannian metric tensor on U (or at least a non-degenerate bilinear
form-field). Let

(5.64) grad(f) = { the dual of df with respect to γ } = T−1
γ (df).

By equation 5.63 the formula for grad(f) is

(5.65) grad(f) =
n∑
j=1

(
n∑
i=1

gij(x)
∂f

∂xi

)
∂xj

Example 5.5.7. Continuing from Example 5.5.6 with the metric tensor γ =
(1 + ex)−1(dx2 + dy2) on IR 2, if f ∈ C∞(IR 2) then df = fxdx+ fydy and its
dual with respect to γ is

grad(f) = (1 + ex)fx∂x + (1 + ex)fy∂y.
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Example 5.5.8. Let (x, y, z) be coordinates on IR 3, and

γ = dx2 + dy2 − 2xdydz + (1 + x2)dz2.

The components of γ in the coordinate basis are

[gij(x)] =

1 0 0
0 1 −x
0 −x 1 + x2

 ,
while

[gij(x)] =

1 0 0
0 1 + x2 x
0 x 1

 .
Given f(x, y, z) then its gradient with respect to this metric is

fx∂x +
(
(1 + x2)fy + xfz)

)
∂y + (xfy + fz)∂z.

Example 5.5.9. If

γE =
n∑
i=1

(dxi)2

is the Euclidean metric tensor then

grad(f) =
n∑
i=1

∂f

∂xi
∂xi .

In this case the coefficients of the gradient of a function are just the partial
derivatives of the function. This is what occurs in a standard multi-variable
calculus course.

Let Up ∈ TpIR n be a unit vector with respect to a metric tensor γ. The
rate of change of f ∈ C∞(IR n) at the point p in the direction Up is

Up(f).

As in ordinary calculus, the following is true.

Theorem 5.5.10. Let f ∈ C∞(IR n) with gradp(f) 6= 0. Then gradp(f)
is the direction at p in which f increases the most rapidly, and the rate of
change is

||gradp(f)||γ .
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Proof. We begin by using equation 5.58 with γp : TpIR
n × TpIR n → IR and

definition 5.64 to get

Up(f) = dfp(Up) = γp(T
−1
γ (dfp), Up) = γp(gradp(f), Up).

The Cauchy-Schwartz inequality 5.26 applied to this formula then gives,

|Up(f)| = |γ(gradp(f), Up)| ≤ ||grad(f)||γ .

The result follows by noting the maximum rate ||gradp(f)||γ of |Up(f)| is
obtained when Up = ||gradp(f)||−1

γ gradp(f).

This next bit is not necessary for doing the assignment but is another
way to define the raising the index procedure. Since Tγ is an invertible
linear transformation it can be used to define a non-degenerate bilinear form
γ∗ : V ∗ × V ∗ → IR , defined by

γ∗(α, β) = γ(T−1
γ (α), T−1

γ (β)).

Theorem 5.5.11. The function γ∗ is bilinear, non-degenerate. If γ is sym-
metric, then so is γ∗. If γ is positive definite then so is γ∗. Furthermore if
{vi}1≤i≤n is a basis for V , and {αi}1≤i≤n is the dual basis then,

γ∗(αi, αj) = gij

where [gij] is the inverse matrix of [gij] = [γ(vi, vj)].

If γ is a metric tensor on IR n then γ∗ is called the contravariant form of
the metric γ. The raising the index procedure (and the gradient) can then
be defined in terms of γ∗ using the isomorphism Tγ∗ : V ∗ → V

Tγ∗(α)(τ) = γ∗(α, τ).

In this formula we have identified (V ∗)∗ = V .

Remark 5.5.12. Applications of the gradient in signal processing can be found
in [5], [1], [2].
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5.6 A tale of two duals

Given a vector v ∈ V , where V is a finite dimensional vector-space, there is
no notion of the dual of v unless there is an inner product γ on V . In this
case the inner product γ can be used to define the function Tγ as in equation
5.51 giving Tγ(v) ∈ V ∗ which is the dual with respect to γ.

The matter is quite different if we are given a basis β = {vi}1≤i≤n for V .
We then have the dual basis β∗ = {αi}1≤i≤n defined by (see equation 5.3),

αi(vj) = δij, 1 ≤ i, j ≤ n.

Suppose we also have γ as an inner product on V , and let β̃∗ = {σi}1≤i≤n be
the forms dual with respect to γ,

σi = Tγ(vi), 1 ≤ i ≤ n.

These two duals are related by the following theorem.

Theorem 5.6.1. The set β̃∗ is a basis for V ∗ and αi = σi if and only if vi
is an orthonormal basis.

Proof. The fact that β̃∗ is a basis will be left as an exercise. Suppose that β
is an orthornormal basis, then

σi(vj) = Tγ(vi)(vj) = γ(vi, vj) = δij.

However by definition αi(vj) = δij, and so for each i = 1, . . . , n, αi and σi

agree on a basis, and hence are the same elements of V ∗. This proves the
sufficiency part of the theorem.

Finally assume that αi = σi, 1 ≤ i ≤ n. Then

δij = αi(vj) = σi(vj) = γ(vi, vj),

and β is an orthonormal basis.

Theorem 5.6.1 has an analogue for frames fields. Let {Xi}1≤i≤n be a
frame field on IR n. The algebraic dual equations

(5.66) αi(Xj) = δij for all p ∈ IR n,
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define αi, 1 ≤ i ≤ n as a field of differential one-forms, which form a basis
for T ∗p IR

n for each p ∈ IR n. Given a Riemmanian metric tensor γ define the
differential one-forms as in equation 5.61,

(5.67) σj = Tγ(Xj) = γ(Xj,−), 1 ≤ j ≤ n.

We then have the field version of Theorem 5.6.1.

Corollary 5.6.2. The one-form fields {σi}1≤i≤n from equation 5.67 define a
basis for T ∗p IR

n for each point p ∈ IR n. The fields satisfy αi = σi, 1 ≤ i ≤ n,
if and only if Xi is an orthonormal frame field.

Example 5.6.3. In equation 5.68 of example 5.4.16 we found the orthonor-
mal frame field

(5.68) Z1 = x∂x, Z2 = x∂y, Z3 = z∂z + y∂y.

for the metric tensor

γ =
1

x2
dx2 +

1

x2
dy2 − 2

y

zx2
dydz +

(
y2

x2z2
+

1

z2

)
dz2

on U = {(x, y, z) ∈ IR 3 | xz 6= 0}. The algebraic dual defined in equation
5.66 of Z1, Z2, Z3 is easily computed by using Corollary 5.6.2 by taking the
dual with respect to γ. We find

α1 = Tγ(Z1) =
1

x
dx, α2 = Tγ(Z2) =

1

x
dy, α3 = Tγ(Z3) =

1

z
dz.
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5.7 Exercises

1. Let V = IR 3 and T ∈ V ∗. Prove there exists a, b, c ∈ IR such that

T

xy
z

 = ax+ by + cz.

2. Let Xp, Yp ∈ TpIR 2, with p = (1− 2) be

Xp = (2∂x + 3∂y)|p, Yp = (3∂x + 4∂y)|p.

Compute the dual basis to β = {Xp, Yp}

3. Let f = 2xyz, let p = (1, 1, 1), and Xp = (−3∂x + ∂y + ∂z)|p.

(a) Compute dfp(Xp).

(b) Find df in the coordinate basis.

(c) Let g = x2 +y2 +z2. Are dg and df linear dependent at any point?

4. Show that B(V ) the space of bilinear functions on V with addition and
scalar multiplication defined by equation 5.19 is a vector-space. (Do
not assume that V is finite dimensional.)

5. Show that S(V ) ⊂ B(V ) the symmetric bilinear functions, form a
subspace. (Do not assume that V is finite dimensional.)

6. Prove corollary 5.2.5.

7. Finish the proof of Theorem 5.3.2 by showing {αi ⊗ αj}1≤i,j≤n is a
linearly independent set.

8. A bilinear function B : V × V → IR is non-degenerate if

B(v, w) = 0 for all w ∈ V

then v = 0.

(a) Prove that an inner product on V is non-degenerate.
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(b) Given a basis β = {vi}1≤i≤n for V , prove that B is non-degenerate
if and only if the matrix [gij] = [B(vi, vj)] is invertible.

9. Let B : IR 3 × IR 3 → IR be the bilinear function from example 5.2.2,

(a) Show B is a symmetric non-degenerate bilinear function on IR 3.

(b) Is B positive definite?

(c) Compute αv the dual of v = −2e1 + e2 + e3 with respect to B as
defined in equation 5.50.

(d) Compute the dual of the form α(xe1 + ye2 + ze3) = 4x − 3y + z
with respect to B (raise the index). (Answer = (3, 0,−2)).

10. Let η : IR 2 × IR 2 → IR be the function

η(x,y) = x1y2 + x2y1,

where x = (x1, x2),y = (y1, y2).

(a) Is η a symmetric non-degenerate bilinear function on IR 2? If so,
is η positive definite ?

(b) Let β = {v1 = (1, 1), v2 = (1,−1)} write η as a linear combination
of tensor products of the dual basis β∗ = {α1, α2}.

(c) Compute αv1 and αv2 as defined in equation 5.50 where v1, v2 are
from part (b) (lower the index of v1 and v2). Compare to part (b).

(d) Compute the dual of the α(xe1 + ye2) = 4x − 3y with respect to
η (raise the index).

11. Let γ be a symmetric bilinear forms and β = {vi}1≤i≤n a basis for V ,
and β∗ = {αj}1≤j≤n a basis for V ∗.

(a) Show that

γ =
∑

1≤i,j≤n

γ(vi, vj)α
iαj,

where αiαj is given in equation 5.33.

(b) Show that ∆s = {αiαj}1≤i≤j≤n forms a basis for S(V ), the sym-
metric bilinear forms on V .
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12. For the metric tensor on IR 3 given by

γ = dx2 + dy2 − 2xdydz + (1 + x2)dz2,

(a) compute the dual of the vector-field z∂x + y∂y + x∂z with respect
to γ (lower the index).

(b) Compute the dual of the differential form ydx+ zdy − (1 + x2)dz
with respect to the metric γ (raise the index).

(c) Find an orthonormal frame field and its dual. (Hint: See Corollary
5.6.2)

13. Let U = {(x, y) | y > 0} with metric tensor

γ =
1

y2
(dx2 + dy2)

(a) Compute the arc-length of a “straight line” between the points
(0,
√

2) and (1, 1).

(b) Compute the arc-length of a circle passing through the points
(0,
√

2) and (1, 1) which has its center on the x-axis. Compare to
part (a). Hint: You will need to find the circle.

(c) Find an orthonormal frame field and its dual.

(d) Find the gradient of f ∈ C∞(U).

14. For the metric
γ = dφ2 + sin2 φ dθ2

on the open set 0 < φ < π, 0 < θ < 2π, find

(a) an orthonormal frame field and its dual.

(b) Compute the gradient of f(θ, φ).
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Chapter 6

The Pullback and Isometries

6.1 The Pullback of a Differential One-form

Recall that in Chapter 4 that a function Φ : IR n → IRm induces a linear
transformation at each point p ∈ IR n, Φ∗,p : TpIR

n → TqIR
m, where q =

Φ(p), defined on derivations by

(Φ∗,pXp)(g) = Xp(g ◦ Φ) g ∈ C∞(q).

If Xp =
∑n

i=1 ξ
i∂xi |p, ξi ∈ IR then

Φ∗,pXp =
n∑
j=1

n∑
i=1

ξi
∂Φa

∂xi

∣∣∣∣
p

∂

∂ya

∣∣∣∣
q

.

The map Φ∗,p : TpIR
n → TqIR

m induces a map Φ∗q going in the other
direction,

Φ∗q : T ∗q IR
m → T ∗p IR

n

on the dual space. The definition of the function Φ∗q is easy once we examine
the linear algebra.

Let V,W be real vector-spaces and T : V → W a linear transformation.
There exists a map T t : W ∗ → V ∗ defined as follows. If τ ∈ W ∗ then
T ∗(τ) ∈ V ∗ is defined by its value on v ∈ V through

(6.1) T t(τ)(v) = τ(T (v)) for allv ∈ V.

Lemma 6.1.1. If τ ∈ W ∗ then T t(τ) ∈ V ∗. Furthermore T t : W ∗ → V ∗ is
a linear transformation.

111
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Proof. The first part of this lemma is proved by showing that T t(τ) is a linear
function of v in equation 6.1. Suppose v1, v2 ∈ V , and c ∈ IR , then

(6.2)

T t(τ)(cv1 + v2) = τ(T (cv1 + v2))

= τ(cT (v1) + T (v2))

= cτ(T (v1)) + τ(T (v2))

= cT t(τ)(v1) + T t(τ)(v2).

Therefore T t(τ) ∈ V ∗. The proof that T t is linear is an exercise.

To be more concrete about what T t it is useful to write it in a basis.
Suppose that V and W are finite dimensional vector-spaces of dimension
n and m respectively, and that β = {vi}1≤i≤n is a basis for V , and γ =
{wa}1≤a≤n is a basis for W . Let A = [T ]γβ be the matrix representation of T
then A is the m× n matrix determined by the equations (see equation 2.2)

(6.3) T (vi) =
m∑
a=1

Aaiwa.

Furthermore if v =
∑n

i=1 c
ivi then the coefficients of the image vector T (v)

are by Lemma 2.1.6 or equation 2.10,

[T (v)]γ = [
n∑
i=1

Aai c
i] = A[v]β.

Now let β∗ = {αi}1≤i≤n be the basis of V ∗ which is the dual basis of β
for V , and γ = {τa}1≤a≤n the basis of W ∗ which is the dual basis of γ for
W ∗ as defined in equation 5.3. The matrix representation of function the
T t : W ∗ → V ∗ will now be computed in the basis γ∗, β∗. Let B = [T t]β

∗

γ∗

which is an n×m matrix, which is determined by

(6.4) T t(τa) =
n∑
i=1

Ba
i α

i.

By evaluate the right side of equation 6.4 on vk ∈ β we get

(
n∑
i=1

Ba
i α

i)(vk) =
n∑
i=1

Ba
i α

i(vk) =
n∑
i=1

Ba
i δ

i
k = Ba

k .
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Therefore equation 6.4 gives

(6.5)

Ba
k = T t(τa)(vk)

= τa(T (vk)) by equation 6.1

= τa(
n∑
i=1

Abkwb) by equation 6.3

=
n∑
i=1

Abkτ
a(wb)

=
n∑
i=1

Abkδ
a
b

= Aak .

Therefore equation 6.5 gives

(6.6)

T (vi) =
m∑
a=1

Aaiwa,

T t(τa) =
n∑
i=1

Aaiα
i .

Suppose τ ∈ W ∗ and τ =
∑m

a=1 caτ
a. We then write out what are the

coefficients of T t(τ) in the basis β∗ by computing,

(6.7)

T t(
m∑
a=1

caτ
a) =

m∑
a=1

caT
t(τa)

=
m∑
a=1

ca(
n∑
i=1

Aaiα
i) by equation 6.6

=
n∑
i=1

(
m∑
a=1

caA
a
i )α

i .

In other words the coefficients of the image [T t(τ)]β∗ are the row vector we
get by multiplying A on the left by the row vector [τ ]γ∗ = [c1, . . . , cm],

[T t(τ)]β∗ = [τ ]γ∗A.

Now let’s put formula 6.6 to use in the case Φ∗,p : TpIR
n → TqIR

m,
q = Φ(p). Denote by Φ∗q : T ∗q IR

m → T ∗p IR
n the map on the dual, and let
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τq ∈ T ∗q IRm (note a dual vector at a point in IRm in the image of Φ). Then
the corresponding definition from 6.1 of the map Φ∗q(τ) ∈ T ∗p IR n is

(6.8) (Φ∗qτq)(Xp) = τq(Φ∗,pXp).

Let β = {∂xi |p}1≤i≤n be the coordinate basis for TpIR
n, and γ = {∂ya|q}1≤a≤m

the coordinate basis for TqIR
n, and the corresponding dual basis are {dxi|p}1≤i≤n,

and {dya|q}1≤a≤m. The matrix representation of Φ∗,p in the coordinate basis
is

Φ∗,p(∂xi |p) =
m∑
a=1

∂Φa

∂xi

∣∣∣∣
p

∂ya |q,

and so equation 6.6 gives

(6.9) Φ∗q(dy
a|q) =

n∑
i=1

∂Φa

∂xi

∣∣∣∣
p

dxi|p.

Note the difference in the summation index in these last two equations.
An important observation from equation 6.9 needs to be made. Equation

5.16 is

(dΦa)p =
n∑
i=1

∂Φa

∂xi

∣∣∣∣
p

dxi|p,

and so equation 6.9 can then be written,

(6.10) Φ∗q(dy
a|q) = (dΦa)p.

This motivates the definition.

Definition 6.1.2. Let Φ : IR n → IRm, and g ∈ C∞(IRm). The pullback of
g to IR n denoted by Φ∗g is the function

(6.11) Φ∗g = g ◦ Φ,

and Φ∗g ∈ C∞(IR n).

Using definition 6.1.2 we have for the coordinate functions Φ∗ya = Φa,
and equation 6.10 can be written

(6.12) Φ∗q(dy
a)p = d(Φ∗ya)p = (dΦa)p.
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Finally for a general element of τq ∈ T ∗q IRm, τq =
∑m

a=1 cady
a|q, ca ∈ IR ,

we then find as in equation 6.7, by using equations 6.10, and 6.9 that

(6.13)

Φ∗q(
m∑
a=1

cady
a|q) =

m∑
a=1

ca(dΦa)p ,

=
n∑
i=1

(
m∑
a=1

ca
∂Φa

∂xi

∣∣∣∣
p

)
dxi|p .

Example 6.1.3. Let Φ : IR 2 → IR 3 be given by

(6.14) Φ(x, y, z) = (u = x+ y, v = x2 − y2, w = xy),

and let τq = (2du− 3dv + dw)q where q = Φ(1, 2) = (3,−3, 2). We compute
Φ∗qτq by first using 6.10,

(6.15)

Φ∗qduq = d(x+ y)(1,2) = (dx+ dy)(1,2)

Φ∗qdvq = d(x2 − y2)(1,2) = (2xdx− 2ydy)(1,2) = (2dx− 4dy)(1,2)

Φ∗qdwq = d(xy)(1,2) = (2dx+ dy)(1,2).

Therefore by equation 6.13 and the equation 6.15,

Φ∗q(2du− 3dv + dw)|q = 2Φ∗q(du|q)− 3Φ∗q(dv|q) + Φ∗q(dw|q)
= 2(dx+ dy)− 3(2dx− 4dy) + 2dx+ dy

= (−2dx+ 15dy)(1,2) .

We now come to a fundamental observation. Recall if X is a vector-field
on IR n and Φ : IR n → IRm, that we cannot use Φ∗ to define a vector-field
on IRm. In the case m = n and Φ is a diffeomorphism then it is possible to
push-forward a vector-field as in section 4.5, but in general this is not the
case. Let’s compare this with what happens for one-form fields.

Suppose that τ is now a one-form field on IRm. ( τ is specified on the
image space of Φ). For any point p ∈ IR n (the domain of Φ) we can define
αp = Φ∗q(τΦ(p)). We call the differential one-form α the pullback of τ and
we write α = Φ∗τ for the map on the differential one-form τ . Therefore we
can always pullback a differential one-form on the image to a differential
one-form on the domain, something we can not do with the push-forward for
vector-fields!
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We now give a formula for Φ∗τ in coordinates. If τ =
∑m

a=1 fa(y)dya,
then with y = Φ(x) we have

τy=Φ(x) =
m∑
a=1

fa(Φ(x))dya|Φ(x).

From equation 6.13

(6.16)

(Φ∗τ)x = Φ∗q(τΦ(x)) =
m∑
a=1

fa(Φ(x))dΦa

=
n∑
i=1

(
m∑
a=1

fa(Φ(x))
∂Φa

∂xi

∣∣∣∣
x

)
dxi|x

which holds at every point x in the domain of Φ. In particular note that
equation 6.16 implies that using definition 6.1.2 the pullback of the coordinate
differential one-forms are ,

(6.17) Φ∗dya = d (Φ∗ya) = dΦa =
n∑
i=1

∂Φa

∂xi
dxi.

We then rewrite equation 6.16 as (dropping the subscript x)

(6.18)

Φ∗τ =
m∑
a=1

fa(Φ(x))Φ∗dya

=
n∑
i=1

(
m∑
a=1

fa(Φ(x))
∂Φa

∂xi

)
dxi

Example 6.1.4. Let Φ : IR 2 → IR 3 be as in equation 6.14 from example
6.1.3. We compute Φ∗du,Φ∗dv,Φ∗dw using 6.17,

(6.19)

Φ∗du = d(Φ∗u) = d(x+ y) = dx+ dy,

Φ∗dv = d(Φ∗v) = d(x2 − y2) = 2xdx− 2ydy,

Φ∗dw = d(Φ∗w) = d(xy) = ydx+ xdy .

Let’s calculate Φ∗(vdu − udv + wdw). In this case we have by formula 6.18
and 6.19

Φ∗(vdu− udv + wdw) = (x2 − y2)Φ∗du− (x+ y)Φ∗dv + xyΦ∗dw ,

= (x2 − y2)d(x+ y)− (x+ y)d(x2 − y2) + xy d(xy) ,

= (x2 − y2)(dx+ dy)− (x+ y)(2xdx− 2ydy) + xy(ydx+ xdy) ,

= (xy2 − 3x2 − 2xy)dx+ (x2 + y2 + 2xy + x2y)dy.
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Finally we give a fundamental theorem relating the pull back and the
exterior derivative.

Theorem 6.1.5. Let Φ : IR n → IRm be a smooth function. Then

(6.20) d(Φ∗g) = Φ∗(dg)

where g ∈ C∞(IRm).

This is states that Φ∗ and d commute. A proof of this is easily given by
writing both sides out in coordinates, but here is an alternative one which is
the standard proof in differential geometry.

Proof. To prove equation 6.37 holds, let p ∈ IR n and Xp be in TpIR
n. We

then show

(6.21) (d(Φ∗g)) (Xp) = (Φ∗dg)(Xp).

Since p and Xp are arbitrary, equation 6.21 implies 6.37.
We first expand out the left side of equation 6.21 using the definition of d

in equation 5.10 applied to the function Φ∗g on C∞(IR n) and then equation
6.11 to get,

(6.22) (d(Φ∗g)) (Xp) = Xp(Φ
∗g) = Xp(g ◦ Φ).

Next we expand the right hand side of equation 6.21 using 6.8, 5.10 , and 4.7
to get

(6.23) (Φ∗dg)(Xp) = dg(Φ∗Xp) = (Φ∗Xp)(g) = Xp(g ◦ Φ).

The equality of equations 6.22 and 6.23 proves equation 6.37 holds.

6.2 The Pullback of a Metric Tensor

Generalizing what we did in the previous section, suppose that T : V → W
is a linear transformation we define the function T t : B(W ) → B(V ) from
the bilinear functions on W to those on V as

(6.24) T t(B)(v1, v2) = B(T (v1), T (v2)), B ∈ B(W ).

We have a lemma analogous to Lemma 6.1.1 in the previous section checking
that T t(B) is really bilinear.
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Lemma 6.2.1. Let T : V → W be a linear transformation, and B ∈ B(W ),
then T t(B) ∈ B(V ). Furthermore if B is symmetric, then T t(B) is symmet-
ric. If T is injective and B is positive definite (or non-degenerate) then T ∗B
is positive definite (or non-degenerate).

Proof. The fact that T t(B) is bilinear is similar to Lemma 6.1.1 above and
won’t be repeated.

Suppose that B is symmetric then for all v1, v2 ∈ V ,

T t(B)(v1, v2) = B(T (v1), T (v2)) = B(T (v2), T (v1)) = T t(B)(v2, v1).

Therefore T t(B) is symmetric.
Suppose that T is injective, and that B is positive definite. Then

T t(B)(v, v) = B(T (v), T (v)) ≥ 0

because B is positive definite. If B(T (v), T (v)) = 0 then T (v) = 0, which by
the injectivity of T implies v = 0. Therefore T t(B) is positive definite.

Suppose now that V and W are finite dimensional vector-spaces of di-
mension n and m respectively, and that β = {vi}1≤i≤n is a basis for V , and
γ = {wa}1≤a≤n is a basis for W . Denoting as usual A = [T ]γβ, then A is the
m× n matrix determined by

T (vi) =
m∑
a=1

Aaiwa.

For B ∈ B(V ) the matrix representation of B is

(6.25) Bab = B(wa, wb).

We now compute the matrix representation of the bilinear function T t(B),

(6.26)

T t(B)ij = T t(B)(vi, vj) = B(T (vi), T (vj)

= B(
m∑
a=1

Aaiwa,

m∑
b=1

Abiwb)

=
∑

1≤a,b≤m

AaiA
b
jB(wa, wb)

=
∑

1≤a,b≤m

AaiA
b
jBab
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In terms of matrix multiplication one can write equation 6.26 as

(T t(B)) = AT (B)A.

Now let β∗ = {αi}1≤i≤n be the basis of V ∗ which is the dual basis of β
for V , and γ = {τa}1≤a≤n the basis of W ∗ which is the dual basis of γ for
W ∗. Using equation 6.25 and the tensor product basis as in equation 5.30
we have

(6.27) B =
∑

1≤a,b≤m

Babτ
a ⊗ τ b.

While using the coefficients in equation 6.26 and the tensor product basis as
in equation 5.30 we have

(6.28) T t(B) =
∑

1≤i,j≤n

( ∑
1≤a,b≤m

AaiA
b
jBab

)
αi ⊗ αj.

By using the formula for T t(τa), T t(τ b) from equation 6.6, this last formula
can also be written as

(6.29)

T t(B) = T t

( ∑
1≤a,b≤m

Bab τ
a ⊗ τ b

)
=

∑
1≤a,b≤m

Bab T
t(τa)⊗ T t(τ b) .

Let Φ : IR n → IRm be a smooth function and let p ∈ IR n, and let
B : TqIR

m × TqIR
m → IR , with q = Φ(p), be a bilinear function. Then

Φ∗q(B) : TpIR
n× TpIR n → IR is a bilinear function defined exactly as in 6.24

by
Φ∗q(B)(Xp, Yp) = B(Φ∗,pXp,Φ∗,pYp).

Suppose that we have for TpIR
n the standard coordinate basis {∂xi |p}1≤i≤n,

and for TqIR
m the basis {∂ya|q}, with the corresponding dual basis {dxi|p}1≤i≤n

and {dya|q}1≤a≤m. Recall equation 6.9,

Φ∗q(dy
a|q) =

n∑
i=1

∂Φa

∂xi

∣∣∣∣
p

dxi|p.
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Therefore writing

B =
∑

1≤a,b≤m

Babdy
a|q ⊗ dyb|q, Bab ∈ IR ,

formula 6.28 gives

(6.30) (Φ∗qB)p =
∑

1≤i,j≤n

( ∑
1≤a,b≤m

Bab
∂Φa

∂xi

∣∣∣∣
p

∂Φb

∂xj

∣∣∣∣
p

)
dxi|p ⊗ dxj|p.

Equation 6.30 can also be written using equation 6.29 as

(6.31) (Φ∗qB)p =
∑

1≤a,b≤m

Bab(Φ
∗
qdy

a|Φ(p))⊗ (Φ∗qdy
b|Φ(p))

Example 6.2.2. Let Φ : U → IR 3, U = {(θ, φ) ∈ IR 2 | 0 < θ < 2π, 0 < φ <
π}, be the function

(6.32) Φ(θ, φ) = (x = cos θ sinφ, sin θ sinφ, cosφ).

Let p =
(
π
4
, π

4

)
, q =

(
1
2
, 1

2
, 1√

2

)
and let B = (dx2+dy2+dz2)|q. From equation

6.31 we find

Φ∗q(B)p = (Φ∗qdx|q)2 + (Φ∗qdy|q)2 + (Φ∗qdz|q)2.

Then by equation 6.9,

Φ∗dx|q = (− sin θ sinφdθ + cos θ cosφdφ)p = −1

2
dθ|p +

1

2
dφ|p.

Similarly

Φ∗qdyq =
1

2
dθ|p +

1

2
dφ|p, Φ∗qdz|q = − 1√

2
dφ|p,

and so

Φ∗q(dx
2 + dy2 + dz2)q = (dφ2 +

1

2
dθ2)|p .

Recall from the previous section the important property that a differential
one-form (or one-form field) that is defined on the image of a smooth function
Φ : IR n → IRm pulls-back to a differential one-form on the domain of Φ. A
similar property holds for fields of bilinear functions such as Riemannian
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metric tensors. In particular, if γ is a field of bilinear functions (such as
a metric tensor field), then the pullback of Φ∗γ is a field of bilinear forms
defined by,
(6.33)

(Φ∗γ)p(Xp, Yp) = γp(Φ∗,pXp,Φ∗,pYp), for all p ∈ IR n, Xp, Yp ∈ TpIR n.

For each p ∈ IR n(the domain of Φ), then Φ∗γ is a bi-linear function on TpIR
n,

and so a field of bi-linear function.
Suppose that

γ =
∑

1≤a,b≤m

gab(y)dya ⊗ dyb

is a a field of bilinear functions on IRm then Φ∗γ is the field of bilinear
function defined by equation 6.28 at every point in IR n. If y = Φ(x) then

γΦ(x) =
∑

1≤a,b≤m

gab(Φ(x))dya|Φ(x) ⊗ dyb|Φ(x)

and by equation 6.30

(6.34) Φ∗γ =
∑

1≤a,b≤m

gab(Φ(x))(Φ∗dya)⊗ (Φ∗dyb).

This can be further expanded to using equation 6.17 to

(6.35) Φ∗γ =
n∑

i,j=1

m∑
a,b=1

gab(Φ(x))
∂Φa

∂xi
∂Φb

∂xj
dxi ⊗ dxj

Example 6.2.3. Continue with Φ in equation 6.32 in example 6.2.2 we
compute Φ∗γE by using equation 6.34

Φ∗(dx2 + dy2 + dz2) = (Φ∗dx)2 + (Φ∗dy)2 + (Φ∗dz)2

= (− sin θ sinφ dθ + cos θ cosφ dφ)2+

(cos θ sinφ dθ + sin θ cosφ dφ)2 + sin2 φ dφ2

= dφ2 + sin2 φdθ2

Example 6.2.4. With Φ : IR 2 → IR 3 given by

Φ(x, y) = (x, y, z = f(x, y))
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we compute Φ∗γE using equation 6.34 by first computing

Φ∗dx = dx, Φ∗dy = dy, Φ∗dz = fxdx+ fydy.

Therefore

Φ∗(dx2 + dy2 + dz2) = dx2 + dy2 + (fxdx+ fydy)2

= (1 + f 2
x)dx2 + 2fxfydxdy + (1 + f 2

y )dy2.

Example 6.2.5. Let U ⊂ IR 3 and γ be the metric tensor in 5.4.3, and let
Φ : IR 3 → U be

Φ(u, v, w) = (x = eu, y = veu, z = ew) .

By equation 6.34 the pullback Φ∗γ is
(6.36)

Φγ =
1

e2u
(d(eu))2 +

1

e2u
dv2 − 2

v

ewe2u
dvd(ew) +

(
v2

e2(u+w)
+

1

e2w

)
(d(ew))2

= du2 + e−2udv2 − 2ve−2udvdw + (1 + v2e−2u)dw2.

Theorem 6.2.6. Let Φ : IRm → IR n be an immersion, and γ a Riemannian
metric tensor on IR n. Then the pullback Φ∗γ is a Riemannian metric on
IRm

Proof. We only need to prove that at each point p ∈ IRm that (Φ∗γ)p is an
inner product. XXXX

More examples will be given in the next section.
A simple theorem which follows from the definitions in this section is the

following.

Theorem 6.2.7. Let Φ : IR n → IRm be a smooth function and let α, β be
differential one forms on the range space IRm and let g ∈ C∞(IRm). Then

(6.37) Φ∗(g · α⊗ β) = Φ∗g · (Φ∗α)⊗ (Φ∗β).

6.3 Isometries

Let γ be a fixed metric tensor on IR n.
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Definition 6.3.1. A diffeomorphism Φ : IR n → IR n is an isometry of the
metric γ if

(6.38) Φ∗γ = γ.

Let’s write this out more carefully using the definition of pullback in
equation 6.33. We have Φ is an isometry of γ if and only if

(6.39) γ(Xp, Yp) = γ(Φ∗,pXp,Φ∗,pYp), for allp ∈ IR n, Xp, Yp ∈ TpIR n .

The metric tensor γ on the right hand side is evaluated at Φ(p.

Lemma 6.3.2. Let Φ : IR n → IR n be a diffeomorphism, then the following
are equivalent:

1. Φ is an isometry.

2. For all p ∈ IR n, and 1 ≤ i, j,≤ n,

(6.40) γ(∂xi |p, ∂xj |p) = γ(Φ∗,p(∂xi |p),Φ∗,p(∂xj |p)) .

3. For all p ∈ IR n and Xp ∈ TpIR n, γ(Xp, Xp) = γ(Φ∗,pXp,Φ∗,pXp).

Proof. Clearly 1 implies 2 by equation 6.39. Suppose that 2 holds and Xp ∈
TpIR

n where Xp =
∑n

i=1X
i∂xi |p, X i ∈ IR . Using bilinearity,

γ(Φ∗,pXp,Φ∗,pXp) = γ(Φ∗,p

n∑
i=1

X i∂xi,Φ∗,p

n∑
j=1

Xj∂xj)

=
n∑

i,j=1

X iXjγ(Φ∗,p∂xi |p,Φ∗,p∂xj |p)

=
n∑

i,j=1

X iXjγ(∂xi |p, ∂xj |p) by1.

= γ(X,X).

Therefore 2 implies 3.
For 3 to imply 1), let Xp, Yp ∈ TpIR n, then by hypothesis

(6.41) γ(Xp + Yp, Xp + Yp) = γ(Φ∗,p(Xp + Yp),Φ∗,p(Xp + Yp)).
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Expanding this equation using bilinearity the left hand side of this is

(6.42) γ(Xp + Yp, Xp + Yp) = γ(Xp, Xp) + 2γ(Xp, Yp) + γ(Yp, Yp)

while the right hand side of equation 6.41 is
(6.43)
γ(Φ∗,p(Xp+Yp),Φ∗,p(Xp+Yp)) = γ(Φ∗,pXp,Φ∗,pXp)+2γ(Φ∗,pXp,Φ∗,pYp)+γ(Φ∗,pYp,Φ∗,pYp).

Substituting equations 6.42 and 6.43 into equation 6.41 we have
(6.44)
γ(Xp, Xp)+2γ(Xp, Yp)+γ(Yp, Yp) = γ(Φ∗,pXp,Φ∗,pXp)+2γ(Φ∗,pXp,Φ∗,pYp)+γ(Φ∗,pYp,Φ∗,pYp).

Again using the hypothesis 3, γ(Φ∗,pXp,Φ∗,pXp) = γ(Xp, Xp), and γ(Φ∗,pY,Φ∗,pY ) =
γ(Y, Y ) in equation 6.44 we are left with

2γ(Φ∗,pXp,Φ∗,pYp) = 2γ(Xp, Yp),

which shows that 3 implies 1 (by equation 6.39).

The last condition says that for Φ to be an isometry it is necessary and
sufficient that Φ∗,p preserves lengths of vectors.

Example 6.3.3. Let Φ : IR 2 → IR 2 be the diffeomorphism,

(6.45) Φ(x, y) =

(
1√
2

(x− y),
1√
2

(x+ y)

)
.

This function is a counter clockwise rotation by π/4 about the origin in IR 2.
We compute now what Φ does to tangent vectors. Let Xp = X1∂x + X2∂y
at the point p = (x0, y0). We find the coefficient of Φ∗,pXp in the coordinate
basis are

[Φ∗,p(Xp)] =

[
1√
2
− 1√

2
1√
2

1√
2

] [
X1

X2

]
=

[
1√
2
(X1 −X2)

1√
2
(X1 +X2)

]
.

The two by two matrix is the Jacobian matrix for Φ at the point p (in this
case the point p doesn’t show up in evaluating the Jacobian). We see the
the coefficients of the image vector, are just the rotated form of the ones we
started with in Xp.

XXXXXXXXXXXXX DRAW PICTURE XXXXXXXXXXXXXX
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Therefore we can check condition 3 in Lemma 6.3.2 for the Euclidean
metric tensor γEu by computing

γEu(Φ∗,pXp,Φ∗,pXp) =

(
1√
2

(X1 −X2)

)2

+

(
1√
2

(X1 +X2)

)2

= (X1)2 + (X2)2

= γEu(Xp, Xp)

Example 6.3.4. In this next example, consider the metric tensor in IR 2

given by

(6.46) γ =
1

1 + x2 + y2
(dx2 + dy2)

We claim the diffeomorphism Φ in equation (6.45) is an isometry for this
metric. We first compute,

Φ∗dx =
1√
2

(dx− dy) , Φ∗dy =
1√
2

(dx+ dy).

Then computing,

Φ∗γ =
1

1 + ( 1√
2
(x− y))2 + ( 1√

2
(x+ y))2

(
1

2
(dx− dy)2 +

1

2
(dx− dy)2

)
=

1

1 + x2 + y2
(dx2 + dy2).

Therefore Φ satisfies equation 6.38 and is an isometry.

Example 6.3.5. In this next example consider the diffeomorphisms of IR 2,

(6.47) Ψt(x, y) = (x+ t, y),

where t ∈ IR . We compute

Ψ∗tdx = dx, Ψ∗tdy = dy

since t is a constant. For the Euclidean metric γE , we find

Ψ∗tγ
E = dx2 + dy2.
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Therefore Ψ in equation (6.47) is an isometry for all t ∈ IR .
Are Ψt isometries for the metric in equation (6.46) in example 6.3.4? We

have

Ψ∗t

(
1

1 + x2 + y2
(dx2 + dy2)

)
=

1

1 + (x+ t)2 + y2
(dx2 + dy2).

This will not equal γ unless t = 0. In which case Ψt is just the identity
transformation.

Example 6.3.6. In this next example consider the diffeomorphisms of IR 2,

(6.48) Ψt(x, y) = (x cos t− y sin t, x sin t+ y cos t),

where t ∈ [0, 2π). We compute from equation 6.17,

Ψ∗tdx = cos t dx− sin t dy, Ψ∗tdy = sin t dx+ cos t dy,

since t is a constant. For the Euclidean metric γE we find

Ψ∗tγ
E = (cos t dx− sin t dy)2 + (sin t dx+ cos t dy)2

= dx2 + dy2.

Therefore Ψt in equation (6.39) is an isometry for all t ∈ IR .
What about the metric in equation (6.46) in example 6.3.4. We have

Ψ∗t

(
1

1 + x2 + y2
(dx2 + dy2)

)
=

1

1 + (x cos t− y sin t)2 + (x sin t+ y cos t)2

(
(cos t dx− sin t dy)2 + ((sin t dx+ cos t dy))2

)
=

1

1 + x2 + y2
(dx2 + dy2)

Therefore Φt is an isometry of this metric tensor as well.

Example 6.3.7. In example 5.4.3 we have U = {(x, y, z) ∈ IR 3 | xz 6= 0 }
with the following metric tensor on U ,

(6.49) γ =
1

x2
dx2 +

1

x2
dy2 − 2

y

zx2
dydz +

(
y2

x2z2
+

1

z2

)
dz2.
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For each a, c ∈ IR ∗ and let b ∈ IR , define the function Φ(a,b,c) : U → U by

(6.50) Φ(a,b,c)(x, y, z) = (u = ax, v = ay + bz, w = cz)

Therefore (noting that a, b, c are constants) we have

(6.51) Φ∗(a,b,c)du = a dx , Φ∗(a,b,c)dv = a dy + b dz , Φ∗(a,b,c)dw = c dz .

Using equation 6.51 we find

Φ∗(a,b,c)

(
1

u2
du2 +

1

u2
dv2 − 2

v

wu2
dvdw +

(
v2

u2w2
+

1

w2

)
dw2

)
,

=
1

ax2
(adx)2 +

1

(ax)2
(a dy + b dz)2 − 2

ay + bz

cz(ax)2
(a dy + b dz)(c dz)

+

(
(ay + bw)2

(ax)2(cz)2
+

1

(cz)2

)
(c dz)2

=
1

x2
dx2 +

1

x2
dy2 − 2

y

zx2
dydz +

(
y2

x2z2
+

1

z2

)
dz2.

Therefore for each a, b, c the diffeomorphism Φ(a,b,c) is an isometry of the
metric γ.

Given a metric tensor γ the the isometries have a simple algebraic struc-
ture.

Theorem 6.3.8. Let γ be a metric tensor in IR n. The set of isometries of
γ form a group with composition of functions as the group operations. This
group is called the isometry group of the metric.

Proof. Let Φ and Ψ be isometries of the metric γ and Xp, Yp ∈ TpIR n, then

γ ((Φ ◦Ψ)∗Xp, (Φ ◦Ψ)∗Yp) = γ (Φ∗,pΨ∗Xp,Φ∗,pΨ∗Yp) chain rule

= γ (Ψ∗Xp,Ψ∗Yp) Φ is an isometry 6.39

= γ (Xp, Yp) Ψ is an isometry 6.39

Therefore the composition of two isometries is an isometry, and we have a
well defined operation for the group. Composition of functions is associative,
and so the group operation is associative. The identity element is the identity
function. We leave as an exercise to prove that if Φ is an isometry, then Φ−1

is also an isometry.
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Lastly we write out in coordinates the isometry condition. Suppose that
γ =

∑n
i,j=1 g

ij(x)dxidxj is a metric tensor in IR n and that Φ : IR n → IR n

is a diffeomorphism. Let’s expand out the right hand side of condition 2, in
Lemma 6.3.2 with q = Φ(p),

(6.52)

γ(Φ∗,p∂xi |p),Φ∗,p∂xj |p) = γ

(
n∑
k=1

∂Φk

∂xi

∣∣∣∣
p

∂yk |q,
n∑
l=1

∂Φl

∂xj

∣∣∣∣
p

∂yl |q)

)

=
n∑

k,l=1

∂Φk

∂xi

∣∣∣∣
p

∂Φl

∂xj

∣∣∣∣
p

γ(∂yk |q, ∂yl |q)

=
n∑

k,l=1

∂Φk

∂xi

∣∣∣∣
p

∂Φl

∂xj

∣∣∣∣
p

[γq]kl

Since p was arbitrary we can summarize the computation in equation 6.52
with the following lemma which is the component form for a diffeomorphism
to be an isometry.

Lemma 6.3.9. A diffeomorphism Φ : IR n → IR n is an isometry of the
metric tensor γ =

∑n
i,j=1 g

ij(x)dxidxj on IR n if and only if

(6.53)
n∑

k,l=1

∂Φk

∂xi
∂Φl

∂xj
gkl(Φ(x)) = gij(x).

This lemma can be viewed in two ways. First given a diffeomorphism,
we can check if it is an isometry of a given metric γ. The second and more
interesting point of view is that equations (6.53) can be viewed as partial
differential equations for the function Φ given γ. These partial differential
equation are very non-linear for Φ, but have some very unusual properties
and can be integrated in a number of special situations.

Example 6.3.10. Equation 6.53 for the Euclidean metric tensor-field γE on
IR n is

(6.54)
n∑

k,l=1

∂Φk

∂xi
∂Φl

∂xj
δkl = δij.

If we differentiate this with respect to xm we get

(6.55)
n∑

k,l=1

(
∂2Φk

∂xi∂xm
∂Φl

∂xj
+
∂Φk

∂xi
∂2Φl

∂xj∂xm

)
δkl = 0.
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Now using equation 6.54 but replacing i with m and then differentiating with
respect to xi we get equation 6.55 with i and m switched,

(6.56)
n∑

k,l=1

(
∂2Φk

∂xm∂xi
∂Φl

∂xj
+
∂Φk

∂xm
∂2Φl

∂xj∂xi

)
δkl = 0.

Do this again with j and m to get,

(6.57)
n∑

k,l=1

(
∂2Φk

∂xi∂xj
∂Φl

∂xm
+
∂Φk

∂xi
∂2Φl

∂xm∂xj

)
δkl = 0.

Now take equation 6.55 plus 6.56 minus 6.57 to get

0 =
n∑

k,l=1

(
∂2Φk

∂xi∂xm
∂Φl

∂xj
+
∂Φk

∂xi
∂2Φl

∂xj∂xm

+
∂2Φk

∂xm∂xi
∂Φl

∂xj
+
∂Φk

∂xm
∂2Φl

∂xj∂xi

− ∂2Φk

∂xi∂xj
∂Φl

∂xm
− ∂Φk

∂xi
∂2Φl

∂xm∂xj

)
δkl.

The second and sixth term cancel, and so do the fourth and fifth, while the
first and third term are the same. Therefore this simplifies to

0 = 2
n∑

k,l=1

∂2Φk

∂xi∂xm
∂Φl

∂xj
δkl.

Now the condition Φ is a diffeomorphism implies that Φ∗ is invertible (so the
Jacobian matrix is invertible), and so

0 =
∂2Φk

∂xi∂xm
.

This implies Φ is linear and that

Φ(x) = Ax + b

where A is an invertible matrix, and b ∈ IR n. Finally using condition 6.54,
we have

ATA = I

and A is an orthogonal matrix.
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The method we used to solve these equations is to take the original system
of equations and differentiate them to make a larger system for which all
possible second order partial derivatives are prescribed. This holds in general
for the isometry equations for a diffeomorphism and the equations are what
is known as a system of partial differential equations of finite type.

There another way to find isometries without appealing to the equations
(6.53) for the isometries. This involves finding what are known as “Killing
vectors” and their corresponding flows, which we discuss in the next two
chapters. The equations for a Killing vector are linear and often easier to
solve than the non-linear equations for the isometries. “Killing vectors” are
named after the mathematician Wilhelm Killing (1847-1923).
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6.4 Exercises

1. If T : V → W is a linear transformation, show that T t : W ∗ → V ∗ is
also a linear transformation.

2. Let Φ : IR 3 → IR 2 be

Φ(x, y, z) = (u = x+ y + z, v = xy + xz)

and compute

(a) Φt
(
2du|(4,3) − dv|(4,3)

)
(1,2,1)

, and

(b) Φ∗(vdu+ dv).

3. Let Φ : U → IR 3, U = {(ρ, θ, φ) ∈ IR 3 | 0 < ρ, 0 < θ < 2π, 0 < φ < π},
be

Φ(ρ, θ, φ) = (x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ)

and compute

(a) Φ∗(xdx+ ydy + zdz) ,

(b) Φ∗(ydx− xdy) ,

(c) Φ∗(dx2 + dy2 + dz2) ,

(d) Φ∗(df), f = x2 + y2.

4. Let B ∈ B(W ) and T : V → W injective. Prove that if B is positive
-definite then T t(B) is positive-definite.

5. Let U = {(x, y) | y > 0} with metric tensor

γ =
1

y2
(dx2 + dy2)

(a) Show that for each t ∈ IR , the transformations

ψt(x, y)→ (etx, ety)

are isometries.
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6. Show that for each a, b, c ∈ IR , that Φ(a,b,c) : IR 3 → IR 3 given by

Φ(a,b,c)(x, y, z) = (x+ a, y + az + b, z + c)

is an isometry for the metric tensor γ on IR 3,

(6.58) γ = dx2 + dy2 − 2xdydz + (1 + x2)dz2 .

7. For which a, b, c ∈ IR is

Φ(a,b,c)(x, y, z) = (x+ a, y + cx+ b, z + c)

an isometry of the metric tensor 6.58 in the previous problem?

8. By using the pullback, show that every diffeomorphism Φ : IR n → IR n

of the form

(6.59) Φ(x) = Ax + b,

where A is an n × n matrix satisfying ATA = I, and b ∈ IR n is an
isometry of the Euclidean metric tensor on IR n. (Hint in components
equation 6.59 is Φi =

∑n
j=1A

i
jx
j + bi.)

9. Complete the proof of Theorem 6.3.8 by showing that if Φ is an isometry
of the metric tensor γ, then Φ−1 is also an isometry of γ.



Chapter 7

Hypersurfaces

7.1 Regular Level Hyper-Surfaces

Let F ∈ C∞(IR n+1) and let c ∈ IR . The set of points S ⊂ IR n+1 defined by

S = { p ∈ IR n+1 | F (p) = c}

is called a regular level surface (or hyper-surface) if the differential F∗ :
TpIR

n+1 → TF (p)IR is surjective at each point p ∈ S. Let’s rewrite this
condition in a basis. If ∂xi |p and ∂u|q are the coordinate basis at the points
p and q = F (p) then the matrix representation of F∗ is computed using ??
to be

(7.1) [F∗] = (∂x1F, ∂x2F, . . . , ∂xn+1F ) .

Therefore S is a regular level surface if at each point p ∈ S, at least one of
the partial derivative of F with respect to xi does not vanish at that point.

Example 7.1.1. Let F : IR n+1 → IR be the function

F (x) = xTx =
n+1∑
i=1

(xi)2

and let r ∈ IR +. The n sphere of radius r given by

Snr = { p ∈ IR n+1 | F (p) = r2 }.

The standard n-sphere denoted by Sn has radius 1.

133
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The sphere Snr is a regular level surface. To check this we compute

[F∗] =
(
2x2, 2x2, . . . , 2xn+1

)
and note that at any point p ∈ Snr not all x1, . . . , xn+1 can be zero at the
same time (because r2 > 0).

Let S ⊂ IR n+1 be a regular level surface F = c. The tangent space
TpS, p ∈ S is

TpS = { Xp ∈ TpIR n+1 | Xx ∈ kerF∗|p }.
Note that since F∗ has rank 1, that dimTpS = n by the dimension theorem
2.2.7.

Lemma 7.1.2. If Xp ∈ TpIR n+1 then Xp ∈ TpS if and only if

Xp(F ) = 0

Proof. Let ι ∈ C∞(IR ) be the identity function. We compute F∗Xp(ι) =
Xp(ι ◦ F ) = Xp(F ). This vanishes if and only if Xp(F ) = 0.

Example 7.1.3. Let r > 0 and S2
r = { (x, y, z) ∈ IR 3 | x2 + y2 + z2 = r2 },

which is the 2-sphere in IR 3 of radius r. Let p =
(

1√
6
, 1√

6
, 1√

3

)
∈ S2 (where

r = 1), and let
Xp = ∂x − ∂y

then
Xp(x

2 + y2 + z2) = (2x− 2y)|p = 0.

Therefore Xp ∈ TpS2.
Let’s compute the tangent space TpS

2
r by finding a basis. In the coordinate

basis we have by equation 7.1,

[F∗] = (2x, 2y, 2z)

where x, y, z satisfy x2 + y2 + z2 = r2. In order to compute the kernel note
the following, if z 6= ±r, then

ker[F∗] = span{(−y, x, 0), (0,−z, y)}.

Rewriting this in the standard basis we have

TpS
2
c = span{−y∂x + x∂y,−z∂y + y∂z} p 6= (0, 0,±r).

At the point p = (0, 0,±r) we have

TpS
2
c = span{∂x, ∂y} p = (0, 0,±r).
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Example 7.1.4. Let z = f(x, y), (x, y) ⊂ U where U is an open set in IR 2.
As usual we let F (x, y, z) = z − f(x, y), so that the graph z = f(x, y) is
written as the level surface F = 0. We compute in the coordinate basis

[F∗] = (−fx,−fy, 1)

and so the surface is a regular level surface. At a point p(x0, y0, f(x0, y0)) ∈ S
we have

TpS = span{ ∂x + fx(x0, y0)∂z , ∂y + fy(x0, y0)∂z }.

Let σ : I → IR be a smooth curve lying on the surface S, which means

F ◦ σ = c.

Applying the chain rule to the function F ◦ σ : IR → IR (or differentiating
with respect to t) gives

(F ◦ σ)∗∂t = F∗σ∗∂t = c∗∂t = 0.

Therefore σ∗∂t ∈ Tσ(t)S. In the next section we will answer the question
of whether for every tangent vector Xp ∈ TpS there exists a representative
curve σ for Xp lying on S.

7.2 Patches and Covers

Let S ⊂ IR n+1 be a regular level surface.

Definition 7.2.1. A coordinate patch (or coordinate chart) on S is a pair
(U, ψ) where

1. U ⊂ IR n is open,

2. ψ : U → IR n+1 is a smooth injective function,

3. ψ(U) ⊂ S,

4. and ψ∗ is injective at every point in U (so ψ is an immersion)

A coordinate patch about a point p ∈ S is a coordinate patch (U, ψ) with
p ∈ ψ(U). The function ψ provides coordinates on the set ψ(U) ⊂ S.
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Example 7.2.2. Recall the regular level surface S2
r = {(x, y, z) ∈ IR 3 | x2 +

y2 + z2 = r2, r ∈ IR +}. Let U = (0, 2π) × (0, π) ⊂ IR 2, which is clearly
open. The function ψ : U → IR 3 given by

(7.2) ψ(u, v) = (r cosu sin v, r sinu sin v, r cos v)

is a surface patch on the 2-sphere S2
r .

Example 7.2.3. Let S be the regular level surface defined by a graph z =
f(x, y), (x, y) ∈ U open. let ψ : U → IR 3 be the function

ψ(u, v) = (u, v, f(u, v)) (u, v) ∈ U.

The conditions for a patch are easily checked. Every point (x0, y0, z0) ∈ S is
contained in the given patch.

Suppose (U, ψ) is a patch on a regular level surface S. Then ψ : U → S is
a one-to-one immersion. The differential ψ∗ is injective by definition and so
ψ∗(TxU) ⊂ Tψ(x)IR

n+1 is an n-dimensional subspace. However we find even
more is true.

Lemma 7.2.4. The map ψ∗ : TpU → TqS, where q = ψ(p) is an isomor-
phism.

Proof. We have ψ∗(TpU) and TqS are n-dimensional subspaces of TqIR
n+1.

If ψ∗(TpU) ⊂ TpS then they are isomorphic. Let Xp ∈ TpU , we only need to
check that ψ∗Xp ∈ kerF∗. We compute

F∗ψ∗Xp = Xp(F ◦ ψ).

However by the patch conditions F ◦ψ = c and so Xp(F ◦ψ) = 0. Therefore
Lemma 7.1.2 implies ψ∗Xp ∈ TqS, and so psi∗(TpU) = TqS.

Example 7.2.5. Continuing with example 7.2.2, let (u, v) ∈ (0, 2π)× (0, π)
we find ψ∗∂u|(u,v) ∈ TpS2 is

ψ∗∂u|(u,v) = (− sinu sin v∂x + cosu sin v∂y)(cosu sin v,sinu sin v,cos v).

Note that one can check that ψ∗∂u ∈ TpS2 using Lemma 7.1.2.

Example 7.2.6. For the example of a graph in 7.2.3 we compute

ψ∗∂u|(u0,v0) = ∂x + fx(u0, v0)∂z , ψ∗∂v|(u0,v0) = ∂y + fy(u0, v0)∂z.
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Let (U, ψ) be a patch on a regular level surface S, and let q ∈ S be a
point contained in ψ(U). We now argue that given any Xq ∈ TqS there
exists a curve σ : I → S with σ̇(0) = Xq. By Lemma 7.2.4 let Yp ∈ TpU with
ψ∗Yp = Xq, which exists and is unique since ψ∗ is an isomorphism. Let σ
be a representative curve for Yp in U ⊂ IR n. Then ψ ◦ σ is a representative
curve for Xp. This follows from the chain rule,

d

dt
ψ ◦ σ|t=0 = ψ∗σ∗

d

dt

∣∣∣∣
t=0

= ψ∗Yp = Xq.

A covering of a regular level surface is a collection of surface patches
C = (Uα, ψα)α∈A where

S =
⋃
α∈A

ψα(Uα).

In other words every point p ∈ S is contained in the image of some surface
patch.

Example 7.2.7. We continue with S2
r = {(x, y, z) ∈ IR 3 | x2 + y2 + z2 =

r2, r > 0}. Let D = {(u, v) ∈ IR 2 | u2 + v2 < r2} which is an open set in
IR 2. The set D with the function ψz+ : D → IR 3 given by

ψz+(u, v) = (x = u, y = v, z =
√
r2 − u2 − v2)

is a surface patch on S2
r (the upper hemi-sphere). Likewise the pair (D,ψz−)

is a surface patch on S2
r (the bottom hemi-sphere) where

ψz−(u, v) = (x = u, y = v, z = −
√
r2 − u2 − v2).

Continuing in the way we construct four more patches all using D and the
functions

ψx±(u, v) = (x = ±
√
r2 − u2 − v2, y = u, z = v)

ψy±(u, v) = (x = u, y = ±
√
r2 − u2 − v2, z = v).

The collection
C = {(D,ψz±), (D,ψx±), (D,ψy±) }

is a cover of S2
r by coordinate patches.

The fact is regular level surfaces always admit a cover. This follows from
the next theorem which we won’t prove.
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Theorem 7.2.8. Let S ⊂ IR n+1 be a regular level hyper-surface, and let
p ∈ S. There exists a exists a surface patch (U, ψ) with p ∈ ψ(U).

The proof of this theorem involves the implicit function theorem from
advanced calculus, see [12] for the theorem.

Corollary 7.2.9. Let S ⊂ IR n+1 be a regular level hyper-surface. There
exists a cover (Uα, ψα), α ∈ A of S.

7.3 Maps between surfaces

Suppose S ⊂ IR n+1 and Σ ⊂ IRm+1 are two regular level surfaces and that
Φ : IR n → IRm. We’ll say that Φ restricts to a smooth map from S to Σ if

Φ(p) ∈ Σ for all p ∈ S.

Example 7.3.1. Let Sn ⊂ IR n+1 be the standard n-sphere, and consider the
function Φ : IR n+1 → IR n+1 given by Φ(p) = −p. The function Φ restricts
to a smooth function from Sn ⊂ IR n+1 to Sn ⊂ IR n+1. More generally let
A ∈Mn+1,n+1(IR ) where ATA = I. Define the function ΦA : IR n+1 → IR n+1

by
ΦA(x) = Ax.

The function ΦA is linear, and so smooth. If x ∈ Sn (so xTx = 1), then

[ΦA(x)]TΦA(x) = xTATAx = xTx = 1.

Therefore ΦA restricts to a smooth map ΦA : Sn → Sn.

Example 7.3.2. Let S ⊂ IR 3 be the regular level surface

S = {(u, v, w) | 4u2 + 9v2 + w2 = 1 }.

The function Φ : IR 3 → IR 3 given by

Φ(x, y, z) = (2x, 3y, z)

restricts to a smooth map from S2 to Σ.

Example 7.3.3. Let Φ : IR 3 → IR 5 be given by

Φ(x, y, z) = (x, y, z, 0, 0),

then Φ restricts to a smooth function from S2 to S4.
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A smooth map Φ : S → Σ is said to be an immersion if Φ∗ : TpS → TΦ(p)Σ
is injective for each p ∈ S, and a submersion if Φ∗ is surjective for each p. A
general notion of a smooth function Φ : S → Σ which does not necessarily
come from a function on the ambient IR space is given in more advanced
courses.

7.4 More General Surfaces

Another type of surface that is often encountered in multi-variable calculus
is a parameterized surface. An example is S ⊂ IR 3 given by

S = {(x = s cos t, y = s sin t, z = t), s, t ∈ IR 2}

which is known as the helicoid. With this description of S it is unclear
whether S is actually a level surface or not. It is possible to define what
is known as a parameterized surface, but let’s look at the general definition
of a regular surface which includes parameterized surfaces and regular level
surfaces.

Definition 7.4.1. A regular surface S ⊂ IR n+1 is a subset with the following
properties,

1. for each point p ∈ S there exists an open set U ⊂ IR n and a smooth
injective immersion ψ : U → IR n+1 such that p ∈ ψ(U) ⊂ S,

2. and furthermore there exists an open set V ∈ IR n+1 such that ψ(U) =
S ∩ V .

One important component of this definition is that S can be covered by
surface patches. The idea of a cover is fundamental in the definition of a
manifold.

7.5 Metric Tensors on Surfaces

Consider the coordinate patch on the upper half of the unit sphere S2 ⊂ IR 3

in example 7.2.7 with r = 1, given by the function ψ : U → IR 3 where U is
the inside of the unit disk u2 + v2 < 1, and

(7.3) ψ(u, v) = ( x = u, y = v, z =
√

1− u2 − v2 ).
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We can view the disk u2 + v2 < 1 as lying in the xy-plane and the image
under ψ as the upper part of S2. Let σ(t) = (x(t), y(t), z(t)) be a curve
on the upper half of the sphere. The curve σ is the image of the curve
τ(t) = (u(t), v(t)) ⊂ U which is the projection of σ into the xy-plane. In
particular from equation 7.3 we have u(t) = x(t), v(t) = y(t) and therefore
have

(7.4) σ(t) = ψ ◦ τ(t) = (u(t), v(t),
√

1− u(t)2 − v(t)2)

Given the curve (7.4) on the surface of the sphere we can compute its arc-
length as a curve in IR 3 using the Euclidean metric γEu (see equation ??),

LEu(σ) =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

=

∫ b

a

√√√√(du
dt

)2

+

(
dv

dt

)2

+

(
1√

1− u(t)2 − v(t)2
(u
du

dt
+ v

dv

dt
)

)2

dt

=

∫ b

a

√
1

1− u2 − v2
((1− v2)(u̇)2 + 2uvu̇v̇ + (1− u2)(v̇)2) dt

Note that this is the same arc-length we would have computed for the curve
τ(t) = (u(t), v(t)) using the metric tensor

(7.5) γ̂U =
1

1− u2 − v2

(
(1− v2)du+ 2uvdudv + (1− u2)dv2

)
defined on the set U !

Let’s look at this problem in general and see where the metric tensor 7.5
comes from.

Suppose S ⊂ IR n+1 is a regular level surface. Let γ be a metric tensor
on IR n+1. The metric γ induces a metric tensor on S, we denote by γS as
follows. Let q ∈ S, and X, Y ∈ TqS, then

(7.6) γS(X, Y ) = γ(X, Y ).

This is well defined because TqS ⊂ TqIR
n+1. The function γS : TqS × TqS →

IR easily satisfies the properties of bi-linearity, symmetric, positive definite
and is an inner product. The algebraic properties are then satisfied for γS
to be a metric tensor are satisfied, but what could smoothness be?
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Suppose that ψ : U → IR n+1 is a smooth patch on S. We now construct
a metric tensor on U ⊂ IR n which represents γS as above. We define γ̂U as
the metric tensor γS in the patch (U, ψ) in a point-wise manner as

(7.7) γ̂U(Xp, Yp) = γS(ψ∗Xp, ψ∗Yp), Xp, Yp ∈ TuU, p ∈ U.

We now claim that is γ̂U = ψ∗γ! Expanding equation 7.7 using 7.6 we
have

γ̂U(Xp, Yp) = γS(ψ∗Xp, ψ∗Yp) = γ(ψ∗Xp, ψ∗Yp) Xp, Yp ∈ TpU.

Therefore by definition (see 6.33),

(7.8) γ̂U = ψ∗γ.

Finally according to Theorem 6.2.6, γU is a Riemannian metric tensor on U .
We then define γS to be smooth because γ̂U is smooth on any chart on S.

Example 7.5.1. Using the chart on S2 from equation (7.3), we find

ψ∗dx = du, ψ∗dy = dv, ψ∗dz = − u√
1− u2 − v2

du− v√
1− u2 − v2

dv.

Computing the induced metric using 7.8, ψ∗(dx2 + dy2 + dz2) we get γ̂U in
equation (7.5).

Example 7.5.2. Let z = f(x, y) be a surface in IR 3, an let ψ : IR 2 → IR 3

be the standard patch ψ(x, y) = (x, y, z = f(x, y)). We computed

ψ∗γEu = (1 + f 2
x)dx2 + 2fxfydxdy + (1 + f 2

y )dy2,

in example 6.2.4 of section 6.2. This is the metric tensor on a surface in IR 3

given by a graph.

Example 7.5.3. Let S = {(w, x, y, z) | x2 + y2 + z2 − w2 = 1 }, and let
(U, ψ) be the coordinate patch on S,

ψ(t, u, v) = (w = t, x =
√
t2 + 1 cosu sin v, y =

√
t2 + 1 sinu sin v, z =

√
t2 + 1 cos v),

where U = {(t, u, v) | t ∈ IR u ∈ (0, 2π), v ∈ (0, π)}. With the Euclidean
metric on IR 4, the components of the surface metric γS in the patch (U, ψ)
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using equation 7.8 are computed using

ψ∗dx =
t√
t2 + 1

cosu sin v dt−
√
t2 + 1 sinu sin v du+

√
t2 + 1 cosu cos v dv,

ψ∗dy =
t√
t2 + 1

sinu sin v dt−
√
t2 + 1 cosu sin v du+

√
t2 + 1 sinu cos v dv,

ψ∗dz =
t√
t2 + 1

cos v dt+
√
t2 + 1 sin v dv

ψ∗dw = dt.

Therefore

ψ∗γEu = (ψ∗dx)2 + (ψ∗dy)2 + (ψ∗dz)2 + (ψ∗dw)2

=
2t2 + 1

t2 + 1
dt2 + (t2 + 1)(sin2 v du2 + dv2).

Remark 7.5.4. If γ is not positive definite then the signature of γS will depend
on S.

We now come to a very important computation. Suppose that S is a regu-
lar level hypersurface, γ a metric tensor on IR n+1 and that the corresponding
metric tensor on S is γS. Let (U, ψ) and (V, φ) be two coordinate patches on
S which satisfy ψ(U)∩φ(V ) 6= {}. On each of these open sets U, V ⊂ IR n let
γ̂U , and γ̂V be the induced metric tensor as defined by equation (7.6) on the
sets U and V respectively. The question is then how are γ̂U and γ̂V related?
In other words how are the coordinate forms of the metric on S related at
points of S in two different coordinate patches?

Let W = ψ(U) ∩ φ(V ) which is a non-empty subset of S, and let U0 =
{u ∈ U | ψ(u) ∈ W}, and V0 = {v ∈ V | ψ(v) ∈ W}. The functions ψ
and φ are injective and so ψ : U0 → W and φ : V0 → W are then bijective.
Consequently we have the bijection

(7.9) φ−1 ◦ ψ : U0 → V0,

where φ−1 : W → V0. While the function φ−1 ◦ψ exists, its explicit determi-
nation is not always easy.

The functions ψ and φ provide two different coordinate systems for the
points of S which lie in W , and 7.9 are the change of coordinate functions
for the points in W .
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Example 7.5.5. Let (U, ψ) be the chart on S2 from equation (7.3) (upper
half of sphere), and let (V, φ) be the chart

φ(s, t) = (x = s, y =
√

1− s2 − t2, z = t)

where V is the interior of the unit disk V = {(s, t) | s2 + t2 < 1 }. The set
W is then set

Drawpicture,

and

U0 = { (u, v) | u2 + v2 = 1, v > 0 }, V0 = { (s, t) | s2 + t2 = 1, t > 0 }.

In order to compute φ−1◦ψ : U0 → V0 we use the projection map π(x, y, z) =
(s = x, t = z) which maps the right hemisphere to V . Therefore

φ−1 ◦ ψ(u, v) = π(u, v,
√

1− u2 − v2) = (s = u, t =
√

1− u2 − v2).

Example 7.5.6. We now let (U, ψ) be the coordinate patch on S2 in example
7.2.2 given in equation 7.2 by

ψ(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ), 0 < θ < 2π, 0 < φ < π,

and let (V, ζ) be the patch

ζ(u, v) = (u, v,
√

1− u2 − v2), u2 + v2 < 1.

The overlap on S2 consists of points in the top half of S2 minus those with
y = 0, x ≥ 0, and

U0 = {(θ, φ) | 0 < θ < 2π, 0 < φ <
π

2
, V0 = {(u, v) | u2+v2 < 1}−{(u, v) | v = 0, 0 < u < 1}.

The function λ : U0 → V0 is again easily determined using the projection
map π(x, y, z) = (x, y) to give

λ(θ, φ) = (cos θ sinφ, sin θ sinφ), (θ, φ) ∈ U0.

We now find the relationship between γ̂U and γ̂V . Assume that the change
of coordinate functions λ : U0 → V0

(7.10) λ = φ−1 ◦ ψ.
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Using this definition we have

ψ = φ ◦ λ.

We claim that

(7.11) γ̂U = λ∗γ̂V .

To check this we find by equation 7.8 that,

γ̂U = ψ∗γ

= (φ ◦ λ)∗γ

= λ∗φ∗γ by the chain− rule

= λ∗γ̂V

where γ is a metric on IR n+1.

Example 7.5.7. Let’s check the formula 7.11 using λ from example 7.5.6.
We have from 7.5

γ̂V0 =
1

1− u2 − v2

(
(1− v2)du+ 2uvdudv + (1− u2)dv2

)
We compute using

λ∗du = λ∗du = − sin θ sinφdθ+cos θ cosφdφ, , λ∗dv = cos θ sinφdθ+sin θ cosφdφ,

λ∗γ̂V0 =
1− sin2 θ sin2 φ

cos2 φ
(− sin θ sinφdθ + cos θ cosφdφ)2

+
2 cos θ sin θ sin2 φ

cos2 φ
(− sin θ sinφdθ + cos θ cosφdφ) (cos θ sinφdθ + sin θ cosφdφ)

+
1− cos2 θ sin2 φ

cos2 φ
(cos θ sinφdθ + sin θ cosφdφ)2 ,

which expands to (noting that the term with dθdφ is zero after expanding),

(1− sin2 θ sin2 φ) sin2 θ sin2 φ− 2 cos2 θ sin2 θ sin4 φ+ (1− cos2 θ sin2 φ) cos2 θ sin2 φ

cos2 φ
dθ2

+
(
(1− sin2 θ sin2 φ) cos2 θφ+ 2 cos2 θ sin2 θ sin2 φ+ (1− cos2 θ sin2 φ) sin2 θ

)
dφ2

finally giving
λ∗γ̂V0 = sin2 φdθ2 + dφ2 = γ̂U0 .
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Example 7.5.8. Let’s check formula (7.11) using the two patches on S2

from example (7.5.5) above. Here we have

γ̂U =
1

1− u2 − v2

(
(1− v2)du2 + 2uvdudv + (1− u2)dv2

)
γV =

1

1− s2 − t2
(
(1− t2)ds2 + 2stdsdt+ (1− s2)dt2

)
using λ(u, v) = (u,

√
1− u2 − v2), then

λ∗ds = du, λ∗dt = − u√
1− u2 − v2

du− v√
1− u2 − v2

dv.

Therefore

λ∗γ̂V =
1

v2

(
(u2 + v2)du2 − 2udu(udu+ vdv) +

1− u2

1− u2 − v2
(udu+ vdv)2

)
=

1

v2

(
(u2 + v2)− 2u2 +

(1− u2)2

1− u2 − v2

)
du2

+
1

v2

(
2uv(1− u2)

1− u2 − v2
− 2uv

)
dudv +

1− u2

1− u2 − v2
dv2

=
1

1− u2 − v2

(
(1− v2)du2 + 2uvdudv + (1− u2)dv2

)
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7.6 Exercises

1. Find a basis for the tangent spaces (as subspaces of the tangent space
to the ambient IR n+1) to the following hypersurfaces at the indicated
points in two different ways. First computing the kernel of F∗, and
then by constructing a sufficient number of curves on the level surface
which pass through the given point. Check the answers are the same.

(a) z2 − xy = 3, p = (1, 1, 2).

(b) xw − yz = 1, p = (1, 1, 0, 0).

2. Let S ⊂ IR 3 be the set of points

(7.12) S = { (x, y, z) ∈ IR 3 | x2 + y2 − z2 = 1}

(a) Show that S is a regular level surface, and sketch it.

(b) Find a basis for TqS at q = (1, 1, 1) using curves, and derivations.

(c) Show that ψ : U → IR 3, where U = (0, 2π)× IR given by

(7.13) ψ(u, v) = (
√
v2 + 1 cosu,

√
v2 + 1 sinu, v)

is a smooth patch on S.

(d) Find p = (u0, v0) ∈ U and Yp ∈ TpU such that ψ(p) = (1, 1, 1) ∈ S
and ψ∗Yp = (∂x − ∂y)q.

(e) Find a cover of S by patches of which one is ψ from equation 7.13.

3. Find a cover of S2
r containing two patches, where one patch is in ex-

ample 7.2.2.

4. Let Σ ∈ IR 3 be the regular level surface

Σ = { (u, v, w) | w2 − u2 − v2 = −16},

and let Φ : IR 3 → IR 3 be

Φ(x, y, z) = (u = 4x, v = 3z + 5y, w = 5z + 3y).

(a) Show that Φ restricts to a smooth map Φ : S → Σ where S is the
surface in 7.12 from problem 2.
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(b) Choose a tangent vector Xp ∈ TpS, where p = (1, 1, 1), and com-
pute

Φ∗Xp

using curves and derivations. Write your answer a basis for Tqσ
where q = (4, 8, 8).

(c) Is Φ an immersion or submersion (of surfaces) ?

5. Let ψ1, ψ2 : IR 2 → IR 3, where

ψ1(u, v) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
u2 + v2 − 1

1 + u2 + v2

)
ψ2(u, v) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
1− u2 − v2

1 + u2 + v2

)
.

Show that this is a covering of the unit sphere S2 by coordinate patches.
These patches are called the stereographic charts on S2.

6. Let L± be the line in IR 3 with end point (0, 0,±1) and passing through
the point (u, v, 0) ∈ IR 3. Compute the (x, y, z) coordinates of the point
on S2 where L± intersects S2 in terms of u and v. Relate this to the
previous problem.

7. The Veronese map from Φ : IR 3 → IR 5 is defined by

Φ(x, y, z) = (xy, xz, yz,
1

2
x2 − 1

2
y2,

√
3

6
(x2 + y2 − 2z2).

(a) Show that Φ restricts to a map Φ : S2 → S4√
3/3

from the unit

sphere in IR 3 to the sphere of radius
√

3/3 in IR 5.

(b) Find basis for Tp(S
2) and Tq(S

4√
3/3

) at p = (
√

2/2, 0,
√

2/2) and

q = Φ(p) and compute the push-forward Φ∗ : Tp(S
2)→ Tq(S

4√
3/3

)

with respect to your basis.

(c) Show that Φ : S2
1 → S4√

3/3
is an immersion.

8. Find the the metric γS2
r

in the chart in example 7.2.2.

9. Let γS2 be the metric tensor on S2 induced from the Euclidean metric
on IR 3.
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(a) Compute the coordinate form of the metric γS2 on the two stere-
ographic charts ψ1,2 from question 5.

(b) Compute the change of coordinate functions and identify the do-
main on S2 where this is valid. (Draw a picture).

(c) Check the overlap formula (7.11) and identify the domain where
this is valid.



Chapter 8

Flows, Invariants and the
Straightening Lemma

8.1 Flows

In equation (6.47) of example 6.3.5 the family of diffeomorphisms Ψt : IR 2 →
IR 2 are given

Ψt(x, y) = (x+ t, y)

which are parameterized by t ∈ IR . We can rewrite the function Ψt as
Ψ : IR × IR 2 → IR 2 by

Ψ(t, (x, y)) = (x+ t, y).

This function has the properties
1) Ψ(0, (x, y)) = (x, y)
2) Ψ(s,Ψ(t, (x, y))) = Ψ(s, (x+ t, y)) = (x+ t+ s, y) = Ψ(s+ t, y).
The function Ψ is an example of a flow.

Definition 8.1.1. A (global) flow on IR n is a smooth function Ψ : IR ×
IR n → IR n which satisfies the two properties

1. Ψ(0, p) = p, for all p ∈ IR n, and

2. Ψ (s,Ψ(t, p)) = Ψ(s+ t, p), for all s, t ∈ IR , p ∈ IR n.

Another term often used for a flow is a one parameter group of transfor-
mations. The reason for this terminology is given in chapter 10.

149
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Example 8.1.2. The smooth function Ψ : IR × IR 2 → IR 2,

(8.1) Ψ(t, (x, y)) = (x cos t− y sin t, x sin t+ y cos t)

is a flow on IR 2.

We will mainly be interested in cases where diffeomorphisms in flows Ψ
which have geometric meaning as in example 6.3.5. In example 6.3.5 the
flow consists of a family of isometries (one for each fixed value of t ∈ IR ) for
the Euclidean metric tensor γE. In example 8.1.2 it is also the case that for
each fixed value of t ∈ IR the diffeomorphism Ψt is an isometry of Euclidean
space.

Flows are closely related to vector-fields. In order to see why, first recall
from section 3.1 that one way to represent a tangent vector Xp ∈ TpIR n is by
a curve σ : I → IR n, p ∈ I ⊂ IR , where σ(0) = p and Xp = σ̇(0). Therefore
one might want to consider a vector-field X as being given by a family of
curves σx defined for each x ∈ IR n, on a family of intervals Ix each containing
0, and where at each point x ∈ IR n. Then Xx = σ̇x|t=0, for all x ∈ IR n.
Flows allow us to do this.

Let Ψ : IR × IR n → IR n be a flow, and let p ∈ IR n. Fix x = p in the
function Ψ consider the function ψp : IR → IR n given by

ψp(t) = ψ(t, p).

The function ψp(t) is a curve that has the property ψp(0) = Ψ(0, p) = p from
property 1 in definition 8.1.1 of flow. We can therefore compute the tangent
vector to ψp at p. Call this tangent vector Xp and it is

(8.2) Xp =
∂Ψ(t, p)

∂t

∣∣∣∣
t=0

.

Now the point p in this formula was arbitrary and so equation 8.2 defines
a vector field X whose value at a fixed point p is (8.2). We can write the
derivative in equation 8.2 as a partial derivative (by the definition of partial
derivative), to get the vector-field on X =

∑n
i=1 X

i(x)∂xi with

(8.3) X i(x) =

(
∂

∂t
Ψ(t,x)

)∣∣∣∣
t=0

.

These are smooth functions (since Ψ is), and so X is a smooth vector field.
The vector field X is called the infinitesimal generator of the flow Ψ.
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Example 8.1.3. Let Ψ be the flow equation (6.47). By equation 8.3 the
corresponding vector field is just

X = ∂x.

Example 8.1.4. Let Ψ be the flow from equation 8.1, then the corresponding
vector field X = X1∂x +X2∂y are computed by equation 8.3 to be

X1 =

(
∂

∂t
(x cos t− y sin t)

)∣∣∣∣
t=0

= −y

X2 =

(
∂

∂t
(x sin t+ y cos t)

)∣∣∣∣
t=0

= x.

Therefore the infinitesimal generator of the flow is

X = −y∂x + x∂y.

Example 8.1.5. Let Ψ : IR × IR 3 → IR 3 be the flow

Ψ(t, x, y, z) = (x+ ty +
1

2
t2z, y + tz, z).

The corresponding infinitesimal generator is

X = y∂x + z∂y.

The tangent vector to a flow Ψ has the following property.

Lemma 8.1.6. For each t ∈ IR we have

(8.4)
dψp(t)

dt
= Xψ(t,p).

The tangent vector to the curve ψp(t) at any point on the curve is the
infinitesimal generator at the point Ψ(t, p).

Proof. Let p1 = ψp(t1) be a point along the curve, and let s = t− t1. Define
the curve σ(s) = ψp(s+ t1), and note

(8.5)
dσ(s)

ds

∣∣∣∣
s=0

=
dψp(t)

dt

∣∣∣∣
t=t1

.
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We also have property 2 in definition 8.1.1 of flow that

(8.6) σ(s) = Ψ(s,Ψ(t1, p)) = Ψ(s, p1).

Therefore by equation 8.5 and 8.6,

dψp(t)

dt t=t1
=
dσ

ds

∣∣∣∣
s=0

=

(
d

ds
Ψ(s, p1)

)∣∣∣∣
s=0

= Xp1 .

This proves (8.4).

We have seen that given a flow Ψ on IR n how it determines a vector-field
X on IR n, we now consider the converse to this. Given a vector field X
on IR n is it the infinitesimal generator of a flow Ψ on IR n? Lemma 8.1.6
shows how they would be related. If X is a vector field on IR n, and Ψ was a
flow, then the curve σ(t) = Ψ(t, p) satisfies the tangency condition in Lemma
8.1.6. If the vector field X is given in components by X =

∑n
i=1 X

i∂xi then
σ satisfies the differential equation 8.4,

dσi

dt
= X i(σ(t)), σ(0) = p.

To make this equation look a little more familiar, if we denote σ(t) =
(x1(t), x2(t), . . . , xn(t)), and p = (x1

0, . . . , x
n
0 ) then

(8.7)
dxi

dt
= X i xi(0) = xi0, 1 ≤ i ≤ n.

Example 8.1.7. Consider the vector field on IR 3 from Example 8.1.5,

X = y∂x + z∂y.

The system of ordinary differential equations (8.7) is

(8.8)
dx

dt
= y,

dy

dt
= z,

dz

dt
= 0, x(0) = x0, y(0) = y0, z(0) = z0.

Let’s solve these. The last equation for z(and using the initial condition)
gives z = z0. Putting this in to the second equation gives y = y0 + tz0. Then
using this in the first equation we get x = x0 + ty0 + 1

2
t2z0, and the solution

to equation 8.8 is

(8.9) x(t) = x0 + ty0 +
1

2
t2z0, y(t) = y0,+tz0, z(t) = z0.
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If in this formula we view (x0, y0, z0) on the right-hand side of this equation
as variables (x, y, z), then we can write equation

Ψ(t, (x, y, z)) = (x(t), y(t), z(t)) = ( x+ ty +
1

2
t2z, y, +tz, z0 ),

which is the flow in Example 8.1.5.
What we have done is consider the initial condition (x0, y0, z0) as the

initial (or domain) IR 3 for a flow Ψ . That is we think of the solution to
the differential equations as the function Ψ : IR × IR 3 → IR 3 where T is the
amount of time we “flow” from the initial condition (x0, y0, z0).

This example extends to the general case by the following Theorem.

Theorem 8.1.8. Let X =
∑n

i=1X
i(x)∂xi be a smooth vector field on IR n,

such that a solution x(t) to the differential equations

(8.10)
dxi

dt
= X i(x), xi(0) = xi0

exists for all t ∈ IR and all initial conditions x0 ∈ IR n. Then the function
Ψ : IR × IR n → IR n given by

Ψ(t,x0) = x(t)

is a flow. Furthermore, the infinitesimal generator corresponding to this flow
is X.

A solution to the differential equations 8.10 for a fixed initial condition x0

is called an integral curve of the vector-field though the point x0 (see diagram
above XXX). The flow Ψ consists of all integral curves.

Remark 8.1.9. This theorem states that the operation of finding the flow of
a vector field and finding the infinitesimal generator of a flow are inverse
operations to each other! (Subject to the condition that the solutions to 8.10
exist for all t ∈ IR ).

Example 8.1.10. Find the flow corresponding to the vector field

X = (x+ 3y)∂x + (4x+ 2y)∂y.

According to Theorem 8.1.8 we need to solve the system of differential equa-
tions

ẋ = x+ 3y , ẏ = 4x+ 2y
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with initial conditions x(0) = x0, y(0) = y0. To do so we find the eigenvectors
of the coefficient matrix [

1 3
4 2

]
.

Two eigenvectors are [
1
−1

]
,

[
3
4

]
.

We then make a change of variables[
x
y

]
= u

[
1
−1

]
+ v

[
3
4

]
.

Inverting this we have

u =
4

7
x− 3

7
y , v =

1

7
x+

1

7
y.

Therefore

u̇ =
4

7
ẋ− 3

7
ẏ =

4

7
(x+ 3y)− 3

7
(4x+ 2y) = −2u,

v̇ =
1

7
(x+ 3y) +

1

7
(4x+ 2y) = 5v.

Therefore
u = u0e

−2t , v = v0e
5t.

We now back substitute,

x = u0e
−2t + 3v0e

5t = (
4

7
x0 −

3

7
y0)e−2t +

3

7
(x0 + y0)e5t

y = −u0e
−2t + 4v0e

5t = −(
4

7
x0 −

3

7
y0)e−2t +

4

7
(x0 + y0)e5t

which after relabeling the initial conditions, gives the flow Ψ.

The system of ordinary differential equations in 8.10 are called autonomous
(the right hand side does not depend on t), [7]. Solution to the differential
equations (8.10) always exists in some interval about t = 0. If this interval
can not be extended to the entire set IR , then the function Ψ defines what
is known as a local flow. Local flows have infinitesimal generators and so a
bijection correspondence exists between vector fields and certain local flows.
In a more advanced course [4], local flows are known as flows.
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Example 8.1.11. Let X = x2∂x, then the flow equation 8.10 is

dx

dt
= x2, x(0) = x0.

The solution is

x(t) =
1

x0 − t
,

and the flow is

Ψ(t, x) =
1

x− t
which is only defined for t 6= x.

8.2 Invariants

We begin this section with some ideas that we will study in more detail in
the rest of the book. Let Φ : IR n → IR n be a diffeomorphism. A subset
S ⊂ IR n is a Φ invariant subset if Φ(S) ⊂ S, and a function f ∈ C∞(IR n)
is a Φ invariant function if Φ∗f = f . Given these definitions we now define
what a flow invariant set and a flow invariant function are.

Let Ψ : IR × IR n → IR n be a flow. If we fix t = t0 in the function Ψ, let
Ψt0 : IR n → IR n be the smooth function

Ψt0(x) = Ψ(t0,x).

Now the function Ψ−t0 has the property

Ψ−t0◦Ψt0(x) = Ψ(−t0,Ψ(t0,x)) = Ψ(−t0+t0,x) = Ψ(0,x) = x = Ψt0◦Ψ−t0(x).

Therefore Ψt0 is a diffeomorphism.

Definition 8.2.1. A subset S ⊂ IR n is a Ψ invariant subset if for all t ∈ IR ,
S is invariant with respect to every diffeomorphism Ψt.

In other words S ⊂ IR n is a Ψ invariant set if for all t ∈ IR and p ∈ S,
Ψ(t, p) ∈ S.

Example 8.2.2. For the flow Φ(t, (x, y)) = (x cos t− y sin t, x sin t+ y cos t)
from example 8.1.2, any set

S = { (x, y) ∈ IR 2 | a ≤ x2 + y2 ≤ b}
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where 0 ≤ a ≤ b, a, b ∈ IR , is invariant. If p = (x0, y0) ∈ S then

Ψ(t, p) = (x0 cos t− y0 sin t, x0 sin t+ y0 cos t).

The sum of the squares of these entries is x2
0 + y2

0, and so Ψ(t, p) ∈ S.

Example 8.2.3. Let Ψ(t, (x, y, x)) = (x+ ty+ t2

2
z, y+ tz, z) be the flow from

example 8.1.5. The set

S = { (x, y, 0) ∈ IR 3 }

is invariant. Let p = (x0, y0, 0) ∈ S, then

Ψ(t, p) = (x0 + ty0, y0, 0).

It is easy to find other invariant subsets.

Example 8.2.4. Let Ψ be a flow, and let S ⊂ IR n be an invariant subset.
Then the complement of S in IR n, IR n − S is also a Ψ invariant set.

Definition 8.2.5. A function f : IR n → IR is an invariant of the flow Ψ if
f is an invariant function with respect to each diffeomorphism Ψt.

In other words, f : IR n → IR is Ψ invariant if for all t ∈ IR , x ∈ IR n,

(8.11) f(x) = f(Ψ(t,x)).

Example 8.2.6. For the flow Ψ in example 8.1.2, the function f(x, y) =
x2 + y2 is invariant. We check this by equation 8.11,

f(Ψ(t, (x, y)) = (x cos t− y sin t)2 + (x sin t+ y cos t)2 = x2 + y2 = f(x, y).

If S ⊂ IR n is Ψ invariant, the definition of a Ψ invariant function f : S →
IR is the same as that for f : IR n → IR .

Example 8.2.7. For the flow in example 8.1.5 above, the function f(x, y, z) =
z is an invariant. Let S = {(x, y, z) ∈ IR 3 | z 6= 0}, which is a Ψ invariant

set. The function g(x, y, z) = x − y2

2z
defined on S is Ψ invariant. We check

that g is an invariant using equation 8.11 at points in S,

g(Ψ(t, (x, y, z))) = x+ ty +
t2

2
z − (y + tz)2

z
= x− y2

2z
= g(x, y, z)
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Let X be a vector field on IR n,

Definition 8.2.8. A function f : IR n → IR that satisfies

(8.12) X(f) = 0

is called an X-invariant function .

Example 8.2.9. For X = −y∂x + x∂y the function f(x, y) = x2 + y2 is
X-invariant,

X(x2 + y2) = −y(2x) + x(2y) = 0.

Example 8.2.10. For X = y∂x + z∂y the function f(x, y, z) = z, and the

function g(x, y, x) = x− y2

2z
defined on z 6= 0 are X-invariant.

Example 8.2.11. Let (x, y, px, py) be coordinates on IR 4, and let

X = px∂x + py∂y − x∂px − y∂py .

This is the Hamiltonian vector field for the Hamiltonian H = p2
x+p2

y+x2+y2.
The functions

f1 = ypx − xpy, p2
x + x2, p2

y + y2

are all X-invariants. The first invariant is the angular momentum.

The invariants in examples 8.1.2 and 8.2.9, and example 8.2.7 and 8.2.10
suggest a relationship between invariants of a flow and invariants of their
corresponding infinitesimal generator.

Theorem 8.2.12. Let Ψ be a flow with infinitesimal generator X. The
function f is an invariant of Ψ if and only if X(f) = 0.

Proof. To prove the only if direction suppose f is a Ψ invariant function, and
take the derivative condition 8.11 with respect to t and setting t = 0 we get(

d

dt
f(Ψ(t,x))

)∣∣∣∣
t=0

=

(
d

dt
f(x)

)∣∣∣∣
t=0

= 0

Expanding this equation and using equation 8.3 the left hand side becomes

n∑
i=1

∂Ψi

∂t

∣∣∣∣
t=0

∂f

∂xi

∣∣∣∣
Ψ(0,x)

= X(f) = 0
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Suppose now that f : IR n → IR is a function satisfying X(f) = 0. Let Ψ
be the flow corresponding to X, and fix p ∈ IR n. Now consider the function
κ : IR → IR given by

κ(t) = f(Ψ(t, p)).

By taking the derivative of this equation and using the chain-rule, equations
8.3 and 8.4 (with σ(t) = Ψ(t, p)) we get,

dκ

dt
=

n∑
i=1

∂Ψ(t, p)

dt

∂f

∂xi
= XΨ(t,p)(f) = 0.

Therefore κ is a function on IR with zero derivative, and so is a constant. This
argument did not depend on the original choice of p, and so f(Ψ(t,x)) = Ψ(x)
for all t ∈ IR , x ∈ IR n.

Finally we give an important definition in which the notion of invariants
is conveniently described. Let X be a vector-field which is the infinitesimal
generator of the flow of Ψ, and define the Lie derivative of a function f ∈
C∞(IR n) by,

(8.13)
LX f = lim

t→0

Ψ∗pf − f(p)

t
= Xp(f)

The Lie Derivative of f with respect to X at the point p measure the rate of
change of f along the flow. It is given by the directional derivative Xp(f).

Lemma 8.2.13. The function f is an invariant of the flow Ψ if and only if

LX f = 0

8.3 Invariants I

In Theorem 8.2.12 it was shown that finding invariants of a flow Ψ and
its infinitesimal generator X are the same problems. We will describe two
different ways to find these invariants, the first is based on the equation 8.12
X(f) = 0, and the second is based on the equation 8.11 f(Ψ(t,x)) = f(x).

Suppose that

X =
n∑
i=1

X i(x)∂xi
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is a vector field on IR n. In order to find an invariant function f(x) we need
to find a solution to the partial differential equation

(8.14)
n∑
i=1

X i(x)
∂f

∂xi
= 0

The partial differential equation (8.14) is linear, and so the constants are
solutions. These turn out to not be useful solutions.

Therefore the first method to finding invariants is to solve the partial
differential equation (8.14). This theory is well developed, and in this section
will just demonstrate it through a few examples. The method developed in
the next section for finding invariants of flows solves (in a sense defined below)
the partial differential equations 8.14.

To see how this works, suppose that X = a(x, y)∂x + b(x, y)∂y, and that
we are searching for an invariant f(x, y). Consider the ordinary differential
equation

(8.15)
dy

dx
=
b(x, y)

a(x, y)

which is only defined where a(x, y) 6= 0. If

(8.16) g(x, y) = c

is the general solution to equation 8.15, then g(x, y) is an invariant of X.
Let’s check this in an example.

Example 8.3.1. Let X = x∂x + y∂y. The ode (8.15) is

dy

dx
=
y

x
.

The general solution is y = kx, k ∈ IR a constant. The function y
x

is easily
checked to be X invariant. This can easily be generalized for special vector
fields in higher dimension. For example

X = x∂x + y∂y + z∂z,

the functions xy−1 and xz−1 are invariant. This works because of missing
variables in the coefficients of X. If

X = (x+ y + z)∂x + (x+ y)∂y + (x+ z)∂z

then this would not work.



160CHAPTER 8. FLOWS, INVARIANTS AND THE STRAIGHTENING LEMMA

We now check that g in equation 8.16 is an invariant of X.

Proof. Let (x0, y0) ∈ IR 2 and let y = f(x) be the solution to the differential
equation

dy

dx
=
b

a
, y(x0) = y0.

If g(x, y) = c0 is the general solution, by differentiating g(x, f(x)) = c0 with
respect to x and evaluating at x0 we get(

d

dx
g(x, f(x))

)∣∣∣∣
x0

=

(
∂g

∂x
+
∂g

∂y

df

dx

)∣∣∣∣
x=x0,y=y0

=

(
∂g

∂x
+
∂g

∂y

b

a

)∣∣∣∣
x=x0,y=y0

= 0.

Therefore (
a
∂g

∂x
+ b

∂g

∂y

)
x=x0,y=y0

= 0

and so X(g) = 0 at (x0, y0), which was arbitrary.

A function F which is an invariant of the flow Ψ is also called a constant
of the motion. To see why, fix p ∈ IR n and consider the curve ψp(t). Then
for each value t ∈ IR ,

F (ψp(t)) = F (ψ(t, p)) = F (p)

we get the constant F (p). That is, F is a constant as we move along one of
flow curves (the motion).

We now turn to the question of how many invariants of a flow are there?
Let p0 ∈ IR n, a set of C∞ functions f 1, f 2, . . . , fm where m ≤ n are func-
tionally independent at the point p if the m× n Jacobian matrix

Jp =

(
∂fa

∂xi

∣∣∣∣
p

)
has maximum rank m. In section 3.2 functionally independence was defined
when m = n.

XXXX NEED SOME MORE INFO ON FUNCTIONALLY INDEPEN-
DENT XXX

The basic theorem about the number of invariants is the following.
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Theorem 8.3.2. Let X be a vector field on IR n, and let p ∈ IR n. If Xp 6= 0,
then there exists a non-empty open set U ⊂ IR n containing p, and n− 1 X-
invariant functions f 1, . . . , fn−1 which are functionally independent at each
point in U . Furthermore if f is an X-invariant function defined at p, then
there exists an open set V containing p and a function F : IR n−1 → IR n such
that

f(x) = F (f 1(x), f 2(x), . . . , fn−1(x)) x ∈ V.

This fundamental theorem is usually interpreted as saying the general
solution to the partial differential equation X(f) = 0 is given by an arbitrary
function of n−1 functionally independent invariants. Therefore when we say
we have found all X invariant functions, or the general solution to the partial
differential equation X(f) = 0, we mean that we have found n−1 functionally
independent solutions.

Example 8.3.3. We continue with 8.2.10, where

X = y∂x + z∂y,

and two functions u = x− y2

2z
, v = z are X invariant. The Jacobian is(

1 −y
z

y2

2z2

0 0 1

)
and so the two functions are functionally independent everywhere they are
defined. By Theorem 8.3.2 the general solution to the partial differential
equation

y
∂w

∂x
+ z

∂w

∂y
= 0

is w = F
(
z, x− y2

2z

)
where F : IR 2 → IR is arbitrary.

Let U ⊂ IR n be an open set and X a vector field X on U . A set
f 1, . . . , fn−1 of invariants of X that are functionally independent at each
point of U are called a complete set of invariants of X.

Given a complete set of invariants f 1, . . . , fn−1, of a vector field X we
can use these as local coordinates in a partial straightening lemma.

Lemma 8.3.4. Let f 1, . . . , fn−1 be a complete set of invariants of X, and
let p ∈ U . There exists a set of coordinates y1, . . . , yn defined on an open set
V containing p such that

X = a(y)∂yn
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Proof. Let fn be a function such that f 1, . . . , fn are functionally independent
on some open set V of p. Therefore y1 = f 1, . . . , yn = fn define coordinates
on V . Now apply the change of variable formula for vector-fields in equation
4.26. Let Y =

∑n
i=1 Y

i(y)∂yi be the vector-field X in the new coordinates.
By applying equation 4.27, the first n− 1 components of the vector-field are

Y 1 = Y (y1) = X(y1) = X(f 1) = 0,

Y 2 = X(y2) = X(f 2) = 0,

...,

Y n−1 = X(yn−1) = X(fn−1) = 0.

Therefore the vector field Y which is X in the coordinates y1, . . . , yn has the
prescribed form.

Example 8.3.5. We continue with Example 8.2.10, where

X = y∂x + z∂y.

The two invariants are u = x− y2

2z
, v = z, and these are functionally indepen-

dent away from (y, z) = (0, 0). Take for the third function w = y, so that
u, v, w are a functionally independent set. We now find the vector field in X
these coordinates. All we need is

X(w) = z.

Therefore in the (u, v, w) coordinates,

X = v∂w,

as expected from Lemma 8.3.4. Note if we take as our third coordinate w = y
z

we get

X(w) = 1

and

X = ∂w.

See also example 4.4.6.
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8.4 Invariants II

We now look at a method for finding the invariants of a flow Ψ : IR × IR n →
IR n.

We begin with a global description of the solution. Let ι : IR n−1 → IR n

be a smooth function and define the function Φ : IR × IR n−1 → IR n, by

(8.17) Φ(t,u) = Ψ(t, ι(u))

and note Φ can also be considered as a function Φ : IR n → IR n.

Definition 8.4.1. The function ι : IR n−1 → IR n is a cross-section of the
flow Ψ if the function Φ is a diffeomorphism.

If ι : IR n−1 → IR n is a cross-section of the flow Ψ, we think of the image
K = ι(IR n−1) ⊂ IR n as a hyper-surface through which the flow passes.Let
u ∈ IR n−1 and let p = ι(u) then the curve ψp(t) passes through p when t = 0.

XXXXXXXXXXXXXXX Picture here XXXXXXXXXXXXXXX

Lemma 8.4.2. Let ι be a cross-section to the flow Ψ. For any point p =
ι(u) ∈ K the curve ψp(t) intersects K only at the point p.

Proof. Suppose that p = ι(u0) and that ψp(t1) = ι(u1). This implies

(8.18)
ψp(t1) = Ψ(t, p) = Ψ(t1, ι(u0))

= Ψ(t1, ι(u0)) by 8.17.

While by equation 8.17 ι(u1) = Φ(0, u1). Therefore ψp(t1) = ι(u1) implies by
equation 8.18

Φ(t1, u0) = Φ(0, u1).

Now Φ is injective so t1 = 0, u1 = u0, which proves the lemma.

A fundamental property of the function Φ is the following.

Lemma 8.4.3. Suppose ι : IR n−1 → IR n is a cross-section, and that p =
Φ(t0, u). Then

Ψ(t1, p) = Φ(t1 + t0, u0).
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Proof. To prove this we just write out the definitions using equation 8.17,

Ψ(t1, p) = Ψ(t1,Φ(t0, u))

= Ψ(t1,Ψ(t0, ι(u)))

= Ψ(t1 + t0, ι(u))

= Φ(t1 + t0, u).

This lemma will be critical for what we have to say next. Consider Φ−1 :
IR n → IR × IR n−1 so that we can write the components

(8.19)
ρ(x) = (Φ−1(x))1

f i(x) = (Φ−1(x))i+1, 1 ≤ i ≤ n− 1.

The functions ρ, f i ∈ C∞(IR n), 1 ≤ i ≤ n.
Using Lemma 8.4.3, we can then deduce the following properties of the

functions ρ and f i.

Lemma 8.4.4. The function ρ satisfies

(8.20) ρ(Ψ(t,x)) = ρ(x) + t

and the functions f i satisfy

f i(Ψ(t,x)) = f i(x)

and so f i are invariants.

Proof. Suppose p = Φ(t0, u), so that ρ(p) = t0 and f i(p) = ui. By Lemma
8.4.3, Ψ(t, p) = Φ(t+ t0, u). Therefore

Φ−1(Ψ(t, p)) = Φ−1(Φ(t+ t0, p)) = (t+ t0, p).

By taking the individual components in this equation, and using the fact
that p was arbitrary proves the lemma.

Corollary 8.4.5. The function f i, 1 ≤ i ≤ n − 1 in Lemma 8.4.4, are a
complete set of functionally independent invariants of the flow Ψ.
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The geometry of the function ρ is particularly interesting. Let p ∈ IR n,
and let (t0, u) ∈ IR n such that p = Φ(t0, u). Then ρ(p) = t0, and

Ψ(ρ(p), ι(u0)) = Ψ(t0, ι(u)) = Φ(t0, u) = p.

Therefore the function ρ(p) gives the t-value of the flow required to get from
the point u on the cross-section K = ι(IR n−1) to the point p. It is also worth
noting then that −ρ(p) is the t-value for p that flows p back to u ∈ K. This
interpretation helps in determining what to chose for K, and also what Φ−1

is. In other words, we need to choose K so that we can flow back to K from
any point in IR n, this determines ρ which in turn determines Φ−1 and hence
the invariants.

Example 8.4.6. Consider the flow Ψ : IR × IR 3 → IR 3

Ψ(t, (x, y, z)) = (x cos t− y sin t,−x sin t+ y cos t, z + kt) ,

where k 6= 0, (see from problem 1(c) on assignment 8). Let ι : IR 2 → IR 3 be

ι(u1, u2) = (u1, u2, 0).

By the discussion above, we need to find a function ρ : IR 3 → IR that has
the property Ψ(−ρ(x),x) ∈ K. Since K consists of point whose z coordinate
is 0, we need to solve for t = −ρ(x) such that z + kt = 0. Therefore t = − z

k
.

With this choice of ρ(x) = z
k
, and we get

Ψ(−ρ(x),x) = (x cos
z

k
+ y sin

z

k
,−x sin

z

k
+ y cos

z

k
, 0)

and so
u1 = x cos

z

k
+ y sin

z

k
, u2 = −x sin

z

k
+ y cos

z

k
,

are the two invariants.

The argument above for constructing invariants easily generalizes to the
case of a flow on an open set U ⊂ IR n, Ψ : IR × U → U where ι : V → U
and V ⊂ IR n−1 is an open set.

Example 8.4.7. Let Ψ : IR × IR 3 be the flow from Example 8.1.5,

Ψ(t, x, y, z) = (x+ ty +
1

2
t2z, y + tz, z).



166CHAPTER 8. FLOWS, INVARIANTS AND THE STRAIGHTENING LEMMA

Let U = {(x, y, z) | z 6= 0}, V = {(u, v) | v 6= 0}, and let ι : V → U be
the function ι(u, v) = (u, 0, v). We fund the function ρ : U → IR by finding
the t (flow) amount that maps us from a point (x, y, z) ∈ U to K whose y
component is 0. Thus we solve y+ tz = 0, which gives t = −y

z
, and therefore

(8.21) Ψ(−y
z
, (x, y, z)) = (x− y2

2z
, 0, z)

The values of our invariants (u, v) are read off equation 8.21 to be,

u = x− y

z
y +

1

2

y2

z2
z, v = z.

Example 8.4.8. The rotation in the plane flow is

Ψ(t, (x, y)) = (x cos t− y sin t, x sin t+ y cos t).

On the set U = IR 2 − (0, 0) let ι : IR + → U be ι(r) = (r, 0). The function
ρ : IR 2− (0, 0)→ IR is found by solving x sin t+ y cos t = 0 for t. This gives

t = − arctan
y

x
,

We then compute Ψ(ρ(x, y), (x, y)) to be

Ψ(ρ(x, y), (x, y)) = (x cos(arctan
y

x
) + y sin(arctan

y

x
), 0) = (

√
x2 + y2, 0).

The invariant is then
√
x2 + y2.

Finally we come to the Straightening Lemma, which is an improvement
on Lemma 8.3.4.

Lemma 8.4.9. Let ι : IR n−1 → IR n be a cross-section, and let s = ρ(x),
yi = f i(x), 1 ≤ i ≤ n − 1 be the coordinates as defined in equation 8.19. In
these coordinates, the infinitesimal generator of the flow Ψ has the form

X =
∂

∂s
.

Proof. As in Lemma 8.3.4 the fact that yi = f i, 1 ≤ i ≤ n− 1 are invariants
and the change of variables formula for vector fields 4.27 implies

X = a(y, s)∂s, a ∈ C∞(IR n),
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in the (y1, . . . , yn−1, s) coordinates. Now let p ∈ IR n and let ψp(t) be the
flow through p. We then apply X to the function ρ(x) at x0 by computing

Xp(ρ) =
d

dt
ρ(ψp(t))|t=0

which simplifies on account of (8.20) to give

Xp(y
n) = X(ρ)p = 1.

Since the point p was arbitrary this proves the lemma.

XXXXXXXXXXX FIX below this XXXXXXXXXXXXXx
The local version is the following. Let p ∈ IR n, V ⊂ IR n−1 and open set

and let ι : V → IR n be an immersion such that x0 = ι(u0). Suppose that
the function Φ : IR × V → IR n given by

Φ(t,u) = Ψ(t, ι(u))

satisfies (Φ∗)0,u0 is invertible.

Lemma 8.4.10. There exists a neighbourhood U of x0 such that ΦU is a
diffeomorphism. The functions (Φ−1

U )i, 2 ≤ i ≤ n are a set of functionally
independent invariants of the infinitesimal generator X of Ψ.
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8.5 Exercises

1. Check that each of the following mappings define a flow.

(a) On IR 2, Ψ(t, (x, y)) = (x cosh t+ y sinh t, x sinh t+ y cosh t).

(b) On IR 2, Ψ(t, (x, y)) = ((yt+ x)et, y = yet)).

(c) On IR 3, Ψ(t, (x, y, z)) = (x cos t− y sin t,−x sin t+ y cos t, z + kt).

2. Plot the curves Ψp(t) for a few initial points p in the flows in question
1.

3. Justify the claim in Example 8.2.4 (the complement of an invariant set,
is also an invariant set).

4. Find the flows Ψ : R×IR n → IR n (for an appropriate n) for each of the
following vector fields using the flow equation 8.10. Determine which
of the flows are defined for all values of the flow parameter (global
flows). For the ones which are global flows, check the flow conditions
Ψ(0, p) = p, Ψt ◦Ψs = Ψ(s+t), and equation 8.4.

(a) X = ∂x − ∂y + 2∂z.

(b) X = x∂x − y∂y + 2z∂z.

(c) X = x∂y + y∂z.

(d) X = x∂y + y∂x.

(e) X = ex∂x ( on R).

(f) X = (2x− y)∂x + (3x− 2y)∂y

5. For each of the global flows in problem 4, find an open set together with
a complete set of invariants on this set. Check that your invariants are
indeed constant along the flow (constants of motion).

6. For each global flow in problem 4, straighten out the vectors fields on
an open set about a point of your choosing.

7. Find a complete set of invariants for each of the following vector fields
(Remember that you do not necessarily need to find the flow). Identify
an open set where the invariants are functionally independent.
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(a) X = y3∂x − x3∂y.

(b) X = yz∂x + xz∂y + xy∂z.

(c) X = (x2 + y2)∂x + 2xy∂y

(d) X = (y − z)∂x + (z − x)∂y + (x− y)∂z,

(e) X = x2∂x + y2∂y + (x+ y)z∂z

8. Use the invariants as coordinates to obtain a partial straightening of
the vector fields in 7(a) and 7(b).

9. Show that if f and g are invariants for a flow Ψ, then h(x) = F (f(x), g(x))
is an invariant, where F is any smooth function of two variables. Re-
peat this problem if f, g are invariants of a vector field X.

10. Let X =
∑n

i=1

∑n
j=1A

i
jx
j∂i be a linear vector field on Rn. Find matrix

equations which are necessary and suffice for a linear function f(x) =∑n
i=1 bix

i and a quadratic function g(x) =
∑n

i=1

∑n
j=1 bijx

ixj (here
bij = bji ) to be invariants of X.

11. Prove corollary 8.4.5.
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Chapter 9

The Lie Bracket and Killing
Vectors

9.1 Lie Bracket

Let X and Y be vector fields on IR n. We construct a third vector from
X and Y which will be written as [X, Y ] and is called the commutator, or
bracket of X and Y . The vector field [X, Y ] will be defined in two ways, first
by its value on smooth functions f ∈ C∞(IR ), and second a more geometric
definition the Lie derivative.

Lemma 9.1.1. There exists a vector field [X, Y ] uniquely defined by

(9.1) [X, Y ](f) = X(Y (f))− Y (X(f))

for all f ∈ C∞(IR n).

Proof. In order to check that [X, Y ] defines a vector-field we need to check
that it satisfies the derivation properties. The only difficult one is

(9.2) [X, Y ](f g) = f [X, Y ](g) + g[X, Y ](f), f, g ∈ C∞(IR n).

Writing out the left side using the definition 9.1 we get

X(Y (fg))− Y (X(fg)) = X(fY (g) + gY (f))− Y (fX(g)gX(f))

= fX(Y (g)) +X(f)Y (g) + gX(Y (f)) +X(g)Y (f)

− fY (X(g))− Y (f)X(g)− gY (X(f))− Y (g)X(f)

= fX(Y (g))− fY (X(g)) + gX(Y (f))− g(X(f)).

This is the right hand side of equation 9.2.

171
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Let X =
∑n

i=1X
i(x)∂xi and Y =

∑n
i=1 Y

i(x)∂xi be vector-fields on IR n.
We now work out the components of [X, Y ] in the coordinate basis {∂xi}1≤i≤n
by applying [X, Y ] to the functions xi to get

[X, Y ](xi) = X(Y (xi))− Y (X(xi))

= X(Y i(x))− Y (X i(x)).

Therefore [X, Y ] can be written in one of the following ways,

(9.3)

[X, Y ] =
n∑
i=1

X(Y i(x))∂xi −
n∑
i=1

Y (X i(x))∂xi

=
n∑
i=1

(
X(Y i(x))− Y (X i(x))

)
∂xi

=
n∑
i=1

(
n∑
j=1

Xj(x)
∂Y i(x)

∂xj
− Y j(x)

∂X i(x)

∂xj

)
∂xi .

The first formula in equation 9.3 is often convenient to use.

Example 9.1.2. Let

X = xey∂x + xz∂y + ∂z, Y = x∂x + (y + z)∂y + ez∂z.

then by the first in equation 9.3
(9.4)
[X, Y ] = X(x)∂x +X(y + z)∂y +X(ez)∂z − Y (xey)∂x − Y (xz)∂y − Y (1)∂z

= xey∂x + (xz + 1)∂y + ez∂z − (xey + x(y + z)ey)∂x − (xz + xez)∂y

= −x(y + z)ey∂x(1− xez)∂y + ez∂z .

Some algebraic properties of the operations [ , ] are the following.

Lemma 9.1.3. The operation [ , ] satisfies,

1. [X, Y ] = −[Y,X],

2. [aX + bY, Z] = a[X,Z] + b[Y, Z],

3. [X, aY + bZ] = a[X, Y ] + b[X,Z],

4. [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0,
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for all vector fields X, Y, Z, and a, b ∈ IR .

The proof of these facts is left for the exercises. Property 4 is called the
Jacobi-identity.

Definition 9.1.4. A vector space V with a bilinear function [ , ] : V ×V →
V satisfying

1. [X, Y ] = −[Y,X], and

2. [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0,

is a Lie algebra.

Note that a Lie algebra is a special type of algebra (see definition 1.6.1).
Condition 1 in the definition of a Lie Algeba says that [ , ] is alternating,

or anti-symmetric. Condition 2 is again known as the Jacobi identity. Lemma
9.1.3 shows that the vector space of vector fields on IR n forms a Lie algebra.
This vector space (over IR ) is not finite dimensional.

Example 9.1.5. Let

X = ∂x + ∂y, Y = x∂x + y∂y, Z = x2∂x + y2∂y

be vector-fields on IR 2. We check that Γ = span{X, Y, Z} forms a Lie algebra
with [ , ] the operation on vector-fields.

Recall from section 1.6 that a sub-space W ⊂ V of an algebra V that
forms an algebra with the operation from V is called a subalgebra. Lemmas
1.6.6, 1.6.8 provide an easy way to check is a subspace is a subalgebra. We
use Lemma 1.6.8 to test that Γ is a subalgebra of all vector fields on IR n

using the basis X, Y, Z. We only need to compute

(9.5) [X, Y ] = X, [X,Z] = 2Y, [Y, Z] = Y.

because of the anti-symmetry of [ , ]. Therefore equation 9.5 implies on
account of Lemma 1.6.8 that Γ is a sub-algebra of all the vector-fields on IR 2

(and is then by itself a Lie algebra).
Note if we let W = x3∂x + y3∂y, then Γ = span{X, Y, Z,W} does not

form a Lie algebra, because [Z,W ] /∈ Γ and so Lemma 1.6.8 is not satisfied.

Remark 9.1.6. On the classification of Lie algebras of vector-fields in IR , IR 2,
IR 3. Still to be added XXXX.
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We now define the Lie derivative of a vector field Y with respect to X,
LXY . This agrees with the function [X, Y ] but has a geometric definition
analogous to the Lie derivative of a function given in equation 8.13. Suppose
that Ψ is flow on IR n with infinitesimal generator X, and that Y is a vector
field on IR n. Let p ∈ IR n. The Lie derivative of the vector field Y in the
direction X at the point p is the tangent vector

(9.6) (LXY )p = lim
t→0

1

t

(
(Ψ−t)∗YΨ(t,p) − Yp

)
.

This is the analogue to the directional derivative of a function in the direction
X, and it measures the rate of change of Y in the direction X. Notice that
the point p was arbitrary here, and so LXY defines a tangent vector at every
point.

Lemma 9.1.7. Given vector fields X and Y on IR n,

(9.7) LXY = [X, Y ].

Proof. In order to check this formula we fix a point p ∈ IR n and show equa-
tion 9.7 holds at p. Equation (9.6) written in components in the coordinate
basis {∂xi}1≤i≤n,
(9.8)

(LXY )ip = lim
t→0

1

t

(
n∑
j=1

∂Ψi(−t, p)
∂xj

Y j(Ψ(t, p))− Y i(Ψ(t, p)) + Y i(Ψ(t, p))− Y i(p)

)
.

Using the fact that Ψ(0,x) = x, we have

(9.9) ∂xiΨ
j(0,x) = δij

and equation 9.8 can be written

(LXY )ip = lim
t→0

1

t

(
n∑
j=1

Y j(Ψ(t, p))(
∂Ψi(−t, p)

∂xj
− δij + (Y i(Ψ(t, p))− Y i

p )

)

=
n∑
j=1

Y j(Ψ(0, p))

(
∂

∂t

∂Ψi(−t, p)
∂xj

)∣∣∣∣
t=0

+

(
∂

∂t
Y i(Ψ(t, p))

)∣∣∣∣
t=0

= −
n∑
j=1

Y j(p)

(
∂X i(x)

∂xj

)∣∣∣∣
x=p

+
n∑
j=1

Xj(p)

(
∂Y i(x)

∂xj

)∣∣∣∣
x=p
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where we have switched the order of differentiation in the term with the
second derivatives. Comparing this with the components of [X, Y ] in the
coordinate basis in equation 9.3 proves [X, Y ]ip = (LXY )ip. Since p is arbitrary
the theorem is proved.

Let Φ : IR n → IR n be a diffeomorphism. A vector field Y on IR n is
Φ-invariant if

Φ∗Y = Y.

A vector-field Y is said to be invariant under the flow Ψ if for all diffeomor-
phisms Ψt, t ∈ IR ,

(9.10) (Ψt)∗Y = Y .

Theorem 9.1.8. A vector field Y on IR n is invariant under the flow Ψ if
and only if

[X, Y ] = LXY = 0

where X is the infinitesimal generator of Ψ.

Proof. If Y is invariant with respect to the flow Ψ, then substituting equation
9.10 into equation (9.6) which defines the Lie derivative we have

LXY = 0.

To prove sufficiency XXX (not done).

Let X be the infinitesimal generator of the flow Ψ and Y the infinitesimal
generator of the flow Φ. The skew-symmetric property of [ , ] (property 1 in
Lemma 9.1.3) leads to an obvious corollary.

Corollary 9.1.9. The vector field Y is invariant under a flow Ψ with if and
only X of is invariant under the flow Φ.

Theorem 9.1.8 and corollary 9.1.9 extend to the following commuting
property of the flows,

Theorem 9.1.10. The flows Ψ and Φ commute

(9.11) Φ(s,Ψ(t,x)) = Ψ(t,Φ(s,x)) for all t, s ∈ IR , x ∈ IR n

if and only if
[X, Y ] = 0.
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Proof. Need to put the proof in XXXXX

Another way to write equation 9.11 is that for all t, s ∈ IR the diffeomor-
phisms commute

Ψt ◦ Φs = Φs ◦Ψt.

Example 9.1.11. Let X = x∂x + y∂y, and Y = −y∂x + x∂y. We’ll show
that [X, Y ] = 0, the flows commute, and Y is invariant under the flow of X.

First using equation 9.3 we have

= X(−y)∂x +X(x)∂y − Y (x)∂x − Y (y)∂y

= −y∂x + x∂y + y∂x − x∂y = 0.

The flow Ψ for X and Φ for Y are easily found to be

(9.12)
Ψ(t, (x, y)) = (etx, ety),

Φ(t(x, y)) = (x cos t− y sin t, x sin t+ y cos t).

We easily compute the two compositions in 9.11 using the flows in 9.12

Φ(s,Ψ(t, (x, y)) = (xet cos s− yet sin s, xet sin s+ yey cos s)

= Ψ(t,Ψ(s, (x, y)).

Finally let’s check that Y is invariant under the flow of Ψ. We find the
components from push-forward formula in equation ?? to be

((Ψt)∗Y )i =
n∑
j=1

∂Ψi(t,x)

∂xj
Y j(x) =

[
−yet
xet

]
= Y i(Ψ(t, x),

and so Y is Ψ invariant.

We now look at a generalization of the Straightening Lemma 8.4.9, which
simultaneously straightens two commuting vector-fields.

Lemma 9.1.12. Suppose that the vector fields X and Y are linearly inde-
pendent at the point p and that [X, Y ] = 0. Then there exists an open set
U ⊂ IR n with p ∈ U , and coordinates (y1, . . . , yn−2, r, s) on U such that

X = ∂s, Y = ∂r.
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Proof. We show two proofs here. The first is based on the Straightening
Lemma 8.4.9. Let (ui, v)1≤i≤n−1 be the straightening coordinates for X (on
an open set V with p ∈ V ), so that

(9.13) X = ∂v.

The condition [X, Y ] = 0 implies by equation 9.3,

(9.14) Y = Y 0(u)∂v +
n−1∑
a=1

Y a(u)∂ua ,

and so the coefficients of Y don’t depend on v. Let

Z =
n−1∑
a=1

Y a(u)∂ui

which does not vanish at p, by the linearly independence condition. Now use
the Straightening Lemma 8.4.9 on Z, to find an open set U with p ∈ U , and
coordinates on U , (yi = f i(u), r = f(u), v = v)1≤i≤n−2, such that

Z = ∂r.

With the coordinates (yi, r, v) the form of the vector field X in 9.13 does not
change, and from equation 9.14

Y = Y 0(r, yi)∂v + ∂r.

Making the final change of variables

s = v −
∫
Y 0(r, vi)dr

gives the coordinates in the theorem.

Proof. The second proof is similar to the sequence of steps used in proof 2
of the Straightening Lemma 8.4.9. Suppose Ψ is the flow for X and Φ the
flow for Y , and define H : IR 2 × IR n → IR n by

(9.15) H(s, t,x) = Φ(s,Ψ(t,x)).
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Let ι : IR n−2 → IR n be an immersion, such that F : IR×IR×IR n−2 → IR
given by

F (s, t, v) = H(s, t, ι(v)) = Φ(s,Ψ(t, ι(v)))

is a diffeomorphism. The function ι is a cross section to the joint flows Ψ,Φ.
Let ρ : IR n → IR 2 be the function ((F−1)1, (F−1)2). Exactly as in the proof
of Lemma 8.4.4, the functions

f i = (F−1)i+2(x), i = 1, . . . , n− 2

are invariants of both flows, which together with −ρ(x) give the coordinates
in the straightening lemma.

Example 9.1.13. Let X = −y∂x + x∂y, and Y = x∂x + y∂y + z∂z, be
vector-fields on IR 3 and [X, Y ] = 0.

The functions r =
√
x2 + y2, θ = arctan y

x
, z = z provide coordinates on

V = IR 2 − {(x, 0) |x ≥ 0} which straighten X. In these coordinates

X = ∂θ, Y = r∂r + z∂z.

To straighten r∂r + z∂z we let s = log z and v = z
r

on U = V − {z ≤ 0},
giving

Y = ∂s.

Using the construction in the second proof of Lemma 9.1.12, we first need
the flows

Ψ(t, (x, y, z)) = (x cos t− y sin t, x sin t+ y cos t, z)

Φ(t, (x, y, z))(etx, ety, etz).

The function H in equation 9.15 is

H(s, t, (x, y, z)) = (xes cos t− yes sin t, xes sin t+ yes cos t, esz).

Choosing the cross-section ι(v) = (0, v, 1), then we compute −ρ(x), which
as described in the paragraph above example 8.4.6 as the function taking us
to the cross section (0, v, 1) with H. Therefore we solve

(xes cos t− yes sin t, xes sin t+ yes cos t, esz) = (0, v, 1)

for s and t. This gives,

t = arctan
y

x
, s = log z

and resulting in v = r
z
, with r =

√
x2 + y2. The simultaneous straightening

coordinates are (v, s, t).
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9.2 Killing vectors

We have seen in Lemma 8.2.12 of section 8.2 that given a flow Ψ with in-
finitesimal generator X, that a function f ∈ C∞(IR n) is an invariant of the
flow if and only if LX(f) = X(f) = 0. In the previous section in Lemma
9.1.8 we had a similar situation that a vector-field Y is an invariant of the
flow if and only if LXY = [X, Y ] = 0. We now find in a similar manner the
condition that a metric tensor field be invariant under a flow Ψ in terms of
the infinitesimal generator X of the flow.

Let γ be a metric tensor on IR n. Recall from section 6.38 that a diffeo-
morphism Φ : IR n → IR n is an isometry if Φ∗γ = γ. The metric tensor
is invariant under a flow Ψ if each diffeomorphism Ψt is an isometry (see
equation 6.38),

(9.16) Ψ∗tγ = γ, for all t ∈ IR

A flow Ψ which satisfies this equation is also called a one-parameter group
of isometries for the metric γ.

We have the following theorem.

Theorem 9.2.1. A metric tensor γ =
∑n

i,j=1 gij(x)dxidxj on IR n is invari-

ant under a flow Ψ with infinitesimal generator X =
∑n

i=1X
i(x)∂xi if and

only if

(9.17)
n∑

m=1

∂gkl(x)

∂xm
Xm + gkm(x)

∂Xm(x)

∂xl
+ gml(x)

∂Xm(x)

∂xk
= 0.

Proof. We begin by showing this is necessary. Suppose that equation 9.16
holds, then taking the derivative with respect to t at t = 0 gives

(9.18)

(
∂

∂t
Ψ∗tγ

)∣∣∣∣
t=0

= 0

Expanding out the left hand side of this in components using equation 6.35
to compute Ψ∗tγΨ(t,x) we have

(
Ψ∗tγΨ(t,x)

)
kl

=

(
n∑

i,j=1

gij(Ψ(t,x))
∂Ψi(t,x)

∂xk
∂Ψj(t,x)

∂xl

)
.
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Now taking the derivative of this (and surpressing arguments) gives,
(9.19)

∂t
(
Ψ∗tγΨ(t,x)

)
kl

= ∂t

(
n∑

i,j=1

gij(Ψ(t,x))
∂Ψi(t,x)

∂xk
∂Ψj(t,x)

∂xl

)

=
n∑

i,j,m=1

∂gij
∂xm

∂Ψm

∂t

∂Ψi

∂xk
∂Ψj

∂xl
+

n∑
i,j=1

gij

(
∂2Ψi

∂t∂xk
∂Ψj

∂xl
+
∂Ψi

∂xk
∂2Ψj

∂t∂xl

)

Equation 9.19 now needs to be evaluated at t = 0, and the first term is

(9.20)

n∑
i,j,m=1

∂gij
∂xm

∂Ψm

∂t

∂Ψi

∂xk
∂Ψj

∂xl
=

n∑
i,j,m=1

∂gij
∂xm

Xmδikδ
j
l =

∂gkl(x)

∂xm
Xm(x)

where we have substitute from equations 8.3, and 9.9. Next we evaluate at
t = 0 in the second derivative term to get,

(9.21)

(
∂2Ψi(t,x)

∂t∂xk

)∣∣∣∣
t=0

=
∂

∂xk

(
∂Ψi(t,x)

∂t

∣∣∣∣
t=0

)
=

∂

∂xk
X i(x)

where again we have used equation 8.3 for the infinitesimal generator. Finally
substituting equations 9.20 and 9.21 into equation 9.19 gives 9.17.

Equation 9.17 is known as Killing’s equation (named after W. Killing,
1847-1923). Note that since gij = gji in the Killing equations 9.17, these

equations constitute n2(n+1)
2

equations.

Example 9.2.2. Let X = (x2 − y2)∂x + 2xy∂y. This is a Killing vector
for the metric ds2 = y−2(dx2 + dy2). Fortunately the metric tensor γ is
diagonal in the coordinate basis {dx, dy},and so equations 9.17 only contain
four separate equations, given by the index values k = l = 1,m = 1, 2, and
k = l = 2,m = 1, 2. Suppose X = X1(x, y)∂x + X2(x, y)∂y, and let’s write
these equations for X, and then check that we have a solution. For k = l = 1
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we use g11 = y−2, g1m = 0, x1 = x, x2 = y to compute

(9.22)

2∑
m=1

∂g11

∂xm
Xm = − 2

y3
X2

2∑
m=1

g1m
∂Xm

∂x
=

1

y2

∂X1

∂x

2∑
m=1

gm1
∂Xm

∂x
=

1

y2

∂X1

∂x
.

Therefore for k = l = 1 equation 9.17 is,

(9.23) − 2

y3
X2 +

2

y2

∂X1

∂x
= 0

Similarly for k = l = 2 we have

(9.24) − 2

y3
X2 +

2

y2

∂X2

∂y
= 0,

while for k = 1, l = 2 (which as noted above is the same as k = 2, l = 1 by
symmetry),

(9.25)
∂X2

∂x
+
∂X1

∂y
= 0.

To verify X is a Killing vector we only need to check that X1 = (x2− y2 and
X2 = 2xy satisfy the three equation 9.23, 9.25, 9.24.

This example highlights one aspect of the Killing equations 9.17. Given a

metric tensor γ on IR n, equation 9.17 can be considered a system of n2(n+1)
2

partial differential equations for the n unknown functions X i(x) of n variables
xi. These partial differential equations are linear in the unknowns X i, and
are very over determined (more equations than unknown functions). Solving
these determines all the infinitesimal generators whose flow is by isometries.

Example 9.2.3. Continuing from example 9.2.2 above, we found the par-
tial differential equations for a Killing vector X = X1∂x + X2∂y to be
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(9.23,9.25,9.24),

(9.26)

− 2

y3
X2 +

2

y2

∂X1

∂x
= 0,

− 2

y3
X2 +

2

y2

∂X2

∂y
= 0,

∂X2

∂x
+
∂X1

∂y
=0.

We first integrate in the second equation in 9.26 to get

X2 = F (x)y,

where F is unknown. Using this in the last equation of 9.26 allows us to
solve the last equation,

X1 = −1

2
y2dF

dx
+G(x).

Substituting into the first equation in 9.26 we have

dF

dx2
y2 − 2

dG

dx
+ 2F (x) = 0.

This must hold for all possible y so the coefficient of y2 must be zero which
leads to,

F = a+ bx, G = c+ ax+ b
x2

2
.

Therefore the most general Killing vector is

X = c∂x + a(x∂x + y∂y) +
b

2
((x2 − y2)∂x + xy∂y).

In general because the Killing vector equations are over-determined (more
equations than unknown functions), they have only the zero vector-field as
a solution.

Now in the same way we measure the rate of change of a function or a
vector-field along a flow we define the Lie derivative of a metric at the point
p ∈ IR n to be

(9.27) (LXγ)p = lim
t→0

1

t

(
Ψ∗tγΨ(t,p) − γp

)
.
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As p varies LXγ defines a field of bilinear functions on IR n. A direct conse-
quence of the computation in Theorem 9.2.1 gives a coordinate formula for
LXγ.

Lemma 9.2.4. The Lie derivative in equation 9.27 is
(9.28)

LXγ =
n∑

i,j=1

(
n∑
l=1

gil(x)
∂X l(x)

∂xj
+ glj(x)

∂X l(x)

∂xi
+X l(x)

∂gij(x)

∂xl

)
dxidxj.

Proof. We observe

LXγ = lim
t→0

1

t

(
Ψ∗tγΨ(t,p) − γp

)
=

(
∂

∂t
Ψ∗tγΨ(t,p)

)∣∣∣∣
t=0

,

which by the computation in equation 9.19 proves equation 9.28.

Corollary 9.2.5. A vector field X is a Killing vector of the metric γ if and
only if LXγ = 0.

The equations LXγ = 0 are linear equations for the coefficients of X.
Therefore any linear combination of Killing vector fields is a Killing vector
field. However even more can be said as this last theorem for this section
shows.

Theorem 9.2.6. Let X and Y be Killing vector fields for the metric γ, then
[X, Y ] is also a Killing vector field.

Proof. We will prove this by direct computation. Suppose X =
∑n

i=1X
i∂xi,

and Y =
∑n

i=1 Y
i∂xi are Killing vectors (with arguments suppressed). We

then apply the derivative Y to the Killing equation 9.17 for X giving

0 =
n∑

j,m=1

(
∂2gkl
∂xm∂xj

Xm +
∂gkl
∂xm

∂Xm

∂xj
+
∂gkm
∂xj

∂Xm

∂xl
+ gkm

∂2Xm

∂xl∂xj
+
∂gml
∂xj

∂Xm

∂xk

+gml
∂2Xm

∂xk∂xj

)
Y j

Switching the role of X and Y in this equation, and taking the difference
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gives
(9.29)

0 =
n∑

j,m=1

(
∂2gkl
∂xm∂xj

(XmY j − Y mXj) +
∂gkl
∂xm

(
Y j ∂X

m

∂xj
−Xj ∂Y

m

∂xj

)
+

∂gkm
Y j∂xj

(
Y j ∂X

m

∂xl
−Xj ∂Y

m

∂xl

)
+ gkm

(
Y j ∂

2Xm

∂xl∂xj
−Xj ∂

2Y m

∂xl∂xj

)
+
∂gml
∂xj

(
Y j ∂X

m

∂xk
−Xj ∂Y

m

∂xk

)
+gml

(
Y j ∂

2Xm

∂xk∂xj
−Xj ∂

2Y m

∂xk∂xj

))
.

Now by the equality of mixed partial derivatives, the first term in equation
9.29 satisfies

n∑
j,m=1

∂2gkl
∂xm∂xj

(XmY j − Y mXj) = 0

and equation 9.29 is the Killing equation for the vector-field [X, Y ].

The equations LXγ = 0 are linear equations for the coefficients of X.
Therefore any linear combination of Killing vector fields is a Killing vector
field. Combining this with Theorem 9.2.6 above and we have the following.

Corollary 9.2.7. Let Γ be the vector space of Killing vectors, then Γ with
the vector-field bracket [ , ] is a Lie algebra.

Remark 9.2.8. An upper bound on the dimension of the Lie algebra of Killing
vectors is known to be [?]

dim Γ ≤ n(n+ 1)

2
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9.3 Exercises

1. Which set of sets of vector-fields form a Lie algebra as a subalgebra of
all vector fields on the givenIR n.

(a) On IR 2, Γ = span{∂x, x∂x, y∂y, x2∂x + xy∂y}.
(b) On IR 3, Γ = span{x∂y − y∂x, x∂z, y∂z − z∂y}.
(c) On IR , Γ = span{∂x, x∂x, x2∂x, }.

2. Prove Lemma 9.1.3. Hint: Apply each identity to an arbitrary function
f .

3. If f ∈ C∞(IR n) is an invariant function for the vector fields X and Y
on IR n, show that f is an invariant function of [X, Y ].

4. Show that if X and Y commute with Z, then [X, Y ] commutes with Z.

5. Are there vector fields X, Y , and Z which satisfy

[X, Y ] = Z, [X,Z] = −X + 2Y, [Y, Z] = X + Y + Z.

6. Compute the Lie brackets of the following pairs of vector fields.

(a) X = ∂x + z∂y, Y = z∂z.

(b) X = ∂x + y∂z, Y = z∂z.

(c) X = y2∂x + z2∂y + x2∂z, Y = −y∂x + x∂y.

(d) Do the flows commute?

7. Consider the following pairs X, Y of vector-fields.

1) On IR 2, X = ∂x + y∂z, and Y = ∂y + x∂z.

2) On IR 3, X = ∂x + y∂z, and Y = ∂y + x∂z.

3) On IR 4, X = x∂w + z∂y, Y = w∂y + x∂z.

For each pair let Ψ be the flow of X and Φ the flow of Y . Show that

(a) [X, Y ] = 0.

(b) The flows Ψ and Ψ are commuting flows.



186 CHAPTER 9. THE LIE BRACKET AND KILLING VECTORS

(c) X is Φ invariant.

(d) Y is Ψ invariant.

(e) Find coordinates which simultaneously straighten the vector fields
X and Y . (Lemma 9.1.12)

8. Show that the transformation group in problem 1(c) of Assignment 8
is a one-parameter group of isometries of the Euclidean metric in three
dimensions. What is the corresponding Killing vector field.

9. Show that the one parameter group of transformation in equation 8.1
are isometries of the metric γ in the plane given by

γ =
1

1 + x2 + y2
(dx2 + dy2)

10. For the metric tensor on IR 2 given by

γ =
1

(1 + x2 + y2)2
(dx2 + dy2),

(a) Show that the vector fields

X = x∂y − y∂x, Y = 2xy∂x + (1− x2 + y2)∂y

are Killing vectors-fields.

(b) Find a third linearly independent Killing vector field.

(c) Check whether or not the span of the three Killing vectors forms
a Lie algebra.

11. For the metric tensor on IR 3 given by

γ = dx2 + dy2 − 2xdydz + (1 + x2)dz2 .

(a) show that the vector field

X = ∂x + z∂y

is a Killing vector for γ.

(b) Compute the flow Ψ of X and show that Ψ is one-parameter family
of isometries of γ.



Chapter 10

Group actions and
Multi-parameter Groups

10.1 Group Actions

Let G be a group (see Definition 12.1.1), and S a set. We begin this section
with a definition.

Definition 10.1.1. An action of G on S is a function µ : G× S → S which
satisfies

1. µ(e, x) = x for all x ∈ S,

2. µ(a, µ(b, x)) = µ(a ∗ b, x) for all a, b ∈ G, x ∈ S.

If we fix a ∈ G in the function µ, then µ(a,−) : X → X and denote this
function by µa. If a−1 is the inverse element of a then by properties 1 and 2
in definition 10.1.1

µa(µ(a−1,x)) = µ(e,x) = x , for allx ∈ S.

This implies that µa is an invertible function, and that is a bijection because
(µa)

−1 = µa−1 .
We will exclusively be interested in the case where S ⊂ IR n.

Example 10.1.2. Suppose

µ(a, b, x, y) = (ax+ by, y)

187
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is a group action where a, b ∈ IR are parameters on the group. Determine
the maximum value of a, b so that µ defines a group action on IR 2. Find the
group multiplication.

Suppose (a, b) ∈ G and (a′, b′) ∈ G. The left side in the group action
condition 2 in 10.1.1 is

µ(a, b, µ(a′, b′, x, y)) = µ(a, b, (a′x+b′y, y)) = (a(a′x+b′y)+by, y) = (aa′x+(ab′+b)y, y).

If (a, b) ∗ (a′, b′) = (c, d), then This is supposed to be equal to the right side
which is µ((a, b) ∗ (a′, b′), x, y) = (cx+ dy, y). Therefore

(a, b) ∗ (a′, b′) = (aa′, ab′ + b).

For this to be a group there exists an identity element e = (a′, b′) such that

(a, b) ∗ (a′, b′) = (aa′, ab′ + b) = (a, b).

for all (a, b) ∈ G. Therefore a′ = 1, b′ = 0, and we conclude (a, b) ∈ IR ∗× IR
are the maximum value for the parameters (a, b).

Example 10.1.3. LetG = IR with ordinary addition as the group operation.
Then a flow Ψ : IR × IR n → IR n is an action of G on IR n (here µ = Ψ). In
fact properties 1 and 2 in definition 8.1.1 of a flow are properties 1 and 2 in
definition 10.1.1.

Let P (S) be the permutation group on S. That is

P (S) = {F : S → S | F is a bijection}.

The group operation on P (S) is composition of functions. We have

Lemma 10.1.4. Let µ : G × S → S, and let Φ : G → P (S) be the map
Φ(g) = µg. Then Φ is a homomorphism

If p ∈ S then the set

(10.1) Op = { q ∈ S | q = ap a ∈ G }

is called the G-orbit of x. A group action is said to be transitive if Ox = S.
In other words, a group G acts transitively on S if and only if given any
fixed point x0 ∈ S, and any other point x ∈ S, there exists g ∈ G such that
gx0 = x. If the action is transitive on S, then S is called a homogeneous
space, these spaces are very important in more advanced courses.

The isotropy group of p ∈ S is the subset Gp ⊂ G defined by

Gp = { g ∈ G | gp = p }.
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Example 10.1.5. Let IR act on IR 2 by rotations,

µ(t, x, y) = (x cos t− y sin t, x sin t+ y cos t).

(This is the example of a flow we have worked with before.) Let p = (1, 0),
then Op = { (x, y) | x2 + y2 = 1}. To find Gp we need to solve

(cos t, sin t) = (1, 0)

and we find t = 2kπ, k ∈ Z.
If p = (0, 0), then orbit isOp = (0, 0), and the isotropy group Gp = IR ,

the entire group.

Lemma 10.1.6. For any p ∈ S, the subset Gp ⊂ G is a subgroup.

Proof. To prove this we refer to Lemma 12.1.7. First note that e ∈ Gp for
any p ∈ S so Gp is not empty. Now suppose a, b ∈ Gp, we then check that
ab ∈ Gx. (That is we need to check that (ab)p = p.) By the second property
of group actions we find

(ab)p = a(bp) = ap = p,

and therefore ab ∈ Gp. We now need to check if a ∈ Gp, then a−1 ∈ Gp. We
compute

a−1p = a−1(ap) = (a−1a)p = ep = p.

Therefore Gp is a subgroup.

Definition 10.1.7. A group G is an n-parameter (or multi-parameter) group
if

• G ⊂ IR n is an open set,

• the multiplication map ∗ : G×G→ G is smooth, and

• the map ι : G→ G with ι(a) = a−1 is smooth.

The rest of this chapter involves the action of multi-parameter groups on
sets S ⊂ IR n. This generalizes the notion of flow.

A multi-parameter group is a special case of what are called Lie groups.
The general definition of Lie group is beyond the scope of this book. All the
constructions given here are important and carry over almost directly in the
general case of Lie groups and their actions.

XXXXXXXXXXXXXXX EXAMPLES NEED IMPROVEMENT XXXXXXXXXXXX
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Example 10.1.8. Let G1 = (a, b), a, b ∈ IR , with the multiplication law

(a, b) ∗ (a′, b′) = (a+ a′, b+ b′).

Then G1 is a two-parameter (abelian) group. The properties in definition
10.1.7 are easily verified.

An action of G1 on IR 2 is given by

(a, b)(x, y) = (x+ a, y + b).

This group action is transitive. Why? Let (x1, y1) and (x2, y2) be two points
in IR 2. We can find a group element (a, b) such that

(a, b)(x1, y1) = (x2, y2),

and this is (a = x2 − x1, b = y2 − y1).

Example 10.1.9. Let G2 = (a, b), a ∈ IR ∗n, b ∈ IR , with the multiplication
law

(10.2) (a′, b′) ∗ (a, b) = (a′a, b′ + b).

Then G2 is a two-parameter (abelian) group. The set G = IR ∗ × IR ⊂ IR 2

is open. The identity element e = (1, 0), and the multiplication function in
10.2 is smooth. The map ι in property 3 of definition 10.1.7 is

ι(a, b) = (a−1,−b), a ∈ IR ∗, b ∈ IR ,

and ι is smooth.
An action of the group G2 on IR 2 is

(a, b)(x, y) = (ax, y + b).

This action is not transitive. For example (0, 1) and (1, 0) are not in the
same orbit. It is not difficult to check that there are only two orbits in this
example.

Example 10.1.10. LetG3 = (a, b), a ∈ IR ∗n, b ∈ IR , with the multiplication
law

(a′, b′) ∗ (a, b) = (a′a, a′b+ b′).
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Then G3 is a two-parameter group which is not Abelian. The identity is
e = (1, 0) and

ι(a, b) = (a−1,−a−1b).

The properties in definition 10.1.7 are easily verified.
An action of the group G3 on IR is

(a, b)x = (ax+ b).

This action is transitive. If x0 ∈ IR , then Gx0 is found by solving

x0 = ax0 + b,

for b. So the isotropy group is

Gx0 = (a, (1− a)x0).

An action of the group G2 on IR 2 is

(a, b)(x, y) = (ax+ by, y),

and this action is intransitive.

Example 10.1.11. Consider the transformations of IR 2

µ((a, b, c), (x, y)) = (ax+ by, cy).

What would the group multiplication law for (a, b, c) need to be for the func-
tion µ to be a group action? What are maximum domains for the parameters
a, b, c ?

First we need to find the identity. This would be values for a, b, c giving
the identity transformation, and these are (1, 0, 1). Now suppose (a′, b′, c′) is
another element of the group, then condition 2 gives

ρ((a′, b′, c′) ∗ (a, b, c), (x, y)) = ρ((a′, b′, c′), (ax+ by, cy))

(a′(ax+ by) + b′(cy), c′cy)

(a′ax+ (a′b+ b′c)y, c′cy).

For this equation to hold for all x, y ∈ IR 2 we must have

(a′, b′, c′)(a, b, c) = (a′a, a′b+ b′c, c′c).

Note that for an inverse to exists c 6= 0, and a 6= 0. Therefore G =
{ (a, b, c) | a 6= 0, c 6= 0 } (with the maximum domain for the parameters).
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10.2 Infinitesimal Generators

Suppose that G ⊂ IR n is a multi-parameter group acting on IRm. Let
e = (x1

0, x
2
0, . . . , x

n
0 ) be the identity element, and denote by g = TeG the

tangent space at the point e, and let e1, e2, . . . , en be a basis for the tangent
space. We will now associate to each tangent vector ei a vector field Xi on
IRm which is called the infinitesimal generator corresponding to ei.

Choose ei ∈ TeG, and let σ : I → G be a curve with the property that
σ(t0) = e, and σ̇(t0) = ei.

Let µ be an action of the multi-parameter group G on IR n.

Definition 10.2.1. The infinitesimal generator Xi corresponding to ei is the
vector-field in IR n defined point-wise by,

Xp =
d

dt
µ(σ(t), x)

t=t0

, for all p ∈ IR n

Example 10.2.2. Consider the group and actions in example 13.5. We have
e = (1, 0), and let

e1 = ∂a, e2 = ∂b

be a basis for TeG. The two curves

(10.3) σ1(t) = (t, 0), σ2(t) = (1, t)

satisfy
σ1(1) = e,σ̇1(1) = e1,

σ2(0) = e,σ̇2(0) = e2.

Using these curves we can find the corresponding infinitesimal generators.
For the action of G3 on IR we find the infinitesimal generator for e1 is

X1(x) =
d

dt
(xt)|t=1 = (x)x, X1 = x∂x.

The infinitesimal generator corresponding to e2

X2 =
d

dt
(x+ t)|t=0 = 1x, X2 = ∂x.

For the action of G3 on IR 2 we find the infinitesimal generator corre-
sponding to e1 is

X1 = x∂x,
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while the generator for e2 is

X2(x, y) =
d

dt
(x+ ty, y)|t=0 = (y, 0)x,y, X2 = y∂x

Let X1, X2, . . . , Xn be the infinitesimal generators of G corresponding to
e1, . . . , en, and let

Γ = span{X1, . . . , Xn}

where the span is computed over the real numbers. This is a subspace of the
vector space of ALL vector fields on IRm.

Theorem 10.2.3. The vector space Γ is a Lie algebra (using the bracket of
vector fields), with dimension dim Γ.

If g is a Lie algebra, and h ⊂ g is a subspace which is a Lie algebra with
the inherited bracket, then h is called a subalgebra. The Lie algebra Γ is a
subalgebra of the infinite dimensional Lie algebra of all vector fields.

Example 10.2.4. Continuing with example 13.XX, in the first case we have

Γ = span{x∂x, ∂x},

is a two dimensional vector space. To check this forms a Lie algebra we need
to only check that [X1, X2] ∈ Γ. We find

[X1, X2] = −∂x ∈ Γ.

In the second case
Γ = span{ x∂x, y∂y }

and Γ is two dimensional. Again we only need to check that [X1, X2] ∈ Γ,
and

[x∂x, y∂x] = −y∂x ∈ Γ.

Therefore Γ is a two-dimensional Lie algebra.

Given a Lie algebra g of dimension n, let e1, . . . , en be a basis for g. Since
[ei, ej] ∈ Γ there exists ck ∈ IR , such that

[ei, ej] =
n∑
k=1

ckek.
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Since this equation holds for each 1 ≤ i, j ≤ n, there exists ckij ∈ IR , 1 ≤
i, j, k ≤ n, such that

[ei, ej] =
n∑
k=1

ckijek.

These are the structure constants of the Lie algebra g in the basis ei. Writing
the brackets in a table, we get the “multiplication table” for g.

Example 10.2.5. For Γ in Example 13.8 above, the multiplication table is

[X1, X1] = 0, [X1, X2] = −X2, [X2, X1] = X2, [X2, X2] = 0.

Of course [ei, ei] = 0, and [ej, ei] = −[ei, ej], and so the multiplication
table is skew-symmetric.

10.3 Right and Left Invariant Vector Fields

Let G ⊂ IR n be a multi-parameter group. The group multiplication µ :
G × G → G allows us to think of G acting on itself. Therefore we can
compute the infinitesimal generators of G acting on itself, and the span of
these generators are the right invariant vector fields on G.

Example 10.3.1. Consider G3 from example 10.1.10, where

(a′, b′) ∗ (a, b) = (a′a, a′b+ b′).

Using the curves in equation (10.3),

σ1(t) = (t, 0), σ2(t) = (1, t)

we compute the corresponding infinitesimal generators,

X(a,b) =
d

dt
µ(σ1(t), (a, b))|t=1 =

d

dt
(ta, tb)|t=1 = (a, b), X = a∂a + b∂b,

and

Y(a,b) =
d

dt
µ(σ2(t), (a, b))|t=0 =

d

dt
(a, t+ b)|t=0 = (0, 1), Y = ∂b.

Note that
[X, Y ] = −Y

and so the right invariant vector fields g = span{X, Y } are a two dimensional
Lie algebra.
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Theorem 10.3.2. Let X be an infinitesimal generator of G acting on itself
on the left. Then

(Rg)∗X = X.

That is X is a right-invariant vector-fields. The set of all right invariant
vector-fields form an n-dimensional Lie algebra.

If we now view G as acting on the right of G instead of the left, (so G is
an example of a right action), we end up with the left invariant vector-fields.

Example 10.3.3. Consider again example 10.1.10

(a′, b′) ∗ (a, b) = (a′a, a′b+ b′).

Using the curves in equation (10.3),

σ1(t) = (t, 0), σ2(t) = (1, t)

their flows acting on the right are then

µ((a, b), (t, 0)) = (at, b), µ((a, b), (1, t)) = (a, b+ at).

The corresponding infinitesimal generators are

U(a,b) =
d

dt
µ((a, b), (t, 0)|t=1 =

d

dt
(ta, b)|t=1 = (a, 0), U = a∂a,

V(a,b) =
d

dt
µ((a, b), σ2(t))|t=0 =

d

dt
(a, b+ ta)|t=0 = (0, 1), V = a∂b.

Note that

[U, V ] = V

and so the left invariant vector fields g = span{X, Y } are a two dimensional
Lie algebra.

Theorem 10.3.4. Let X be an infinitesimal generator of G acting on itself
on the right. Then

(Lg)∗X = X.

That is X is a left-invariant vector-fields. The set of all left invariant vector-
fields form an n-dimensional Lie algebra.
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If σi are curves which give rise to the right invariant vector-fields Xi, and
the left invariant vector-fields Yi then

[Xi, Xj] =
n∑
k=1

Ck
ijXk, [Yi, Yj] = −

n∑
k=1

Ck
ijYk.

It is also a curious fact that

[Xi, Yj] = 0!

10.4 Invariant Metric Tensors on Multi-parameter

groups

Let Xi be a basis for the left invariant vector-fields on a multi-parameter
group G, and let αi be the algebraic dual defined in equation 5.66. We then
define the field of bilinear functions γp : TpG× TpG→ IR , by

(10.4) γp =
n∑
i=1

αip ⊗ αip, for all p ∈ G.

Lemma 10.4.1. The field of bilinear functions γ defined in equation 10.4 is
a metric tensor on G.

Proof. We

A metric tensor γ for which every diffeomorphism La : G → G is an
isometry

L∗gγ = γ

is called a left-invariant metric on G.

Lemma 10.4.2. The metric tensor in 10.4 is left invariant.

Proof. We check the isometry condition (property 3 in Lemma 6.3.2)

(10.5) L∗aγap(Xp, Xp) = γp(Xp, Xp)
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equation on the basis {Xi(p)} of left invariant vector-fields on G at p. The
left side is
(10.6)

L∗aγap(Xi, Xi) = γap ((La)∗Xi(p), (La)∗Xi(p)) byequation 6.33

= γap (Xi(ap), Xi(ap)) by left invariance of X i

=
n∑
j=1

αjap(Xi(ap))α
j
ap(Xi(ap)) by equation 10.4

= 1.

The right hand side of equation 10.5 is

γp(Xi(p), Xi(p)) =
n∑
j=1

αjp(Xi(p))α
j
ap(Xi(p)) = 1.

Therefore equation 10.5 holds for on basis of TpG for any p, and so Lg is an
isometry.

By Theorem 10.3.2 the infinitesimal generators of the left action are the
right invariant vector-fields, which provides the following corollary.

Corollary 10.4.3. The right invariant metric vector-fields on G are Killing
vectors for the metric tensor in 10.4.

Note the left-right switch in Lemma 10.4.2 and Corollary 10.4.3: The
right invariant vector-fields are the Killing vectors for a left invariant metric
tensor!

Example 10.4.4. For the group G = (a, b, c), a, c ∈ IR ∗, b ∈ IR and multi-
plication

(10.7) µ((a, b, c), (x, y, z)) = (ax, y = ay + bz, z = cz)

the identity if e = (1, 0, 1). The left invariant vector fields for the basis
{∂a, ∂b, ∂c of TeG, the left invariant vector-fields are computed to be

X1 = x∂x, X2 = x∂y, X3 = x∂z + xyz−1∂y .

The dual frame of differential one-forms (equation 5.66) are

(10.8) α1 =
1

x
dx, α2 =

1

x
(dy − y

z
dc), α3 =

1

z
dz.
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Using the one-forms in equation 10.8 the metric tensor in equation 10.4 is

(10.9)

γ =

(
1

x
dx

)2

+

(
1

x
(dy − y

z
dz)

)2

+

(
1

z
dz

)2

=
1

x2
dx2 + dy2 − 2

y

zx2
dydz +

(
y2

x2z2
+

1

z2

)
dz2

By Lemma 10.4.2 the metric in 10.9 is invariant under µ(a,b,c) : IR 3 → IR 3

from equation 10.7. This explains example 6.3.7.
Now a basis for the right invariant vector-fields are

Y1 = x∂x + y∂y, Y2 = z∂y, Y3 = z∂z.
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10.5 Exercises

1. Suppose that each of the following transformations defines a group
action. Find the maximum domain for the parameters and group mul-
tiplication law ∗. Determine the identity in the group and give the
inverse of each element.

(a) x̄ = ax+ by + c, ȳ = aky, with parameters (a, b, c).

(b) x̄ = x+ ay + bz, ȳ = y + cz, z̄ = z with parameters (a, b, c)

(c) x̄ = exp(λ)(x cos θ+y sin θ), ȳ = exp(λ)(−x sin(θ)+y cos θ), (λ, θ),
with parameters λ, θ.

(d) x̄ = ax+ by + c, ȳ = y + log(a), with parameters (a, b, c).

2. Let µ : G× IR 3 → IR 3 be given by

µ((a, b, c), (x, y, z)) = (ax, bx+ ay, z + cx).

(a) Find the group multiplication law in order that µ be a group
action.

(b) Determine the identity element, and the inverse of (a, b, c) ∈ G.

(c) What are the possible values for the group parameters (a, b, c).

(d) Are the points (1, 2, 3), (4, 5, 6) on the same orbit? Is this action
transitive on IR 3?

(e) Compute G(x0,y0,z0) where x0 6= 0. Do all points in IR 3 have the
same isotropy subgroup?

(f) Compute the infinitesimal generators of this action.

(g) Compute a basis for the right invariant vector fields on G, and
compute the bracket multiplication table.

(h) Compute a basis for the left invariant vector fields on G using the
same curves as in the previous question. Compute the bracket
multiplication table and compare with the right invariant vector
fields.

3. Which of the following actions are transitive. Prove you claim.

(a) Question 1 a.
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(b) Question 1 d.

(c) The group G = SL(2) acting on the upper half plan Im z > 0 by

z → az + b

cz + d
, where

SL(2) = {
(
a b
c d

)
∈M2×2(IR ) | ad− bc = 1}.

(d) Let G = O(3),

O(3) = { A ∈M3×3(IR ) | AAT = I },

act on R3 − 0 by µ(A,x) = Ax.

4. Find the isotropy subgroup for each of the following actions at the given
point.

(a) Question 1 a (x0, y0) = (2, 3) and (x0, y0) = (0, 0).

(b) Question 1 b (x0, y0, z0) = (1, 2, 3) and (x0, y0, z0) = (1, 1, 0),
and (x0, y0, z0) = (1, 0, 0)

(c) Question 4 c z0 = i and z0 = i+ 1.

5. Find the right invariant vector fields on the multi-parameter group in
Example 13.6.

6. Let
ds2 = (u+ v)−2(du2 + dv2)

be a metric tensor on U = {(u, v) ⊂ IR 2 | u + v 6= 0}, and let a ∈
IR ∗, b ∈ IR , and let Φ(a,b) : IR 2 → IR 2 be

Φ(a,b)(u, v) = (au+ b, av − b)

(a) Show that Φ is a group action.

(b) Show that U ⊂ IR 2 is a Φ(a,b) invariant set for any a ∈ IR ∗, b ∈ IR .

(c) Show that Φ(a,b) is an isometry of the metric tensor for any a ∈
IR ∗, b ∈ IR .

(d) Compute the infinitesimal generators of Φ.
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(e) Check that infinitesimal generators vector-fields are Killing vec-
tors.

7. Let GL(n, IR ) be the group of invertible matrices (See appendix A).

(a) Show that ρ : GL(n, IR )× IR n → IR n

ρ(A,x) = Ax A ∈ GL(n, IR ), x ∈ IR n.

is a group action.

(b) Let M = Mn×n(IR ) be the set of all n × n real matrices. Is the
function ρ : G×M →M given by

ρ(A,X) = AXA−1, A ∈ G,X ∈M

an action of GL(n, IR ) on M = Rn2
?

8. Let G = (a, b, c), a ∈ IR ∗, b, c ∈ IR be a group with multiplication

(a, b, c) ∗ (x, y, z) = (ax, ay + b, az + c).

(a) Compute the left and right invariant vector-fields.

(b) Compute the coframe dual to the left invariant vector fields.

(c) Construct the metric tensor as in 10.4 from the left invariant vector
fields and check that the right invariant vector fields are Killing
vectors.

(d) Find a basis for all Killing vectors fields for the metric γ con-
structed in part 3.
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Chapter 11

Computations in Maple

In this final chapter we demonstrate the differential geometry package in
Maple.
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Load the differential geometry and tensor packages.

> with(DifferentialGeometry): with(Tensor):

Initialize a coordinate systems with x,y,z; Label this M.

> DGsetup([x,y,z],M):

Input the metric (named g here) from example 6.3.7 and check that the
transformations in 6.42 are isometries. The expression &t stands for the
tensor

> g := evalDG(1/x^2*(dx&t dx +dy &t dy - y/z*( dy &t dz + dz
&t dy)) +
(y^2/x^2/z^2+1/z^2)*dz &t dz);

g :=
dx dx

x2
+

dy dy

x2
− y dy dz

x2 z
− y dz dy

x2 z
+

(y2 + x2) dz dz

x2 z2

> Phi1 := Transformation(M, M, [x = x * a, y = a*y+b*z, z = c*z]);

Φ1 := [x = x a, y = a y + b z, z = c z]

> Pullback(Phi1, g);

dx dx

x2
+

dy dy

x2
− y dy dz

x2 z
− y dz dy

x2 z
+

(y2 + x2) dz dz

x2 z2

Therefore the isometry condition 6.24 is checked.

Check equation 6.43, the pullback of the coordinate differential one-forms



> Pullback(Phi1,dx); Pullback(Phi1,dy); Pullback(Phi1,dz);

a dx

a dy + b dz

c dz

Input the orthonormal frame from equation 5.27.

For example, the vector \partial x is represented by D x.

> Z1:=evalDG( x*D_x):

> Z2:=evalDG( x*D_y):

> Z3:=evalDG( y*D_y+z*D_z):

Now check that Z1,Z2,Z3 for an orthonormal frame

> A:=matrix(3,3):
> for i from 1 to 3 do for j from 1 to 3 do
A[i,j]:=(ContractIndices(ContractIndices(g, Z||i,
[[1,1]]),Z||j,[[1,1]])):od:od:

> op(A);  1 0 0
0 1 0
0 0 1



Create a new coordinate system u,v,w; Label with N.

> DGsetup([u,v,w],N):

Construct a transformation called Φ2from N to M.

> Phi2:=Transformation(N,M, [x= exp(u),y=v, z=exp(w)]);

Φ2 := [x = eu, y = v, z = ew]



Pullback the metric g with Φ2.

> Pullback(Phi2, g);

du du + e(−2u) dv dv − v e(−2u) dv dw − v e(−2u) dw dv + (v2 + e(2u)) e(−2u) dw dw



Chapter 12

Algebraic Notions

12.1 Groups

A binary operation on a set S is a function b : S × S → S. So it takes two
things in S (binary) and it’s output is some other element in S.

Definition 12.1.1. A group G is a non-empty set with one binary operation
∗ : G×G→ G (usually called group multiplication) which satisfies

G1) (a ∗ b) ∗ c = a ∗ (b ∗ c),
G2) there exists e ∈ G such that e ∗ a = a = a ∗ e,
G3) for all a ∈ G there exists b ∈ G such that a ∗ b = e = b ∗ a,

for all a, b ∈ G. The element b in G3) is the inverse of a, often written as
a−1.

If ∗ satisfies
G4’) a ∗ b = b ∗ a

then G is an Abelian group.

Example 12.1.2. Let G = IR and take for the group operation ordinary
addition of real numbers. That is a∗b = a+b. Then IR with + is an Abelian
group. The identity element is the number 0.

Example 12.1.3. Let IR ∗ denote the non-zero real numbers. Let ∗ be
ordinary multiplication, the IR ∗ with ∗ is an Abelian group. The identity
element is the number 1.
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Example 12.1.4. Let G = GL(n, IR ) denote the set of n × n invertible
matrices. For the binary operation ∗ we take ordinary matrix multiplication.
That is A∗B = AB. If n = 1 this is example 9.3, but when n > 1 this group is
not Abelian because matrix multiplication is not commutative. The identity
element is the identity matrix.

Definition 12.1.5. A subset H ⊂ G of a group G which is a group with the
operation ∗ from G is called a subgroup .

Example 12.1.6. Let G = GL(n, IR ) and let SL(n, IR ) ⊂ GL(n, IR ) be the
matrices with determinant 1,

SL(n, IR ) = { A ∈ GL(n, IR ) | detA = 1}.

We can ask if this is a group on it’s own with the group operation being
matrix multiplication. However it is not obvious that matrix multiplication
is a binary operation on SL(n, IR ). That is, if A,B ∈ SL(n, IR ) is AB ∈
SL(n, IR )? This is easily checked

detAB = detA detB = 1.

Therefore this is a binary operation on SL(n, IR ). Another way to phrase this
is SL(n, IR ) ⊂ GL(n, IR ) is closed under the group operation on GL(n, IR ).
For SL(n, IR ) to be a group every element must have an inverse with deter-
minant 1. If A ∈ SL(n, IR ) the A is invertible, and

detA−1 =
1

detA
= 1.

The simple test for a subgroup is the following.

Lemma 12.1.7. A non-empty subset H ⊂ G is a subgroup if and only if

1. a, b ∈ H then a ∗ b ∈ H (closed with respect to ∗),

2. if a ∈ H then a−1 ∈ H.

Note these conditions imply that e ∈ H.

There will be many more examples later.



12.2 Rings

Definition 12.2.1. A ring R is a non-empty set with two binary operations
+, · which satisfy,

R1) (a+ b) + c = a+ (b+ c),
R2) a+ b = b+ a,
R3) there exits 0 ∈ R such that a+ 0 = a,
R4) for all a ∈ R, there exists b ∈ R such that a+ b = 0,
R5) (a · b) · c = a · (b · c)
R6) a · (b+ c) = a · b+ a · c, and (a+ b) · c = a · c+ b · c,

for all a, b, c ∈ R.

If in addition · satisfies,
R7’) a · b = b · a, for alla, b ∈ R

then R is a commutative ring. If there exits 1R ∈ R satisfying
R8’) 1R · a = a · 1R = a

then R is a ring R with multiplicative identity.

Example 12.2.2. Let R = C∞(U) where U ⊂ IR n is an open set. For +
take addition of functions,

(f + g)(x) = f(x) + g(x)

and multiplication
(f · g)(x) = f(x)g(x),

where f, g ∈ C∞(U)

Remark: A ring R or vector space V considered with ONLY the opera-
tion + is an Abelian group.
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