1-15-2015

Transitioning the Benefits of Algal Growth to the Byproducts of Oil and Natural Gas Production

Alan Hodges
Utah State University

Tyler Gladwin
Utah State University

Cody Maxfield
Utah State University

Jonathan Wood
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/roch

Part of the Biological Engineering Commons

Recommended Citation
Hodges, Alan; Gladwin, Tyler; Maxfield, Cody; and Wood, Jonathan, "Transitioning the Benefits of Algal Growth to the Byproducts of Oil and Natural Gas Production" (2015). Research on Capitol Hill. Paper 23.
https://digitalcommons.usu.edu/roch/23

This Poster is brought to you for free and open access by the Browse Undergraduate Research Events at DigitalCommons@USU. It has been accepted for inclusion in Research on Capitol Hill by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
Transitioning the benefits of algal growth to the byproducts of oil and natural gas production

I. Introduction

Produce water

- Produced water, a waste water by-product of oil and natural gas extraction, is the largest waste stream produced by the oil and natural gas industries worldwide.
- Utah produces 148,579,000 barrels of produced water per year.

Algal production in produce water

- The ability to culture algae in non-potable water would allow for the benefits of algal production without using water that is suitable for direct human use.
- Algal biomass can be utilized in a variety of applications including bioenergy, livestock feed, fertilizer, and high value products.

Phycocyanin

- Phycocyanin is a high value photosynthetic pigment found in most cyanobacteria valued at $60-$120/mg for high purity product.
- Uses of phycocyanin include: food products, cosmetics, potential pharmaceuticals and nutriceuticals among others.

Study conducted with funding from the Utah Water Research Laboratory.

II. Methods

- Various medias were prepared from produced water obtained from varying sample sites at a Uinta Basin, Utah produced water disposal facility (dilutions are given as ratio of produced water to deionized water).
- All solutions were amended with sodium nitrate and diabasic potassium phosphate.
- Triplicate flasks of each solution were prepared and equal amounts of cotton rope and algae inoculum (Logan Lagoons Cyanobacteria 2 (LLC2)) were suspended in each flask [Figure 2].
- Flasks were placed on a shaker table at 100 rpm with 85 μE m² s⁻¹ cool white fluorescent light.
- Biomass and phycocyanin production were measured at 10 Days

III. Results

- Successful culture of algae was observed in all samples except samples consisting of non diluted and half diluted produce water from site B [Figure 1].
- Ash free dry biomass was produced at the following average rates.

<table>
<thead>
<tr>
<th>Site</th>
<th>Biomass (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG-11</td>
<td>0.87±0.07 g m⁻² d⁻¹</td>
</tr>
<tr>
<td>Site A</td>
<td>1.21±0.16 g m⁻² d⁻¹</td>
</tr>
<tr>
<td>Site B</td>
<td>1.03±0.15 g m⁻² d⁻¹</td>
</tr>
</tbody>
</table>

- Phycocyanin production was seen in all samples where growth was observed. The largest production of phycocyanin was seen in algae cultured in site A [Table 1].

IV. Conclusions

- The ability to culture algae in produced water of certain compositions was supported.
- Algal biomass production from produced wastewaters provides for a sustainable remediation and nutrient recovery process.
- Production of high value compounds from algae, such as phycocyanin, generates revenue streams and enhances the economic viability of algal culturing systems.
- Future work will include scale up testing and evaluation, including a Rotating Algal Bioreactor (RABR), at a partner Uinta Basin, Utah produced water disposal site.

Table 1 – TDS and phycocyanin production

<table>
<thead>
<tr>
<th>Site</th>
<th>TDS (mg/L)</th>
<th>Phycocyanin Production (mg/g biomass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG-11</td>
<td>10,400</td>
<td>34.9±1.8</td>
</tr>
<tr>
<td>Site A</td>
<td>11,000</td>
<td>15.2±1.0</td>
</tr>
<tr>
<td>Site B</td>
<td>230,000</td>
<td>N/A</td>
</tr>
<tr>
<td>Site B 1:10</td>
<td>23,000</td>
<td>7.0±2.2</td>
</tr>
<tr>
<td>Site B 1:20</td>
<td>11,500</td>
<td>10.3±1.9</td>
</tr>
</tbody>
</table>

Figure 1 – Average Ash Free Dry Biomass Productivity

Figure 2 – Shaker flask configuration showing growth at day 5

Figure 3 – Phycocyanin isolate

Figure 4 – Biomass growth on rope substratum

Figure 5 – Absorbance of cyanobacteria extract indicating phycocyanin production

Jonathan Wood, Utah State University

Principal Investigator Contact:
Dr. Ronald Sims
ron.sims@usu.edu
435-797-3156

Biological Engineering