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ABSTRACT

Cislunar Navigation Techniques and Navigation Performance Optimization

by

Quinn P. Moon, Master of Science

Utah State University, 2023

Major Professor: David Geller, Ph.D
Department: Mechanical and Aerospace Engineering

Houston-based company Intuitive Machines plans on sending the �rst commercial

lander, the NOVA-C, to the lunar south pole in 2023. Through various navigation

techniques, including Monte Carlo analysis and Linear Covariance (LinCov) analysis, inertial

estimation has been performed for various key mission segments. LinCov studies have

demonstrated that selecting diverse geographic stations in tracking schedules signi�cantly

impacts navigation performance. This research outlines the e�ort undergone to create

optimal ground station tracking schedules to reduce estimation errors for key mission

segments. LinCov analysis is used to determine optimal placement of constrained range

measurements given a range-rate tracking schedule. As the lander's position and velocity

contribute the largest errors, the dynamic measurement geometry is analyzed with a Dilution

of Precision (DOP) algorithm. The DOP algorithm is derived to implement both range

and range-rate measurement data by incorporating a measurement noise ratio. The DOP

algorithm is analyzed recursively and set within a genetic algorithm. Optimal ground

station tracking schedules are found for each OD segment with respect to position errors

and Nav-Dollars, a metric derived from analyzing the trade-o� between operational costs

and navigation performance.

(156 pages)
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PUBLIC ABSTRACT

Cislunar Navigation Techniques and Navigation Performance Optimization

Quinn P. Moon, Master of Science

Nova-C is a lunar lander developed by the private company Intuitive Machines to deliver

commercial payloads to the Moon. The IM-1 mission set for 2023 will launch and land the

Nova-C near the Moon's south pole. In this research, various navigation techniques are

explored to determine the lander's position and velocity during key segments. This process is

studied for key mission events including trajectory correction maneuvers (TCMs), lunar orbit

insertion (LOI), and descent orbit insertion (DOI). Each mission segment, referred to as an

Orbit Determination Segment (OD), is analyzed with three di�erent navigation techniques:

Monte Carlo Analysis, Linear Covariance Analysis, and Dilution of Precision Analysis. The

results are matched against each other to validate consistency. The quicker navigation

techniques, speci�cally Linear Covariance and Dilution of Precision, are implemented into a

genetic algorithm to determine optimal ground station tracking schedules. Said optimal

schedules are optimal with respect to various objectives, including �nal position errors

and operational costs. Operational costs and navigation errors are combined to form a

new metric, referred to as Nav-Dollars, that analyzes the trade o� between real costs and

estimation performance.
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θ General Angle Value

ξ Instance of a Random Variable
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The following superscripts, subscripts, etc. will be used throughout on vectors and
scalars:

α− Before measurement Update

α+ After measurement Update

α̇ Time Derivative

α̃ Measured Value

α̂ Estimated Value

αECI In the Earth Centered Inertial Frame

αECEF In the Earth Centered Earth Fixed Frame

αLCI In the Lunar Centered Inertial Frame

αLCF In the Lunar Centered Fixed Frame

αI In an Inertial Frame

αF In a Fixed Frame

αA/B Position, Velocity, Acceleration of body A w.r.t body B

αA,B Acceleration on body A from body B

αk At Discrete Time k

αE Relating to the Earth

αl Relating to the Lander

αS Relating to the Sun

αM Relating to the Moon

αSt Relating to a tracking station



CHAPTER 1

INTRODUCTION

The Houston-based company Intuitive Machines (IM) is set to launch and land its

NOVA-C Lander on the lunar surface in 2023. Various studies have been performed for

IM by Utah State University. These studies have included trajectory dispersion analysis,

trajectory navigation analysis, and trajectory correction maneuver planning.

As the launch approaches, an increasing interest has been generated in the navigational

ability and performance of the current ground station tracking system. The success of the

Guidance, Navigation, and Controls (GN&C) team critically depends on the precision and

accuracy of the state estimate for maneuver planning and ultimately lunar landing. Various

e�orts has been made to study and validate the navigation performance through Monte

Carlo simulations and Traditional Linear Covariance (LinCov) analyses.

Observations during these navigation studies has shown the importance of the diversity

and availability of ground stations in developing a ground station tracking schedule.

Furthermore, the more recent development of a Recursive Dilution of Precision (DOP)

Tool has further demonstrated that some ground station tracking schedules provide better

estimation solutions than other schedules.

This research studies how navigation tools have been utilized in the past and

develops new navigation tools that can provide optimal tracking schedules for future lunar

missions. The document begins by providing a literature search into various navigation

and optimization techniques and how these may be applied to cislunar estimation. The

document then dives into three di�erent navigation techniques: Monte Carlo Analysis,

LinCov Analysis, and DOP Analysis.

The Monte Carlo analysis is used to analyze the precision of the true navigation errors

using an Extended Kalman Filter (EKF) based on the dynamics of the cislunar problem and

Earth-based ground tracking stations. Through linearization about the nominal trajectory,
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LinCov provides a faster alternative to analyze the estimation errors and is validated

through the Monte Carlo results. By focusing on the dominant error sources from the

lander's position and velocity, a recursive DOP algorithm is derived to analyze the dynamic

measurement geometry. The DOP analysis is validated by a LinCov analysis, and both

algorithms are used to �nd optimal tracking schedules according to various parameters for

the IM-1 mission.



3

CHAPTER 2

LITERATURE SURVEY

2.1 Estimation and Navigation

Spacecraft Navigation is the process of incorporating measurements in order to

determine the spacecraft's state [1]. Navigation and guidance algorithms work together

to provide accurate estimates and subsequent targeting maneuvers for mission success.

Associated with state estimation is the estimation error, quanti�ed traditionally with the

State Error Covariance. Various methods and equations have been derived and used for

spacecraft navigation and are explored in the literature search below.

2.1.1 Batch Least-Squares and Dilution of Precision

Systems that have a minimum of n measurements to estimate an n-dimension state

vector to estimate the state are referred to as deterministic solutions [2]. An example of

solving for the state using measurement data in a deterministic system is shown below:

zn×1 = Hn×nxn×1 (2.1)

x̂ = H−1z (2.2)

However, measurement and dynamic modeling errors persist in all real world systems. Thus,

extra measurements are taken and a Least-Squares solution is calculated. The Least-Squares

method was �rst derived by Gauss in 1795 for early spacecraft estimation [3]. Battin provides

a detailed derivation of the Least-Squares solution by minimizing the squared of the residuals

[2]. Note that for the equations below m > n, thus the matrix H is not invertible, and thus
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a minimum of the measurement equation residuals is sought.

zm×1 = Hm×nxn×1 (2.3)

ϵ = z −Hx (2.4)

ϵ2 = (z −Hx)T (z −Hx) (2.5)

By setting the partial derivative of ϵ2 (with respect to the state) to zero, the Least-Squares

solution is found:

∂ϵ2

∂x = 0 (2.6)

x̂ =
(
HTH

)−1
HTz (2.7)

Least-Squares navigation solutions have been used for a variety of inner and outer solar

system missions, including: the Apollo missions [4], the Mariner missions to Venus and

Mercury [5], the Galileo mission to Jupiter [6], and the Cassini mission to Saturn and its

moons [7].

Further work has been done by Battin to derive a Least-Squares solution for nonlinear

systems, a weighted Least-Squares solution for systems with measurement noise, and

methods to recursively update the optimal estimate [2].
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A key factor for Least-Squares solutions is the measurement geometry. The quality

of the measurement geometry can be measured using Dilution of Precision (DOP).

Traditionally used for GPS systems, DOP provides a metric that can be used to study

the measurement geometry of various estimation problems [8]. Consider Fig. 1, depicting

two transmitters measuring the distance to an object with measurement error [9]:

Fig. 2.1: Measurement Geometry

Graph (a) depicts two transmitters placed such that the measurements taken are nearly

orthogonal to each other, minimizing the error associated with the position estimate. Graph

(b) depicts Transmitter 2 placed close to Transmitter 1, which does not minimize the error

as e�ectively as the con�guration in (a).

Using the Least-Squares solution previously derived, the DOP can be calculated and

measurement noise incorporated [8]. The State Error Covariance of a state estimate can be

found using the Expectation Operator E[·] [9]:

Px = E
[
(x− x̂)(x− x̂)T

]
(2.8)
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The Least-Squares solution is substituted into Eq. 2.8 to obtain:

z = Hx+ ν (2.9)

x̂ =
(
HTH

)−1
HT (Hx+ ν) (2.10)

x̂ =
(
HTH

)−1
HTHx+

(
HTH

)−1
HTν (2.11)

x− x̂ = −
(
HTH

)−1
HTν (2.12)

Px = E
[(
HTH

)−1
HTννTH

(
HTH

)−1
]

(2.13)

Where the expectation of each measurement is equivalent, the expectation of νTν is

expressed as σ2
νI, and the scalar value σ2

ν is factored out of the expectation operator:

Px = σ2
νE

[(
HTH

)−1
HT IH

(
HTH

)−1
]

(2.14)

Px = σ2
ν

(
HTH

)−1
(2.15)

Thus the State Error Covariance can be expressed in terms of the measurement information

and the measurement noise. Position and Velocity Dilution of Precision (PDOP and VDOP

respectively), are found by taking the square root of the trace of the respective portion of(
HTH

)−1
:

PDOP =

√
tr
[
MT
r (HTH)−1Mr

]
(2.16)

VDOP =

√
tr
[
MT
v (HTH)−1Mv

]
(2.17)

whereMr andMv are mapping matrices to analyze solely the position or velocity components

of
(
HTH

)−1
.
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Note that taking the square root of the trace is the same method by which the Root Sum

Square (RSS) of the State Error Covariance is found, thus the relationship exists between

the RSS of the State Error Covariance and DOP.

RSSr(Px) = σνPDOP (2.18)

RSSv(Px) = σνVDOP (2.19)

DOP values less than one reduce the e�ects of measurement error, while DOP values greater

than one amplify measurement error.

2.1.2 Kalman Filtering and Linear Covariance Analysis

Rudolf E. Kalman published his work for linear �lters and prediction theory in 1960;

the resulting work is commonly referred to as a Kalman Filter [10]. The Kalman Filter relies

on conditional probability to determine the state, conditioned on measurement information.

The Kalman Filter, unlike Batch Least-Squares methods, is an optimal, recursive

measurement processing algorithm [11]. The Kalman Filter is optimal in the sense that

it takes an a priori estimate of the state and incorporates all useful information from

incoming measurements and formulates an a posterior estimate. Measurement information

is corrupted by noise, often assumed to be white, Gaussian noise [11,12].

Because the traditional Kalman Filter assumes linear dynamics and nominal space

trajectories rely heavily on nonlinear gravitational dynamics, it is often more useful to

consider the Linearized Kalman Filter (LKF). The LKF linearizes the dynamics about a

nominal state or trajectory to provide a more accurate state estimate for a nonlinear system

[12]. Furthermore, the LKF is utilized in Traditional LinCov analysis to determine the

expected performance of the LKF by analyzing the State Error Covariance [13].

In addition, the Kalman Filter can take into account nonlinearities by using an Extended

Kalman Filter (EKF). The EKF introduces initial perturbations to produce an estimated

state that is o�-nominal. The EKF propagates the estimated state forward using nonlinear

dynamics and incorporates a nonlinear measurement model to converge the estimated state
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to the true state. A Monte Carlo analysis implements multiple EKF's to determine a true

State Error Covariance that is comparable to the covariance produced by the EKF and

in many circumstances comparable to the covariance produced by the LKF in a LinCov.

Traditional LinCov has been validated for a variety of missions, including: orbital rendezvous

[14], powered descent [15], for the Mars Path�nder [16], and for cislunar trajectories [17].

2.2 Ground-Based Navigation

Ground-Based Navigation systems have been implemented since the early 1960s [1].

While onboard measurement metrics are powerful, Earth-based observables provide highly

accurate state estimates [18]. NASA originally utilized a ground station con�guration of

three large dishes, known as the Deep Space Network (DSN). As the number of space

operations have increased, tracking stations have been built by private companies and

universities [19] worldwide.

2.2.1 Measurements

While various measurement types have been developed and used throughout the years,

the most common measurement types are range and range-rate measurements [18].

Range measurements are based on the "time of �ight" principle, in which a signal is

transmitted from a ground station, re�ected o� of the vehicle, and the total time of �ight

used to calculate the distance. Range-rate, or Doppler, measurements are based on frequency

shifts, i.e. Doppler e�ect [20].

In practice, the equations for calculating range and range-rate measurements based on

the time of �ight and frequency shift can be burdensome and often are not expressed in

terms of the vehicle's state. Instead, ideal measurements are used for navigation �lters.
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Ideal measurements are based solely on the position and velocity vectors between a

ground station and vehicle. The ideal measurements for range and range-rate metrics are

provided below [18,20]:

zr = ||r|| (2.20)

zṙ = ir
Tv (2.21)

The equations above are for 1-way measurements, where the ground station provides a signal

to and is processed aboard the vehicle. More commonly used are 2-way measurements, where

the signal is re�ected o� of the vehicle and processed by the ground station. Ideal 2-way

range and range-rate measurements are simply twice the value of 1-way measurements. 3-

way measurements include the spacecraft and two di�erent ground stations.

The realization of these measurement types are corrupted through various means:

measurement noise, measurement biases, atmospheric e�ects, and relativistic e�ects.

Atmospheric e�ects are manifested as an additional bias as a function of a station's position

relative to the space vehicle with a greater bias occurring when the signal travels through

more atmosphere [20].

2.2.2 Ground Station Tracking Schedule

Creating ground station tracking schedules in the early days of space exploration was

less complicated due to the limited number of ground stations. However, as space exploration

has ventured further and has become more privatized, the number of ground stations has

increased and creating tracking schedules has become more complicated. The main factors to

consider when creating a ground station tracking schedule are connection quality, estimation

performance, and monetary costs [21].

Connection quality describes the station's ability to send data to and from a vehicle in

space. Various Earth orbiting missions, including GPS, geosynchronous, and LEO weather

satellites, rely heavily on multiple connections with ground stations, and choosing an optimal

ground station con�guration varies depending on atmospheric e�ects [22, 23]. For space
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missions beyond a geosynchronous orbit, ground station size impacts signal strength and

range [24]. Some stations have a smaller Field of View (FOV) or may be surrounded by

mountains and thus may not provide as much visibility as other stations.

The ground stations also need to provide some level of estimation performance.

Individual stations have measurement noise and biases that impact the measurement

information, Furthermore, the location of multiple stations impacts the quality of the state

estimation via the measurement geometry. The majority of ground stations are located in

the Northern Hemisphere due to available landmass, and navigation experts emphasize the

necessity of ground station latitude variety for cislunar space [21]. Some stations may be

unable to provide both range and range-rate measurements [24].

Lastly, monetary costs impact any business and must be considered for long-term

operations. Implementing a tracking schedule that meets mission requirements while also

minimizing operational costs will promote future missions [24].

2.3 Optimization Techniques

Creating a ground station tracking schedule has been done manually following the

guidelines of connection quality, estimation performance, and monetary costs for years.

Creating an optimal tracking schedule requires an optimization algorithm that determines

the values of a set of problem parameters that minimize some objective function. This branch

of optimization is known as parameter optimization or as combinatorial optimization, with

the most famous example being that of the Traveling Salesman. Parameter optimization is

the search for an optimal object among a �nite, discrete set of objects [25].

In theory, since the set of objects is discrete and �nite, each con�guration could be

tested and the optimal object chosen. However, doing so is usually infeasible, leading to

the necessity of more sophisticated methods. Various parameter optimizations algorithms

have been created, including Genetic Algorithms, Simulated Annealing, Tabu Searches, and

Slime Molds [26].

Genetic Algorithms are based on the idea of natural selection in biology, where an

initial population reproduces with the best children surviving and repopulating [27]. Genetic
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Algorithms have been used for a variety of space missions and ground tracking optimization

problems, including trajectory planning [28], GPS satellite con�guration for optimal station

tracking [29], and network optimization for the DSN [30]. Simulated Annealing is a

probabilistic optimization algorithm based on the idea of heat treatment in metallurgy.

Simulated Annealing is more easily suited for problems with multiple constraints and has

been used by NASA for internal satellite constellation communications [31, 32].
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CHAPTER 3

MONTE CARLO SIMULATION MODELS

Monte Carlo simulations are used for a variety of space applications, including

estimation performance and true state dispersion analysis [13]. By performing a large

number of EKF runs, the �nal true estimation state errors are calculated. Estimation errors

generated from a Monte Carlo analysis are the most accurate representation of what the true

estimation errors will be in mission �ight due to the EKF's ability to propagate the nonlinear

dynamics and incorporate nonlinear measurements. This chapter outlines the equations

and process to generate true and estimated measurements and how said measurements are

implemented in an EKF. The details are described on how a Monte Carlo analysis is used

to analyze the state estimation errors through multiple EKF runs.
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3.1 Monte Carlo Procedure

The Monte Carlo analysis is depicted below in Fig. 3.1, where the initial true state is

perturbed from the initial nominal state by a Gaussian instance ξ of the initial covariance

matrix:

xtrue = xnom + ξ (3.1)

Fig. 3.1: Monte Carlo Analysis

The true state is propagated using the true state dynamics, including random

disturbances. The estimated state is initialized at the nominal state and is propagated

using the estimated state dynamics, which do not include process noise. Through the use of

an EKF, the estimated state is updated and approaches the true state. At each time step,

the true estimation errors are calculated as:

δe = xtrue − x̂est (3.2)
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Once the EKF reaches a set �nal time, the true estimation errors are stored and

the simulation is repeated a large number of times with di�erent random true state

initializations. The covariance of the true estimation errors are calculated as:

P (t) =
1

n− 1

n∑
i=1

δe(t)δe(t)
T (3.3)

As the number of simulations are run, the con�dence associated with the estimation

covariance increases [13]. The following sections outline how the true and estimated states

are propagated and updated in an EKF.

3.2 State Vector

The state vector to be analyzed consists of the lander's position and velocity vectors

in LCI coordinates. For the Monte Carlo analysis, the true state vector contains the same

elements as the estimated state vector. The state vector includes the lander's position and

velocity vectors, acceleration due to SRP ψ, and station range and range-rate biases:

x =



rLCI

vLCI

ψ

br

bṙ



(3.4)

where the SRP acceleration is a 3 × 1 vector, and the station biases are N × 1 vectors

corresponding to the number of stations N . The lander's position and velocity vectors are

analyzed in the lunar centered inertial frame to facilitate analysis in lunar orbit.
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3.3 Measurement Information

For a Monte Carlo analysis, true measurements are generated based on the true state

and corrupted by measurement biases and noise:

z̃k = h(xk, t) + νk (3.5)

Measurements are generated from the ground stations based on a tracking schedule. Figure

3.2 depicts the vectors used to generate the measurements:

Fig. 3.2: Measurement Generation

True 2-way range measurements are generated according to the lander's true position relative

to the station, The station's positions are determined based on their latitude and longitude,

ϕ and λ:

rECEFst = RE



cos(ϕ) cos(ϕ)

cos(ϕ) sin(ϕ)

sin(λ)


(3.6)
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The station's position vector is then rotated to the inertial frame based on the current Julian

Date

TECEF→ECI =



cos(ω) sin(ω) 0

− sin(ω) cos(ω) 0

0 0 1


(3.7)

rECISt = TECFE→ECIr
ECEF
St (3.8)

The relative position of the lander with respect to the station is found as:

rECIl/St = rECIl/E − rECISt (3.9)

For notational convenience, assume all subsequent vectors used are in the inertial J2000

frame. True range measurements are then calculated with the true bias associated with the

correct station and measurement noise.

z̃r = 2||rl/St||+ br + νr (3.10)

True 2-way range-rate measurements are generated according to the lander's true position

and velocity relative to the station. The relative velocity is calculated

vl/St = vl/E − (ωE × rSt) (3.11)

where the station's velocity is determined from the Earth's rotation. The true range-rate

measurements are then calculated with the true range-rate bias associated with the correct

station and measurement noise.

z̃ṙ = 2vTl/Stirl/St + bṙ + νṙ (3.12)
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Similarly, the estimated measurements are based on the estimated states without

measurement noise:

ẑr = 2||r̂l/St||+ b̂r (3.13)

ẑṙ = 2v̂Tl/Stîrl/St + b̂ṙ (3.14)

Lastly, the measurement partial matrix is evaluated at the estimated state:

H = ∂h
∂x

∣∣
x̂

(3.15)

H =


∂hr
∂r

∂hr
∂v

∂hr
∂ψ

∂hr
∂br

∂hr
∂bṙ

∂hṙ
∂r

∂hṙ
∂v

∂hṙ
∂ψ

∂hṙ
∂br

∂hṙ
∂bṙ


∣∣∣∣∣∣∣∣∣∣
x̂

(3.16)

Filling in the partials:

∂hr
∂r = ∂hr

∂rl/St

∂rl/St
∂r = ∂hr

∂rl/St
(3.17)

∂hr
∂r = ∂

∂rl/St

[
2||rl/St||+ br + νr

]
(3.18)

∂hr
∂r

∣∣∣∣
x̂

= 2̂i
T
rl/St

(3.19)

The range measurements do not depend on the lander's velocity, and thus the partial ∂hr∂v

is 0. Furthermore, the partial ∂hr∂br
is 1. Proceeding with the range-rate partial with respect

to the lander's position:

∂hṙ
∂r = ∂hṙ

∂rl/St

∂rl/St
∂r = ∂hṙ

∂rl/St
(3.20)

∂hṙ
∂r = ∂

∂rl/St

[
2vTl/Stirl/St + bṙ + νṙ

]
(3.21)

∂hṙ
∂r

∣∣∣∣
x̂

=
2v̂Tl/St

||r̂l/St||
(I − îrl/St î

T
rl/St

) (3.22)
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Proceeding with the range-rate partial with respect to the lander's velocity:

∂hṙ
∂v = ∂hṙ

∂vl/St

∂vl/St
∂v = ∂hṙ

∂vl/St
(3.23)

∂hṙ
∂v = ∂

∂vl/St

[
2vTl/Stirl/St + bṙ + νṙ

]
(3.24)

∂hṙ
∂v

∣∣∣∣
x̂

= 2̂i
T
rl/St

(3.25)

Again note that the partial ∂hṙ∂bṙ
is simply 1. Filling out the H matrix:

H =


2̂i
T
rl/St

01×3 01×3 1 0

2v̂Tl/St
||r̂l/St||

(I − îrl/St î
T
rl/St

) 2̂i
T
rl/St

01×3 0 1

 (3.26)

Note for compactness the partials with respect to the station biases have been written as

scalar 1s and 0s. The complete measurement partial with multiple stations consists of a

vector of 0's, with a 1 placed corresponding the correct station. The H matrix above is

correct if only one station is being analyzed.
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3.4 Extended Kalman Filter

3.4.1 State Di�erential Equations

For the Monte Carlo analysis, state di�erential equations are required to propagate both

the true and estimated state vectors. The true and estimated state di�erential equations are

expressed using multi-body gravitational dynamics. Figure 3.3 below depicts the multi-body

acceleration vectors in an arbitrary inertial frame:

Fig. 3.3: N-Body Gravitational Forces

The acceleration of the lander is calculated from the gravitational acceleration from the

Earth, Moon, and Sun:

al,E = − µE
||rl/E ||3

rl/E +
∑8

n=0

∑n
m=1 anm,E (3.27)

al,M = − µM
||rl/M ||3rl/M +

∑25
n=0

∑n
m=1 anm,M (3.28)

al,S = − µS
||rl/S ||3

rl/S (3.29)
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Note that the double sums for the Earth and Moon represent higher order, spherical

harmonic gravity model accelerations. Spherical harmonic models better simulate the

complicated mass structures of the Earth and Moon. The spherical harmonic gravitational

potential is expressed as [33]:

V (r, ϕ, λ) =
µ

r

∞∑
n=0

n∑
m=0

(
R

r

)n
Pnm(sin(ϕ)) [Cnm cos(mλ) + Snm sin(mλ)] (3.30)

Where ϕ and λ represent the lander's latitude and longitude, respectively, to the central

body. Pnm represents the Associated Legendre polynomial, and Cnm and Snm represent

a set of gravity coe�cients unique to the Earth and Moon. The acceleration is found by

taking the partial derivative of the gravitational potential with respect to r, ϕ, and λ:

a =

[
∂V
∂r

1
r
∂V
∂λ

1
r cos(ϕ)

∂V
∂ϕ

]
(3.31)

and then rotating the acceleration vector to the inertial frame. For this research, 8× 8 and

25×25 gravity models are used for the Earth and Moon, respectively. Note that in Eq. 3.27

and 3.28 the summation begins at n = 1, as the acceleration of the n = 0 and m = 0 term

corresponds to the point mass acceleration.

Thus the inertial acceleration of the lander can be expressed as the gravitational

acceleration from the Sun, Earth, and Moon:

al = al,S + al,E + al,M (3.32)

To obtain a gravitational acceleration with respect to the Moon, the acceleration of the

Moon due to the point masses of the Earth and Sun is found as:

aM,S = − µS
||rM/S ||3

rM/S (3.33)

aM,E = − µE
||rM/E ||3

rM/E (3.34)

aM = aM,S + aM,E (3.35)



21

Note that while the lander's acceleration from the Earth is modeled with higher order gravity

terms, the Moon's acceleration from the Earth is not. This is due to the consistently large

distance between the two bodies, where the higher order gravity terms are negligible. The

lander's acceleration with respect to the Moon is:

al/M = al − aM (3.36)

Using the gravitational acceleration, the true state di�erential equations are expressed as:

ṙ = v (3.37)

v̇ = al/M +ψ +wa (3.38)

ψ̇ = − ψ
τψ

+wψ (3.39)

ḃr = − br
τbr

+wbr (3.40)

ḃṙ = − bṙ
τbṙ

+wbṙ (3.41)

where the SRP acceleration and station biases are modeled as Exponentially Correlated

Random Vectors (ECRVs). Note that the true dynamics are impacted by random

disturbances w. The true state dynamics are integrated with a �xed step rk4 integrator

to hold disturbances constant over integration steps. The estimated state vector di�erential

equations are similar, but do not include random disturbances:

˙̂r = v̂ (3.42)

˙̂v = âl/M + ψ̂ (3.43)

˙̂
ψ = − ψ̂

τψ
(3.44)

˙̂br = − b̂r
τbr

(3.45)

˙̂bṙ = − b̂ṙ
τbṙ

(3.46)

The estimated state di�erential equations are propagated using MATLAB's ode45 tool.
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3.4.2 Filter Covariance Propagation

The �lter covariance is initialized based on the same covariance in which the true states

are perturbed. The �lter covariance is propagated using the gravitational dynamics and the

random process noise. First, the Jacobian is calculated and analyzed at the estimated state:

˙̂x = f(x̂, t) (3.47)

F = ∂f
∂x

∣∣∣
x̂

(3.48)

Expanding the elements of the Jacobian

F =



∂ṙ
∂r

∂ṙ
∂v

∂ṙ
∂ψ

∂ṙ
∂br

∂ṙ
∂bṙ

∂v̇
∂r

∂v̇
∂v

∂v̇
∂ψ

∂v̇
∂br

∂v̇
∂bṙ

∂ψ̇
∂r

∂ψ̇
∂v

∂ψ̇
∂ψ

∂ψ̇
∂br

∂ψ̇
∂bṙ

∂ḃr
∂r

∂ḃr
∂v

∂ḃr
∂ψ

∂ḃr
∂br

∂ḃr
∂bṙ

∂ḃṙ
∂r

∂ḃṙ
∂v

∂ḃṙ
∂ψ

∂ḃṙ
∂br

∂ḃṙ
∂bṙ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x̂

(3.49)

Most of these partial derivatives are simple:

F =



03×3 I3×3 03×3 0N×3 0N×3

∂v̇
∂r 03×3 I3×3 0N×3 0N×3

03×3 03×3 − 1
τψ
I3×3 0N×3 0N×3

03×N 03×N 03×3 − 1
τbr

IN×N 0N×N

03×N 03×N 03×3 0N×N − 1
τbṙ

IN×N



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x̂

(3.50)
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The more di�cult partial is ∂v̇
∂r , often called the gravity gradient. With a point mass gravity

model, the gravity gradient from just the Sun is calculated as:

∂v̇
∂r =

∂aSl
∂rl/M

=
∂aSl
∂rl/S

∂rl/S
∂rl/M

(3.51)

∂rl/S
∂rl/M

= ∂
∂rl/M

[
rl/M + rM/S

]
= I (3.52)

∂v̇
∂r = ∂

∂rl/S

[
−µS

||rl/S ||3
rl/S

]
I (3.53)

∂v̇

∂r

∣∣∣∣
x̂

= − µS
||r̂l/S ||3

[
I − îrl/S î

T
rl/S

]
(3.54)

Thus, if the Sun, Earth, and Moon were all treated as point masses, the complete gravity

gradient would be:

∂v̇

∂r

∣∣∣∣
x̂

= − µS
||r̂l/S ||3

[
I − îrl/S î

T
rl/S

]
− µE

||r̂l/E ||3
[
I − îrl/E î

T
rl/E

]
− µM

||r̂l/M ||3
[
I − îrl/M î

T
rl/M

]
(3.55)

The point mass partials are the most dominant terms in the gravity gradient. Calculating

the gravity gradient when the Earth and Moon are not treated as point masses is more

complicated. The complete gravity gradient according to spherical harmonic models has

been derived by Carlos Roithmayr, according to the equation below [33]:

∂v̇

∂r
= − µ

||r||3
[
I − irirT

]
+

∞∑
n=1

n∑
m=0

Dnm (3.56)

where Dnm is calculated using second-order tensors, or Dyadics. For more information on

how the Dyadics are calculated, see the article Contributions of Spherical Harmonics to

Graviational Moment [33]. These higher order gravity gradients are found in a �xed frame,

and are rotated to the inertial frame according to:

DI
nm = T TI→FD

F
nmTI→F (3.57)
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As presented above, the rotation matrix for the Earth is simply a function of the Julian

Date. The rotation matrix for the Moon is more complex, and is obtained via a spice

function cspice_pxform with the kernel moon_pa_de421_1900-2050.bpc [34].

Once the gravity gradient is found, the complete Jacobian can be used to calculate the

State Transition Matrix (STM) according to Lear's method [35], which up to the second

order is accurate for time-varying systems:

∆t = tk+1 − tk (3.58)

Φk+1,k ≈ I + (Fk + Fk+1)
∆t
2 + FkFk+1

(∆t)2

2 (3.59)

With the STMs, the �lter covariance can be propagated according to:

P−
k+1 = Φk+1,kP

−
k ΦTk+1,k +BQd,kB

T (3.60)

Where Qd,k represents the strength of the discrete process noise. The strength of continuous

process noise is found according to:

E[w(t)wT (t− t′)] = Q(t)δ(t− t′) (3.61)

Where δ(t − t′) is the dirac delta function. The strength of the discrete process noise is

found as:

Qd,k = Q(tk)∆t (3.62)

The discrete process noise strength for the ECRVs are found by analyzing the steady-state

(ss) behavior of the system. Analyzing the propagation in Eq. 3.60 for steady state behavior:

Pss = Φk+1,kPssΦ
T
k+1,k +Qd,ss (3.63)

Qd,ss = Pss

(
1− e

−2∆t
τ

)
(3.64)
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Thus the process noise at each time step is calculated given the covariance of the desired

steady-state response. The complete matrix of the discrete process noise strength, including

random disturbances, SRP noise, and station bias noise, is expressed as:

Qd =



Qd,a 0 0 0

0 Qd,ss,ψ 0 0

0 0 Qd,ss,br 0

0 0 0 Qd,ss,bṙ


(3.65)

where the sizes of each Q matrix corresponds to the number of states impacted. Qd,a and

Qd,ss,ψ are 3 × 3 matrices relating to the three dimensional acceleration and SRP vectors.

Qd,ss,br and Qd,ss,bṙ are N × N matrices corresponding to the number of stations in the

analysis.

The true state, estimated state, and the �lter covariance are propagated until a

measurement becomes available to update the estimated state and �lter covariance.
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3.4.3 Filter Covariance and State Updates

Once a measurement becomes available, the measurement partials and �lter covariance

are used to calculate the Kalman gain:

Kk+1 = P−
k+1H

T
k+1(Hk+1P

−
k+1H

T
k+1 +R)−1 (3.66)

where R is the strength of the measurement noise according to:

Rk+1 = E[νk+1ν
T
k+1] (3.67)

The Kalman gain is used to update the estimated state and the �ler covariance:

x̂+
k+1 = x̂

−
k+1 +Kk+1(z̃ − ẑ) (3.68)

P+
k+1 = (I −Kk+1Hk+1)P

−
k+1(I −Kk+1Hk+1)

T +Kk+1Rk+1K
T
k+1 (3.69)

The updated �lter covariance at time tk+1 is set to be the new �lter covariance at time tk

and the algorithm continues, propagating and incorporating measurements.

3.5 Monte Carlo Performance

While Monte Carlo analysis is a reliable method to quantify state estimation errors, it

is also a time consuming process. The EKF is developed in MATLAB and converted to a

mex function, which allows MATLAB to run the function in C [36]. Furthermore, each EKF

is run inside a parfor loop, allowing multiple EKF runs to be executed at the same time.

While both of these measures greatly decrease the runtime, a Monte Carlo analysis with

1,000 runs can take up to 15 minutes to complete. Due to the large runtime, alternative

methods are studied to obtain the estimation errors.
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CHAPTER 4

LINEAR COVARIANCE ANALYSIS

Linear Covariance is an alternative to a Monte Carlo analysis that runs far more quickly.

By linearizing the dynamics and measurements about the nominal trajectory, a Linearized

Kalman Filter (LKF) can be analyzed without any measurement incorporation. As long

as the error analysis remains within a region appropriate for linearization, LinCov should

produce the same estimation errors as a Monte Carlo analysis. This chapter outlines the

equations and procedures to create a traditional LinCov tool to propagate and update a

state estimation covariance.

4.1 Linearized Kalman Filter

4.1.1 State Vector

In order to match the Monte Carlo analysis, the state vector for the LinCov analysis

is the same, consisting of the lander's position and velocity vectors in LCI coordinates,

acceleration due to SRP, and station range and range-rate biases:

x =



rLCI

vLCI

ψ

br

bṙ



(4.1)
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4.1.2 Dynamic Linearization and Covariance Propagation

The nonlinear dynamics are written in compact form as a function of time and the

nominal trajectory:

ẋ = f(x, t) +Bw (4.2)

where w is a zero-mean Gaussian process noise. With strength according to:

E[w(t)wT (t− t′)] = Q(t)δ(t− t′) (4.3)

Qd,k = Q(tk)∆t (4.4)

As with the Monte Carlo analysis, the discrete process noise matrix consists of

individual noise strengths corresponding to random accelerations and steady state strengths

corresponding to the SRP and bias ECRVs. The dynamics are linearized about the nominal

trajectory according to:

F = ∂f
∂x

∣∣∣
xnom

(4.5)

F =



03×3 I3×3 03×3 0N×3 0N×3

∂v̇
∂r

∣∣
xnom

03×3 I3×3 0N×3 0N×3

03×3 03×3 − 1
τψ
I3×3 0N×3 0N×3

03×N 03×N 03×3 − 1
τbr

IN×N 0N×N

03×N 03×N 03×3 0N×N − 1
τbṙ

IN×N



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xnom

(4.6)
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Note that the Jacobian is analyzed at the nominal state, unlike the EKF where the

Jacobian is analyzed at the estimated state. The gravity gradient is calculated along the

nominal trajectory using the point mass gravity from the Sun, Earth, and Moon. The higher

order gravity gradients are again calculated with Dyadics [33]:

∂v̇

∂r

∣∣∣∣
xnom

= − µS
||rl/S ||3

[
I − irl/Si

T
rl/S

]
− µE

||rl/E ||3
[
I − irl/Ei

T
rl/E

]
+

8∑
n=1

n∑
m=0

Dnm,E

− µM
||rl/M ||3

[
I − irl/M i

T
rl/M

] 25∑
n=1

n∑
m=0

Dnm,M

(4.7)

Note that the degree and order of the gravity models are the same as the Monte Carlo

analysis. Calculating the STM using Lear's method [35]:

∆t = tk+1 − tk (4.8)

Φk+1,k = I + (Fk + Fk+1)
∆t
2 + FkFk+1

(∆t)2

2 (4.9)

The linearized state and covariance are propagated according to:

δxk+1 = Φk+1,kδxk +Bwd,k (4.10)

P−
k+1 = Φk+1,kPkΦ

T
k+1,k +BQd,kB

T (4.11)

As LinCov is implemented to study the covariance of the state estimation errors, the

linearized state propagation in Eq. 4.10 does not need to be incorporated.
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4.1.3 Linearized Measurements and Covariance Update

The general measurement equation is written as a function of time, the nominal

trajectory, and measurement noise:

zk = h(xk, t) + νk (4.12)

The measurement partial matrix H is found by linearizing about the nominal state:

H = ∂h
∂x

∣∣
xnom

(4.13)

H =


2iTrl/St 01×3 01×3 1 0

2vT
l/St

||rl/St||
(I − irl/Sti

T
rl/St

) 2iTrl/St 01×3 0 1


∣∣∣∣∣∣∣∣∣∣
xnom

(4.14)

The Kalman gain is calculated and implemented to update the covariance matrix:

Kk+1 = P−
k+1H

T
k+1(Hk+1P

−
k+1H

T
k+1 +R)−1 (4.15)

P+
k+1 = (I −Kk+1Hk+1)P

−
k+1(I −Kk+1Hk+1)

T +Kk+1RKT
k+1 (4.16)

4.2 Linear Covariance Performance

Note how LinCov propagates and updates the state estimation covariance without ever

generating true or estimated measurements. Furthermore, signi�cant time is saved in LinCov

by not propagating the state through numerical integration. As the nominal trajectory is

provided by Intuitive Machines, all measurement partials, Jacobians, and State Transition

matrices can be precomputed and passed into a LinCov function. When the system dynamics

are within a region of linearization, the LinCov state estimation errors will match the results

of the Monte Carlo analysis. This is done however, in a vastly faster time. On average,

LinCov processes a 24-hour trajectory segment in less than one second.
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CHAPTER 5

LINEAR COVARIANCE VALIDATION WITH MONTE CARLO ANALYSIS

Before a LinCov analysis is implemented, it is proper to verify that the linearization

remains valid. This is done by performing a LinCov analysis on each segment of the nominal

trajectory and comparing the state estimation to a Monte Carlo analysis. This chapter

outlines the nominal trajectory and the key segments to be analyzed by a LinCov and

Monte Carlo study. Results are presented demonstrating the validity of LinCov in both

cislunar space and in lunar orbit.
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5.1 Reference Trajectory, OD Segments, Contact Schedule

The IM-1 reference trajectory and maneuvers in the J2000, Earth-Centered Inertial

(ECI) coordinates are shown in Fig. 5.1. The nominal trajectory is generated by NASA's

Copernicus software with midcourse correction maneuvers planned by Intuitive Machines.

Fig. 5.1: IM-1 Nominal Trajectory

The trajectory shown in Fig. 5.1 begins as the Nova-C lander separates from

SpaceX's launch vehicle, referred to as Launch Vehicle Separation (LVS). The trajectory

is then divided using midcourse corrections. These midcourse corrections consist of a

larger Commissioning Maneuver (CM) and three smaller Trajectory Correction Maneuvers

(TCMs). The Nova-C lander is inserted into lunar orbit with a Lunar Orbit Insertion

maneuver (LOI). After several lunar orbits, the Nova-C lander begins a Descent Orbit

Insertion maneuver (DOI) and descends to the lunar surface.
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In addition to correcting Nova-C's trajectory, the maneuvers are utilized to separate the

trajectory into subsections for state estimation analysis, referred to as Orbit Determination

(OD) segments. Each OD segment is analyzed separately to determine estimation errors in

preparation for an upcoming maneuver. From LOI to DOI, the OD segment is broken up

into twelve OD subsegments to provide a state estimation solution every orbit, where each

orbit takes approximately two hours.

The tracking schedule used for this subsequent analyses is provided by Intuitive

Machines, referred to as the Benchmark Schedule. The schedule alternates between 6

available stations: Hartebeesthoek, South Africa (HBK26); Kourou, French Guiana (KRU1);

Byalulu, India (D32); Okinwawa, Japan (OKN2); Morehead, Kentucky (DSS17); Goonhilly,

England (GHY6). The tracking schedule, depicted when a station is used for measurement

generation, is depicted in Fig. 5.2 below:

Fig. 5.2: Benchmark Schedule
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5.2 Cislunar Simulation Setup

The simulation parameters used in both the LinCov and Monte Carlo analysis for the

cislunar environment are recorded below in Table 5.1

Table 5.1: Simulation Setup Values

Parameter Symbol Value Units

Initial Position Error σr,0 10 km

Initial Velocity Error σv,0 1 m/s

Range Measurement Noise σr 100 m

Range-rate Measurement Noise σṙ 1 m/s

Range Bias Steady State σbr 100 m

Range-rate Steady State σbṙ 1 m/s

Range Bias Time Constant τbr 1e9 s

Range-rate Bias Time Constant τbr 1e9 s

SRP Steady State σψ 8e−9 m/s2

SRP Time Constant τψ 1e9 s

Continuous Process Noise Strength Q 1e−12 m2/s3

Note that the time constants on the station biases and SRP are large. Both the

station biases and acceleration due to SRP act more as biases than noise processes. By

making the time constants large, the ECRV's are simulated as nearly constant values.

The continuous process noise Q for the IM-1 mission is primarily due to unmodeled
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translational accelerations from misaligned attitude thrusters. Realistically this value is

not expected to exceed 1e−14m2

s3
, but is set as a larger value for conservative estimates in

the linearization. Furthermore, the noise and bias values for measurement generation are

considered conservative for ground station measurement generation. Note that each of the

six stations has the same standard deviations for measurement noise values, range biases,

and range-rate biases.

5.3 Cislunar Results

The true inertial navigation errors for the lander's position and velocity from 1,000

Monte Carlo runs are shown below in Table 5.2:

Table 5.2: Monte Carlo Simulation Errors

OD Segment LVS

-CM

CM

-TCM1

TCM1

-TCM2

TCM2

-TCM3

TCM3

-LOI

Inertial Errors:

σrx [m] 73.491 94.929 88.803 147.169 15.812

σry [m] 238.307 145.529 124.623 577.107 41.454

σrz [m] 379.491 735.208 982.327 3,109.181 44.093

σvx [mm/s] 0.393 0.262 0.319 2.323 1.379

σvy [mm/s] 2.519 1.784 1.180 10.667 10.797

σvz [mm/s] 2.893 1.996 1.899 15.052 14.359
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The true inertial navigation errors from the LinCov are shown below in Table 5.3.

Table 5.3: Linear Covariance Errors

OD Segment LVS

-CM

CM

-TCM1

TCM1

-TCM2

TCM2

-TCM3

TCM3

-LOI

Inertial Errors:

σrx [m] 73.122 94.562 90.729 142.168 15.762

σry [m] 242.791 149.562 126.877 582.069 40.971

σrz [m] 377.108 730.010 1,011.906 2,911.497 45.288

σvx [mm/s] 0.381 0.266 0.318 2.338 1.368

σvy [mm/s] 2.552 1.786 1.179 10.662 10.683

σvz [mm/s] 2.809 1.988 1.883 14.864 14.388

Note how the greatest di�erence between the inertial navigation errors found by the Monte

Carlo analysis and LinCov is 3.56%.
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Figure 5.3 below depicts the individual true position navigation errors from the Monte

Carlo analysis, the respective 3σ standard deviations from the Monte Carlo data, and

the 3σ standard deviations from the LinCov analysis. The OD segment depicted is CM-

TCM1. Note how the standard deviations from the LinCov analysis match the Monte Carlo

deviations throughout.

Fig. 5.3: Inertial Position Errors: CM-TCM1
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Figure 5.4 below depicts the individual true velocity navigation errors from the Monte

Carlo analysis, the respective 3σ standard deviations from the Monte Carlo data and LinCov

analysis. Note how the standard deviations from the LinCov analysis match the Monte Carlo

deviations throughout.

Fig. 5.4: Inertial Velocity Errors: CM-TCM1
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Figure 5.5 depicts the inertial navigatoin errors from SRP in the y direction. Note how

little estimation occurs, as the SRP is too small to estimate given the process noise from

the misaligned thrusters.

Fig. 5.5: SRPy Inertial Errors: TLI-CM

Figures 5.6 and 5.7 on the following pages depict the six station bias errors from the

Monte Carlo analysis, the respective 3σ standard deviations from the Monte Carlo data, and

the 3σ standard deviations from the LinCov analysis. Note how the LinCov errors match

the Monte Carlo results well throughout the entire OD segment.

The nature of the station biases is such that information is gathered as the station begins

processing measurements, decreasing the errors. What is often more powerful in reducing

a station's bias estimation errors is data from subsequent stations. As the correlations

between stations is determined through measurement updates, errors decrease. When no

measurements are being incorporated, the errors increase toward the steady state error.
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Fig. 5.6: Range Biases: CM-TCM1
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Fig. 5.7: Range-rate Biases: CM-TCM1



42

5.4 Lunar Orbit Simulation Setup and Values

The simulation parameters used in both the LinCov and Monte Carlo analyses in lunar

orbit are recorded below in Table 5.4

Table 5.4: Simulation Setup Values: Lunar Orbit

Parameter Symbol Value Units

Initial Position Error σr,0 1 km

Initial Velocity Error σv,0 1 m/s

Range Measurement Noise σr 100 m

Range-rate Measurement Noise σṙ 1 m/s

Range Bias Steady State σbr 100 m

Range-rate Steady State σbṙ 1 m/s

Range Bias Time Constant τbr 1e9 s

Range-rate Bias Time Constant τbr 1e9 s

SRP Steady State σψ 8e−9 m/s2

SRP Time Constant τψ 1e9 s

Continuous Process Noise Strength Q 1e−12 m2/s3

Note that all values are the same except for the initial position errors. This is done since

the linear region is tighter in lunar orbit. The nominal trajectory has an orbit of 100 km

above the lunar surface, for a total size of 1,838 km. This small orbit, and the impact of the

highly nonlinear, spherical harmonic gravity terms, makes the linearization more sensitive.
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5.5 LLO Results

The true inertial navigation errors for the lander's position and velocity from 1,000

Monte Carlo runs are shown below in Table 5.5. The results from 6 orbits are shown:

Table 5.5: Monte Carlo Simulation Errors: LLO

OD Segment LLO.1 LLO.3 LLO.5 LLO.7 LLO.9 LL0.11

Inertial Errors:

σrx [m] 15.176 27.411 22.825 49.685 43.366 43.103

σry [m] 89.676 152.120 103.489 177.113 123.629 108.362

σrz [m] 39.728 44.317 19.067 11.503 8.658 19.055

σvx [mm/s] 9.504 15.746 10.244 16.091 8.799 3.328

σvy [mm/s] 31.819 37.257 13.591 6.411 8.397 19.742

σvz [mm/s] 77.452 127.750 88.297 149.267 105.271 94.422
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The true inertial navigation errors from the Linear Covariance are shown below in Table

5.6:

Table 5.6: Linear Covariance Errors: LLO

OD Segment LLO.1 LLO.3 LLO.5 LLO.7 LLO.9 LL0.11

Inertial Errors:

σrx [m] 15.071 27.672 22.425 49.552 41.608 42.603

σry [m] 89.208 152.655 102.614 176.849 118.587 107.251

σrz [m] 39.642 44.385 19.092 11.246 8.120 18.656

σvx [mm/s] 9.444 15.841 10.146 16.005 8.448 3.331

σvy [mm/s] 31.614 37.476 13.362 6.019 7.812 19.436

σvz [mm/s] 77.156 128.097 87.558 148.990 100.960 93.379

Note how the greatest di�erence between the inertial navigation errors found by the

Monte Carlo analysis and LinCov is 6.97%. This largest percentage error comes from an

absolute di�erence of just 0.585 mm/s.
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Figure 5.8 below depicts the individual true position navigation errors in Orbit 3 from

the Monte Carlo analysis, the respective 3σ standard deviations from the Monte Carlo data,

and the 3σ standard deviations from the LinCov analysis. Note how the LinCov errors

match the Monte Carlo results throughout the orbit.

Fig. 5.8: Inertial Position Errors: Orbit 3
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Figure 5.9 below depicts the individual true velocity navigation errors for Orbit 3 from

the Monte Carlo analysis, the respective 3σ standard deviations from the Monte Carlo data,

and the 3σ standard deviations from the LinCov analysis. Note how the LinCov errors

match the Monte Carlo results throughout the orbit.

Fig. 5.9: Inertial Velocity Errors: Orbit 3
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Figures depicting how the errors associated with SRP from LinCov are validated

through Monte Carlo analysis are omitted due to both studies being unable to estimate

the SRP, as in Fig. 5.5. Furthermore, as only one to two stations are used during lunar

orbit, plots depicting the station biases are omitted. The estimation of the station biases

do match between LinCov and Monte Carlo for each lunar orbit.

5.6 Validation Discussion

Thus the Linear Covariance algorithm has been validated with a Monte Carlo analysis,

with the largest di�erence between the errors in cislunar space being 3.56% and in lunar orbit

6.97%. While the importance of determining the estimation errors from a nonlinear system

with Monte Carlo analysis cannot be overlooked, the time saved by using linearization is

dramatic. Depending on the length of the OD segment, a Monte Carlo analysis with 1,000

individual EKF runs can take between 15 to 25 minutes, while the LinCov analysis takes

less than a second.

Linear Covariance and other linearization techniques are thus better suited for

generating optimal ground station tracking schedules. Potentially thousands of tracking

schedules need to be analyzed for optimization per OD segment, and doing so with a Monte

Carlo analysis would not be feasible.
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CHAPTER 6

OPTIMAL RANGE PLACEMENT WITH LINEAR COVARIANCE

With the LinCov tool validated by the Monte Carlo analysis, the �rst navigation

optimization problem can be addressed. Intuitive Machines has expressed concerns that,

during some OD segments, transmission of both range and range-rate data may not be

feasible due to the lander's communication system bandwidth. Range measurements are to

be transmitted on sub-carrier channels, and other data sent over the sub-carrier channels may

be more di�cult to extract if range data is present. This issue is especially more prevalent

as the lander approaches distances closer to the Moon [21, 24]. For the IM-1 mission and

future missions where circuitous trajectories cause the spacecraft to reach distances past the

Moon, this issue deserves an analysis.

This chapter covers the simple optimization of when short bursts of range measurements

should be taken given a tracking schedule. The minimization of �nal position and velocity

errors are discussed. Through spanning the entire sample space, the optimal placement of

range measurements is found for a one and two dimensional study.
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6.1 Problem Overview

Figure 6.1 depicts the Benchmark schedule for the OD segment CM-TCM1, where

range-rate measurements are to be processed during the entire segment. Note how range

measurements are not taken during the OD segment, except for during a 3 hour segment at

the beginning.

Fig. 6.1: CM-TCM1 Benchmark Tracking Schedule

Starting range measurement generation from station D32 is one of the many solutions

that exist. An optimization can thus be applied where each time in the OD segment is

treated as the start time in which range measurements will taken for a certain period.

This optimization problem is considerably simpler compared to other navigation

optimization problems considered later in the thesis. Under the assumption that range

measurements can only be generated in n portions from n station, this is an n dimensional

optimization problem. Due to the simplicity of the optimization problem and the speed of

LinCov, each con�guration in the solution space can be individually analyzed and plotted.
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6.2 1 Segment Range Optimization

6.2.1 Optimization Variables and Considerations

Optimization requires a set of parameters that are varied in order to minimize some

objective. The optimization object is a vector containing all parameters that are altered in

order to �nd the optimal solution. For one range segment, the optimization object is simply

the time when range measurements will begin:

s1 = t1 (6.1)

Another variable to be considered is the measurement duration, which refers to how long

the station is allowed to take range measurements. Since longer range measurement

segments will inherently lead to better navigation solutions, the measurement duration is

not considered an optimization parameter, but rather a setup variable.

Each time at a 10 minute discretization is tested. At each discretization time in an

OD segment, range measurements are placed for the measurement duration. The tracking

schedule, with the placed range measurement duration and full range-rate measurements,

is analyzed with LinCov to determine the �nal position and velocity errors. The RSS of

the position and velocity navigation errors are used, as both provide singular metrics that

include the three dimensional estimation errors.

The problem setup is such that range measurements are taken from one station. If at a

discrete time two stations are picked up by the measurement duration, only the �rst station

is considered. Thus as discrete times near the end of station passes, the �nal errors are

expected to increase as the full measurement duration is not being utilized.

For each OD segment in cislunar space, the optimal placement of one range measurement

segment with measurement durations of 1 hour, 3 hours, and 5 hours are studied with

the LinCov setup parameters in Table 5.1 on page 34. The optimal placement of

range measurements in lunar orbit is not considered since studies have shown that range

measurements do not signi�cantly change estimation performance in lunar orbit [17,24].
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6.2.2 One Segment Results

Figure 6.2 depicts the RSS of the position and velocity components of the �nal state

estimation covariance matrix. The x-axis depicts the time in which range measurements

begin to be taken. The y-axis depicts the RSS values of the state estimation at the �nal

time of the OD segment. The plot colors indicate which station is being used when the

range measurements are taken. The OD segment depicted is CM-TCM1, where the range

measurement duration is 1 hour:

Fig. 6.2: 1D 1hr Optimal Range Placement: CM-TCM1

Note how the optimal placement to minimize position errors at the �nal time is to take

measurements from GHY6, Goonhilly England, at about 7 hours into the OD segment. Also

note that doing so does not provide the minimal solution in velocity.
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Looking at another OD segment, Fig. 6.3 depicts the RSS of the position and velocity

components of the �nal state estimation covariance matrix for the OD segment TCM1-

TCM2.

Fig. 6.3: 1D 1hr Optimal Range Placement: TCM1-TCM2

Note again how the optimal placement to minimize position errors comes from taking

measurements from GHY6. Also note how in Figures 6.2 and 6.3 there is a signi�cant drop

in position errors between HBK26 and GHY6. Figure 6.3 more clearly depicts a linear-like

pattern in the velocity optimization, where taking range measurements earlier decreases the

�nal velocity errors.
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The �nal position errors prove to be a more interesting metric as the �nal velocity errors

are not as sensitive to the range placement. The optimal RSS position errors at the �nal

time are reported below in Table 6.1. Reported below are the results for 1 hour, 3 hour,

and 5 hour range measurement durations, included with the results where no and full range

measurements are taken:

Table 6.1: Optimal 1 Range Measurement Segment Placement: Position RSS

OD Segment LVS

-CM

CM

-TCM1

TCM1

-TCM2

TCM2

-TCM3

TCM3

-LOI

0hr Range: [m] 302.08 1,605.37 2,549.46 9,995.52 49.58

Optimal 1hr Range: [m] 280.13 1,089.31 1,976.47 7,526.17 46.64

From Station OKN2 GHY6 GHY6 GHY6 GHY6

Optimal 3hr Range: [m] 278.91 1,063.82 1,939.54 7,512.91 45.95

From Station OKN2 GHY6 GHY6 GHY6 GHY6

Optimal 5hr Range: [m] 277.91 1,062.09 1,937.57 7,496.26 45.93

From Station OKN2 GHY6 GHY6 GHY6 GHY6

Full Range: [m] 241.98 671.96 967.67 2,817.80 36.58
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With just 1 hour of range measurements, in OD segments that span up to 48 hours,

the RSS of the �nal position errors can decrease by up to 32%. While taking full range

measurements clearly yields the best �nal errors, the improvement in position errors with

just 1 hour is signi�cant. Note that regardless of how long the measurement duration is, the

optimal station remains the same. Furthermore, increasing the measurement duration from

1 hour to 5 hours has little impact on the �nal RSS position errors.

Recall that GHY6 does not have smaller measurement biases or measurement noise

than the other stations, and yet is the optimal station in four out of �ve OD segments.

OD segment LVS-CM is unique in that the dynamics are dominated by the Earth's gravity,

reducing the estimation problem to the 2-body problem. For each of the measurement

durations applied to LVS-CM, OKN2 is chosen at the very end of the OD segment.

Emphasizing range measurements near the end of well de�ned dynamic regions leads to

a sharp decrease right before the �nal RSS is taken.
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6.3 Two Segment Range Optimization

6.3.1 Optimization Object Properties with 2 Range Segments

For two range segments, the optimization object contains the time in which each

segment starts:

s2 =

[
t1 t2

]
(6.2)

Thus each combination of the start time parameters is analyzed with LinCov given the

setup parameters in Table 5.1 on page 34. Note that the following two optimization objects

produce the same tracking schedules and �nal RSS position and variances as the order in

which each start time is placed does not impact the solution:

s2,1 =

[
t1 t2

]
(6.3)

s2,2 =

[
t2 t1

]
(6.4)

This knowledge implies that the solution space is symmetric, and only half of it needs to

be analyzed. Furthermore note that when an optimization object contains times that are

equivalent, this will lead to the results generated from the one segment case.
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6.3.2 Two Segment Results

Figure 6.4 depicts the RSS of the �nal position errors for OD segment TCM1-TCM2

in a contour plot. The x and y axes depict the time in which range measurements start for

each range segment. For reference, the 1D plots are provided along the x-axis and y-axis to

determine what combination of stations produce the optimal RSS errors.

Fig. 6.4: 2D 1hr Optimal Range Placement: Position TCM1-TCM2

Note how the contour is symmetric about the diagonal. The diagonal itself is the

1D case. The optimal placement of the two stations is located in the dark blue region,

corresponding to HBK26 at 40 hours into the OD segment and GHY6 at 29 hours.
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Figure 6.5 depicts the RSS of the velocity errors. The segment depicted is TCM1-TCM2.

Fig. 6.5: 2D 1hr Optimal Range Placement: Velocity TCM1-TCM2

Note how, generally, the �nal velocity errors are not as sensitive to the placement of

range measurement segments as are the position errors. Furthermore, note that as in the one

segment case, the optimal solution to minimize �nal position errors does well at reducing

�nal velocity errors. On the other hand, the optimal solution to minimize velocity errors

does not necessarily minimize �nal position errors.
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Table 6.2 depicts the optimal results in position RSS from the one segment and two

segment range measurement placement. Note that all results are shown for a measurement

duration of 1 hour.

Table 6.2: Optimal Range Measurement Segment Placements: Position RSS

OD Segment LVS-

CM

CM-

TCM1

TCM1-

TCM2

TCM2-

TCM3

TCM3-

LOI

0hr Range: [m] 302.08 1,605.37 2,549.46 9,995.52 49.58

Optimal 1 Segment: [m] 280.13 1,089.31 1,976.47 7,526.17 46.64

From Station: OKN2 GHY6 GHY6 GHY6 GHY6

Optimal 2 Segment: [m] 275.99 1,046.61 1,772.90 3,660.20 44.95

From Stations: GHY6 GHY6 GHY6 GHY6 GHY6

OKN2 HBK26 HBK26 HBK26 HBK26

Full Range: [m] 241.98 671.96 967.67 2,817.80 36.58

Note the signi�cant improvement in OD segment TCM2-TCM3 with a second hour of range.

Again, while having full range measurement capability is desirable, the optimal placement

of just 2 hours of range can signi�cantly improve estimation performance.

Station GHY6 is part of the optimal solution for all �ve OD segments. Station HBK26

is optimal for four out of �ve OD segments, with GHY6, to minimize position errors. These

stations are unique not for their smaller measurement biases or noise, but rather their

geographic position. GHY6 is the northernmost station at 50 degrees latitude, and HBK26

is the southernmost station at -26 degrees latitude.
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6.4 Optimal Range Measurement Discussion

Thus a LinCov analysis has been implemented to place constrained range measurement

durations along a given tracking schedule. Due to the speed of LinCov, the time required to

analyze all of two segment variations in a 48 hour OD segment takes �ve minutes, whereas the

same analysis with a Monte Carlo analysis would take about 29 days. This analysis and the

subsequent tool developed is of great use to future lunar missions when range measurements

cannot be continually taken due to communication restrictions.

Furthermore, the results from this study have indicated a strong pattern of emphasizing

measurements taken from stations that vary signi�cantly in location. While LinCov is a

powerful tool, other estimation methods that strictly analyze the dynamic measurement

geometry run more quickly. Thus this research develops a recursive, multi-measurement

DOP algorithm.
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CHAPTER 7

DILUTION OF PRECISION METHODS

Dilution of Precision (DOP) analysis is a Batch Least-Squares method for navigation

analysis. Traditionally used to analyze the measurement geometry of GPS satellites at a

�xed instance in time [8], the equations have been expanded to include a time series of

measurements to analyze the dynamic measurement geometry [37].

This chapter outlines the generalized DOP method and expands on its use by developing

a recursive algorithm to calculate PDOP and VDOP. Furthermore, a weighted DOP

algorithm is derived to incorporate both range and range-rate measurements in which a

unitless PDOP is obtained through a measurement noise ratio. Lastly, the results obtained

through the DOP algorithm are checked with the LinCov tool.

7.1 Generalized Dilution of Precision

Generalized DOP incorporates a time series of measurement data to estimate the state

at the �nal time tn [37]. Expressing multiple linearized measurements in vector notation:

δz =



H0Φ0,n

H1Φ1,n

...

Hn


δxn + ν (7.1)

Denoting the stacked matrix consisting of the measurement partials and the state transition

matrices as A, the Least-Squares estimate is found using the measurement data [2, 38]:

δx̂ =
(
ATA

)−1
AT δz (7.2)
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The state error covariance is formulated using the linearized state estimate:

Pδxn = E
[
(δxn − δx̂n)(δxn − δx̂n)

T
]

(7.3)

The linearized measurement δz in Eq. 7.1 is substituted into Eq. 7.2:

δx̂n =
(
ATA

)−1
AT (Aδxn + ν) (7.4)

The di�erence between the Least-Squares estimate δx̂n and the linearized state δxn is taken

and substituted into Eq. 7.3

δxn − δx̂n = −
(
ATA

)−1
ATν (7.5)

Pδxn = E
[(
ATA

)−1
AννTA

(
ATA

)−1
]

(7.6)

The expectation of νTν is expressed as the standard deviation of the measurement noise,

assuming the measurement errors are equivalent between stations:

E[ννT ] = R = σ2
νI (7.7)

The scalar value σ2
ν can be factored out of the expectation operator:

Pδxn = σ2
νE

[(
ATA

)−1
ATA

(
ATA

)−1
]

(7.8)

Pδxn = σ2
ν

(
ATA

)−1
(7.9)

Thus the state estimation error covariance is represented at the �nal time using the Batch

Least-Squares solution. For optimization algorithms, it is convenient to provide a single

metric to optimize, known as the objective function.
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Position Dilution of Precision (PDOP) is formulated by taking the square root of the

trace of the position variances:

Mr =


I3×3

03×3

 (7.10)

RSS(Pδrn) =

√
tr
[
MT
r

(
σ2
ν (A

TA)−1
)
Mr

]
(7.11)

RSS(Pδrn) = σν

√
tr
[
MT
r (ATA)−1Mr

]
(7.12)

RSS(Pδrn) = σνPDOP (7.13)

Note how PDOP acts as a multiplying factor independent to the measurement noise. Smaller

PDOP values indicate better measurement geometry, resulting in smaller state estimation

errors. Thus, PDOP provides an intuitive metric to quantify the dynamic measurement

geometry between the stations and the spacecraft. Furthermore, for the case where σν

pertains to range measurements, PDOP is unitless.

Another common metric in DOP analysis is Velocity Dilution of Precision (VDOP),

where the trace of velocity variances are analyzed. For the case where σν pertains to

range measurements, VDOP has units of 1
s , which is more arbitrary for analyzing the

dynamic measurement geometry. However, for the case where σν pertains to range-rate

measurements, VDOP is unitless and PDOP has units of s, making VDOP the more intuitive

metric.
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7.2 Computational E�ciency and Recursive Methods

It can become computationally burdensome to continually increase the size of A and

calculate ATA as measurements are incorporated. Thus, a recursive relationship is derived

by studying how ATA evolves as additional measurements are taken. The matrix σ2
νA

TA is

called the information matrix. Since the measurement errors are independent of the station

geometry, the matrix ATA is sometimes referred to as the dynamic geometry information

matrix, or just the information. Below ATA is expressed for two measurements to estimate

the state at time t1:

A1 =


H0Φ0,1

H1

 (7.14)

[
ATA

]
1
= HT

1 H1 +ΦT0,1H
T
0 H0Φ0,1 (7.15)

Processing another measurement at time t2:

A2 =



H0Φ0,2

H1Φ1,2

H2


(7.16)

[
ATA

]
2
= HT

2 H2 +ΦT1,2H
T
1 H1Φ1,2 +ΦT0,2H

T
0 H0Φ0,2 (7.17)

Note that ATA with three measurements at time t2 can be expressed in terms of ATA

with two measurements at time t1 by taking advantage of the fact that for state transition

matrices Φ0,2 = Φ0,1Φ1,2:

[
ATA

]
2
= HT

2 H2 +ΦT1,2
[
ATA

]
1
Φ1,2 (7.18)[

ATA
]
k+1

= HT
k+1Hk+1 +ΦTk,k+1

[
ATA

]
k
Φk,k+1 (7.19)
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Thus new measurement data can easily be incorporated by recursively updating ATA.

However, in order to calculate PDOP at each step, the inverse of ATA must be taken, which

may be computationally di�cult or impossible if the matrix is not full rank. To improve

the robustness and avoid constantly taking the inverse of ATA, the small-rank adjustment

method for matrix inversion is implemented. The small-rank adjustment method outlines

how to �nd the inverse of the sum of a rank-1 matrix and a full rank matrix [38]:

(X + UCV )−1 = X−1 −X−1U
(
C−1 + V X−1U

)−1
V X−1 (7.20)

Implementing the small-rank adjustment method to the recursive DOP equations:

Γk =
[
ATA

]−1

k
(7.21)

Γ−
k+1 = Φk+1,kΓkΦ

T
k+1,k (7.22)

Γ+
k+1 = Γ−

k+1 −
Γ−
k+1H

T
k+1Hk+1Γ

−
k+1

1 +Hk+1Γ
−
k+1H

T
k+1

(7.23)

This recursive method does not involve any matrix inversion, except for the necessary

initialization of Γ, which is more e�cient and leads to fewer computational errors. Note

the denominator is a scalar value since measurements are incorporated from only one

measurement source.

7.3 Condition Number Implementation

As mentioned, using the matrix inversion lemma is dependent on ATA being full rank,

and thus invertible. However, given machine precision, the matrix inverse may not be

accurate and could cause the DOP algorithm to become unstable, despite ATA being full

rank. To avoid inaccuracies, a condition number tolerance is set in the DOP algorithm. The

condition number of a matrix is found by taking the ratio of the maximum and minimum

singular values [38]:

κ(ATA) =
σmax(A

TA)

σmin(ATA)
(7.24)
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Once the condition number is small enough for accurate inversion, the matrix ATA is

inverted and the recursive method using Γ is used, as depicted below in Fig. 7.1

Fig. 7.1: DOP Algorithm Flow Chart

The DOP algorithm runs, propagating and incorporating available measurements, to

the end of the OD segment. The PDOP can be calculated at all times once the condition

number tolerance is met, ensuring that the results are numerically accurate. If a contact

schedule leads to the scenario where the condition number tolerance is never met, a large,

default PDOP value is returned to indicate numerical inaccuracy.
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7.4 DOP with Multiple Measurement Types

In the derivation of DOP, the expectation of the measurement noise was expressed as

a scalar multiplied by the identity matrix. DOP has been restricted to one measurement

type since the noise cannot simply be factored out of the expectation operator with multiple

measurement types. Here, a new Weighted Least-Squares DOP algorithm is derived that

incorporates both range and range-rate measurements. A Weighted Batch Least-Squares

solution is expressed as: [2]

δx̂ =
(
ATWA

)−1
ATWδz (7.25)

where W is a weighting matrix. The state error covariance is again formulated using the

linearized state estimate:

Pδxn = E
[
(δxn − δx̂n)(δxn − δx̂n)

T
]

(7.26)

The linearized measurement δz is substituted into the Least-Squares estimate in Eq. 7.25:

δx̂n =
(
ATWA

)−1
ATW (Aδxn + ν) (7.27)

The di�erence between the Least-Squares estimate δx̂n and the linearized state δxn is taken

and substituted into Eq. 7.26

δxn − δx̂n = −
(
ATWA

)−1
ATWν (7.28)

Pδxn = E
[(
ATWA

)−1
ATWννTWA

(
ATWA

)−1
]

(7.29)

Here ν is a random noise vector from both range and range-rate measurements. The expected

value of νTν is expressed as R, again assuming each station's measurement noises are equal:

Pδxn = E
[(
ATWA

)−1
ATWRWA

(
ATWA

)−1
]

(7.30)
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De�ning the weighting matrix W to be the inverse of R:

R = W−1 (7.31)

Pδxn = E
[(
ATWA

)−1
ATWW−1WA

(
ATWA

)−1
]

(7.32)

Pδxn =
(
ATWA

)−1
(7.33)

To �nd a unitless PDOP metric that is multiplied by the range measurement noise, the ratio

between the range and range-rate noise k is de�ned:

k = σr
σṙ

(7.34)

The weighting matrix can thus be expressed using k:

W = 1
σ2
r
K (7.35)

Where K is:

K =


1 0

0 k2

 (7.36)

The matrix K here should not be confused with the Kalman gain in a Kalman �lter. The

value σ2
r is factored out of the inverse:

Pδxn = σ2
r

(
ATKA

)−1
(7.37)

RSS(Pδrn) = σr

√
tr
[
MT
r (ATKA)−1Mr

]
(7.38)

RSS(Pδrn) = σrPDOP (7.39)

Note this PDOP is also a dimensionless quantity, but is formulated by using both range

and range-rate data. Also note that if a dimensionless VDOP were desired, the range-rate

measurement noise could be factored out in a way similar to Eq. 7.35 and the matrix K
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rede�ned. As before, a recursive algorithm is developed to process new measurements:

[
ATKA

]
k+1

= HT
k+1KHk+1 +ΦTk,k+1

[
ATKA

]
k
Φk,k+1 (7.40)

And applying the matrix inversion lemma:

Γk =
[
ATKA

]−1

k
(7.41)

Γ−
k+1 = Φk+1,kΓkΦ

T
k+1,k (7.42)

Γ+
k+1 = Γ−

k+1 − Γ−
k+1H

T
k+1

(
I +KHk+1Γ

−
k+1H

T
k+1

)−1
KHk+1Γ

−
k+1 (7.43)

The �rst recursion method in Eq. 7.40 is used until the condition number tolerance is met,

then Γ is calculated and the second recursion method in Eq. 7.43 is implemented, as depicted

in Fig. 7.2:

Fig. 7.2: DOP Algorithm Flow Chart: Multi-Measurement Incorporation
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7.5 DOP Validation Through LinCov

DOP analysis makes the assumption that the dominant errors come from the uncertainty

in the spacecraft's position and velocity, and thus ignores additional states. As DOP analyzes

the dynamic measurement geometry, a ground station tracking schedule that optimizes

PDOP will also improve the estimation of station biases and any extra states. Since a

traditional LinCov analysis assumes conservative noise and bias values to account for any

errors from linearization, realistically just focusing on optimizing the measurement geometry

is best for real time tracking data. However, for cases where signi�cant process noise or

signi�cantly in�uential additional states are present, LinCov may be the better suited to

optimize ground station tracking schedules.

In the case where no additional states are present, DOP and LinCov analyses should

produce very similar estimation results. For the IM-1 mission, the lander is expected to

experience no more than Q = 1e−14m2

s3
of continuous process noise from misaligned thruster

�re. The percent error between PDOP generated by the DOP algorithm and the normalized

RSS of the position covariance generated by a LinCov analysis where no additional states

are present is calculated and presented in Table 7.1:

Table 7.1: DOP and LinCov Comparison: Q = 1e−14m2

s3

OD Segment LVS-

CM

CM-

TCM1

TCM1-

TCM2

TCM2-

TCM3

TCM3-

LOI

LOI-

DOI

Percent Error 0.087 0.087 0.124 0.044 0.004 0.023

As LinCov has been validated through Monte Carlo analysis, the DOP algorithm has been

subsequently validated through LinCov.



70

7.6 DOP for Ground Station Optimization

Thus a recursive, multi-measurement DOP algorithm has been explicitly derived that

may be used to quickly analyze the performance of a ground station tracking schedule. A

signi�cant bene�t of DOP analysis over LinCov is that the DOP algorithm saves on runtime

by strictly analyzing the dynamic measurement geometry by assuming the dominate sources

of uncertainty are in the spacecraft's position and velocity. On average, the DOP analysis

as derived runs 10× more quickly than a LinCov analysis

Another advantage of the DOP algorithm is that it does not require explicit information

regarding the measurement noise. For the DOP algorithm containing one measurement type,

the algorithm is independent of the measurement noise. The DOP algorithm implementing

two measurement types requires a more general knowledge of the ratio between range and

range-rate noise. For ground-based range and range-rate measurements, this ratio k is

generally between 1× 103 and 1× 105.

The DOP analysis is well suited for optimizing entire ground station tracking schedules

for OD segments. By analyzing strictly the dynamic measurement geometry of the ground

stations and the lander, optimal estimation performance can be achieved through schedule

the correct set of stations. Furthermore, since DOP analysis runs more quickly that LinCov,

it is better suited for optimization procedure. While not considered for the remainder of this

research, ground station optimization with LinCov should be considered when other sources

of uncertainty become important.
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CHAPTER 8

POSITION DILUTION OF PRECISION: OPTIMAL TRACKING SCHEDULES

Now with the DOP algorithm derived and its validity veri�ed, DOP is implemented in

a Genetic Algorithm to produce optimal ground station tracking schedules with respect to

PDOP. MATLAB's genetic algorithm is used to alter a set of discrete parameters, creating

tracking schedules with varying stations and operation times [36].

This chapter details how the genetic algorithm is implemented, including a discussion

on how the optimization object is formed to minimize PDOP, thus optimizing the dynamic

measurement geometry. This chapter presents results depicting optimal tracking schedules

given a set number of stations in both cislunar space and in lunar orbit.

8.1 Objective Functions and Optimization Objects

The objective function of an optimization problem is the primary metric that is to be

minimized [25]. Objective functions must be a scalar metric. While any metric can be

used as an objective function, using a value that has a real application to ground station

optimization is best. Sometimes objective functions are referred to as cost functions or

just the cost. The term objective function is used in this research to avoid confusion with

discussions on operational costs.

The optimization object is a vector that contains the parameters that are changed

by the optimization algorithm to minimize the objective function. The parameters in the

optimization object can be subjected to linear constraints, nonlinear constraints, and integer

constraints.
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8.1.1 Position Dilution of Precision

Position Dilution of Precision (PDOP) is the primary objective function for this chapter.

By minimizing PDOP, the dynamic measurement geometry is optimized with respect to the

lander's position. Furthermore, PDOP provides an intuitive, unitless metric to quantify the

estimation errors.

Velocity Dilution of Precision (VDOP) is another common metric that could be used for

optimization and, depending on how the multi-measurement DOP algorithm is formed, may

also be unitless. PDOP is chosen over VDOP due to its more common use in other forms

of DOP analysis and its sensitivity to tracking schedules. Results in Fig. 6.5 on page 57

from the study done on optimal range measurement placement shows that the �nal velocity

errors are not nearly as sensitive to measurement optimization as �nal position errors. The

results in Fig. 6.4 also indicate that by minimizing �nal position errors, the �nal velocity

errors are reduced to an acceptable and near optimal values. Ultimately, higher velocity

errors directly cause position error growth through propagation. Thus when �nal position

errors are optimal, the velocity errors should be signi�cantly reduced.

While an optimal tracking schedule with respect to PDOP may not be optimal with

respect to VDOP, the VDOP should be decreased to acceptable and potentially optimal

levels. Before an optimal tracking schedule with respect to PDOP is implemented, analysis

should be performed to determine whether the velocity errors are acceptable.

Lastly, PDOP has potential for future lunar missions. Future optimization may be

desired to determine the location of stationary objects such as lunar rovers or stations.

Since these will have little to no velocity, PDOP is the logical choice for optimizing the

measurement geometry.
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8.1.2 Continuous PDOP Optimization Object

The optimization object for to minimize PDOP contains parameters that identify the

station and the swap times between them. For example, a tracking schedule that contains

two stations has the optimization object:

s =

[
N1 N2 t1:2

]T
(8.1)

where N1 and N2 are any of the six available stations, and t1:2 indicates the time when

tracking swaps from station N1 to N2. For an optimal tracking schedule with three stations,

the optimization object is:

s =

[
N1 N2 N3 t1:2 t2:3

]T
(8.2)

where N1, N2, and N3 are any of the six available stations, t1:2 indicates the time when

tracking swaps from station N1 to N2, and t2:3 indicates the time when tracking swaps from

station N2 to N3. This pattern is generalized to include any number of stations to an OD

segment with the optimization object:

s =

[
N1 N2 · · · Nn t1:2 t2:3 · · · t(n−1):n

]T
(8.3)

where the size of the optimization object depends on the number of stations to be considered

for an OD segment. The total size of the optimization object is (2N -1) with N stations and

N-1 swap times.
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The swap times are subjected to linear constraints so that each swap time is greater

than the previous. Equation ?? below depicts an example linear constraint when three

stations are implemented:

[
0 0 0 1 −1

]



N1

N2

N3

t1:2

t2:3



≤ −td (8.4)

Practically, ground stations must be used for some duration of time, otherwise they cannot

be scheduled at all. The delay time td is set to ensure set to ensure there is a delay between

any two swap times. For this research, td is set at a half hour, which is considered low for

practical applications, but proves interesting for analysis.

Formulating the optimization object with swap time parameters instead of start and

stop time parameters is advantageous in a few ways. First, the size of the optimization

object reduces from 3N with separate start and stop time parameters to (2N -1) with swap

time parameters. As the number of parameters increases, the optimization algorithm less

consistently converges to the optimal solution.

Second, swap time parameters encourage the formulation of continuous tracking

schedules. Additional measurements never worsen estimation performance, meaning the

optimal solution is as close to continuous coverage as possible, given a number of stations.

Thus formulating the optimization object with swap time parameters helps the optimization

algorithm focus on the sample space more likely to contain the minimum. Continuous

tracking schedules are also desired by Intuitive Machines for the IM-1 mission in order to

ensure mission success. For future missions, tracking schedules with less coverage may be

desired to save on operational costs, which are discussed in subsequent chapters.
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The optimization problem at hand is an integer problem, since the station numbers must

be integer values 1-6 corresponding to an actual station. For this research, the swap time

parameters are set at discrete 30 minute increments. While the ground stations are assumed

to provide measurements every 10 seconds, the discretization of the swap times does not

need to be so precise. By discretizing the swap times at 30 minute increments, the number of

possible combinations for the optimization object dramatically decreases. For example, a 20

hour OD segment that has three stations and a swap time discretization set at 10s has over

13.64 trillion combinations. By discretizing the swap times at 30 minute increments, the

number of possible con�gurations decreases to just over 171,000. Veri�cation was performed

by the author to ensure that optimal solutions produced at various discretizations yielded

the same results.

8.2 Optimization Procedure

8.2.1 Genetic Algorithm

Genetic algorithms are well suited to �nd the best optimization object for integer

problems with complex objective functions. [27, 28] Using MATLAB's genetic algorithm

optimization toolbox [36], the genetic algorithm creates an initial random population of

objects based on user de�ned parameters bounds. From each of these optimization objects,

a ground station tracking schedule is created and run through the DOP algorithm to obtain

the PDOP at the �nal time. The genetic algorithm creates new optimization objects based

on the previous population and iterates until an optimal ground station tracking schedule

is found. The optimization process is depicted in Fig. 8.1:
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Fig. 8.1: Ground Station Tracking Schedule Optimization Procedure

The stopping criteria include run time, number of generations, and a function tolerance,

where the genetic algorithm terminates if any one of the criteria is met, however, the main

criteria for this work is the objective function tolerance. The genetic algorithm is applied

to each OD segment and subsegment in cislunar space to �nd an optimal ground station

tracking schedule with three stations in the optimization object. With three ground stations,

each OD segment is "well covered" in terms of having continuous coverage. The inclusion

of subsequent stations to the optimization object yields smaller marginal gains in DOP

performance with increasing complexity for the genetic algorithm. However, including more

stations decreases the PDOP and may be necessary to ensure mission success.

It is important to note that as the number of stations in the optimization object

increases, the con�dence that the genetic algorithm provides the global minimum decreases.

For a 24 hour OD segment with the half-hour time discretization, there exists over 1.4 billion

potential solutions for �ve stations. For continuous coverage, millions of these con�gurations

could produce PDOP values that are near the global minimum, and the genetic algorithm

may have di�culty converging to the absolute global solution due to numerical precision.

Furthermore, local minima are always a concern for non-convex optimization problems. To

ensure the genetic algorithm approaches the global minimum, a very large initial population

is implemented that attempts to span the entire sample space. The genetic algorithm

is also run multiple times with di�erent initial populations to ensure consistent solution

convergence. Ultimately, the di�erences between the solution found by the genetic algorithm

and the true global minimum should be negligible.
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8.2.2 Visibility Report

The optimization procedure requires knowledge on how all available stations may

perform in the DOP algorithm. Thus, the measurement partials from every station at

all times could be used in the optimization. In order to calculate the measurement partials

for all stations at all times, a visibility report is calculated.

The visibility report indicates when a station can generate measurements, or simply

when the lander is visible to the station. High �delity visibility reports are created using

details such as the station elevation and surrounding terrain. Intuitive Machines creates high

�delity visibility reports using STK. A simpler visibility report can be quickly calculated

and altered through vector logic, and is derived here. Note that low �delity visibility reports

were veri�ed against the high �delity visibility reports, di�ering by a matter of minutes.

Figure 8.2 depicts when the lander is visible to a ground station. Each station has a

Field of Vision (FOV) that is conservatively set at 15 degrees above the horizon, or at 75

degrees. When the lander is within the station's FOV, it is considered visible.

Fig. 8.2: Visibility Generation

Thus the lander is visible to a station according to:

θ = cos−1(iTrl/StirSt) (8.5)

if θ ≤ FOV (8.6)
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The next element in the visibility report is to determine when visibility is lost due to lunar

occulation. Figure 8.3 depicts the vector logic for determining lunar occultation:

Fig. 8.3: Lunar Occultation

The angle β represents the angle between the position vector of the Moon with respect to

a station and the position vector of the Moon's edge with respect to the station. The angle

β is calculated as:

β = cos−1(
||rM/St||
RM

) (8.7)

The angle α represents the angle between the position vector of the Moon with respect to

a station and the position vector of the lander with respect to the station. The angle α is

calculated as:

α = cos−1(iTrl/StirM/St) (8.8)

Thus, lunar occultation occurs if both of the following conditions are met:

α ≤ β (8.9)

||rM/St|| ≤ ||rl/St|| (8.10)
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indicating that if the lander is farther away from that station than the Moon is from the

station and is within the Moon's shadow, it is not visible to the station.

With the visibility report, the measurement partials for each station are calculated

along the entire nominal trajectory. The measurement partials and the STMs are calculated,

stored, and passed into the DOP algorithm, signi�cantly reducing the run time of each DOP

algorithm. To further improve the performance of the DOP algorithm, MATLAB's codegen

is used to generate mex functions [36]. These mex functions allow MATLAB to run functions

in C language. The improvement in runtime varies depending on what function is translated

to a mex function, but the DOP mex function on average runs 7.5× more quickly that the

standard function. By precomputing all of the measurement partials and STMs and by

using mex functions, the genetic algorithm is able to evaluate the objective function using

the DOP algorithm in less than 0.014 seconds.

8.2.3 Number of Stations Implemented

Each OD segment is analyzed separately to determine an optimal ground station

tracking schedule in preparation for an upcoming maneuver. In cislunar space, the OD

segments are further divided into subsegments in order to provide intermediate state

estimates on an approximately daily basis. The OD subsegments help the optimization

algorithm focus on one single rotation of the Earth and the corresponding visible stations.

Furthermore, an accurate and precise state estimate is desired operationally by the ground

navigation team in order to determine any anomalies during the mission. From LOI to DOI,

the OD segment is broken up into six OD subsegments to provide a state estimation solution

every two orbits, where each orbit takes approximately two hours.

For the OD segments and subsegments in cislunar space, optimal ground station

tracking schedules are found with three, four, and �ve stations. Additional stations, as

is seen in subsequent results, experience diminishing marginal gains in PDOP performance.

Thus adding a sixth station to the optimization does not signi�cantly improve PDOP for

this trajectory. For the shorter OD subsegments in lunar orbit, optimal tracking schedule

with two stations are found.
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Note that the solutions presented are optimal given the number of stations. Determining

the absolute global PDOP minimum of an OD segment would require adding as many

stations as possible with no constraints on how long each station could take measurements.

The focus on this research is to provide optimal tracking schedule templates with a set

number of stations, allowing the navigation team at Intuitive Machines to alter the schedule

as needed while still obtaining the best possible results.
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8.3 Optimal PDOP Tracking Schedules: Cislunar Space

Figure 8.4 below depicts the optimal PDOP tracking schedules found by the genetic

algorithm for the OD segment LVS-CM:

Fig. 8.4: Optimal PDOP Schedule: LVS-CM

Note the optimal con�guration with just four stations outperforms the Benchmark that

has eight. As previously mentioned, this OD segment is dominated by Earth's gravity and

estimation is better than OD segments further in cislunar space.
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Figure 8.5 below depicts the optimal PDOP results found by the genetic algorithm for

the OD subsegment corresponding to the �rst half of CM-TCM1:

Fig. 8.5: Optimal PDOP Schedule: CM-TCM1H

Note that with just three stations, the optimal con�guration outperforms the benchmark

by 21%. With the same the number of stations, the optimal con�guration performs almost

twice as well. Also note the pattern of swapping between GHY6 and HBK26 in the optimal

solutions.
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Figure 8.6 below depicts the optimal PDOP results found by the genetic algorithm for

the OD subsegment corresponding to the second half of CM-TCM1:

Fig. 8.6: Optimal PDOP Schedule: TCM1H-TCM1

Note that the optimal con�guration outperforms the Benchmark with four stations.

With four stations, the optimal schedule outperforms the Benchmark by 27%. With �ve

stations, the optimal schedule outperforms the benchmark by 32%. Also note the pattern

of swapping between GHY6 and HBK26 in the optimal solutions.
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Figure 8.7 below depicts the optimal PDOP results found by the genetic algorithm for

the OD subsegment corresponding to the �rst half of TCM1-TCM2:

Fig. 8.7: Optimal PDOP Schedule: TCM1-TCM2H

Here the three station optimal schedule demonstrates a "piggyback". The �rst swap time is

19.5 hours, allowing HBK26 to obtain measurements again after a full Earth rotation. With

four stations, the optimal schedule outperforms the Benchmark by 16%, with �ve stations

by 22%.
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Figure 8.8 below depicts the optimal PDOP results found by the genetic algorithm for

the OD subsegment corresponding to the second half of TCM1-TCM2:

Fig. 8.8: Optimal PDOP Schedule: TCM2H-TCM2

Note that optimal con�guration outperforms the benchmark of seven stations with four

stations. With four stations, the optimal schedule outperforms the benchmark by 12%.

With �ve stations, the optimal schedule outperforms the benchmark by 17%
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Figure 8.9 below depicts the optimal PDOP results found by the genetic algorithm for

the OD subsegment corresponding to TCM2-TCM3:

Fig. 8.9: Optimal PDOP Schedule: TCM2-TCM3

With three stations the optimal schedule outperforms the benchmark by 10%, with four

stations by 33%, with �ve stations by 34%. Note that the optimal solutions do not experience

the swapping between GHY6 and HBK26. This OD segment is a great example of the need

to run the optimization as opposed to following patterns exhibited from other OD segments.
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Figure 8.10 below depicts the optimal PDOP results found by the genetic algorithm

for the OD subsegment corresponding to TCM3-LOI. Generally, the position errors are very

small and less sensitive near perilune, so the �nal PDOP is taken and minimized two hours

prior to LOI.

Fig. 8.10: Optimal PDOP Schedule: TCM3-LOI

Note that while the optimal schedules outperform the benchmark by very small margins,

they do so with far fewer stations.



88

Table 8.1 records the PDOP values obtained through the optimization for each OD

segment in cislunar space:

Table 8.1: Optimal PDOP Results: Cislunar Space

OD Segment OD1 OD2.1 OD2.2 OD3.1 OD3.2 OD4 OD5

Benchmark 0.4401 2.3021 1.9477 1.8715 1.9975 2.2524 1.2337

[8] [6] [6] [7] [7] [7] [7]

3 St Optimal 0.4446 1.8086 2.0404 2.2002 2.3415 2.0211 1.2971

4 St Optimal 0.3961 1.3492 1.4214 1.5969 1.7395 1.4877 1.1740

5 St Optimal 0.3711 1.2515 1.3205 1.4550 1.6551 1.4454 1.0912

Note that each optimal solution with just four stations outperforms the benchmark solutions,

which include six to eight stations. Thus by carefully analyzing the dynamic measurement

geometry, optimal solutions can be found with relatively simple tracking schedules.
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8.4 Optimal PDOP Tracking Schedules: Lunar Orbit

Table 8.2 below records the optimal PDOP results found by the genetic algorithm for

the OD subsegments in lunar orbit. The Benchmark schedule consists of one station per

OD subsegment that produces the best PDOP results.

Table 8.2: Optimal PDOP Schedules: LLO

OD Subsegment: LLO.1 LLO.2 LLO.3 LLO.4 LLO.5 LL0.6

Benchmark PDOP: 0.3855 0.4649 0.9236 0.4824 0.5131 0.5346

Stations: KRU1 DSS17 DSS17 OKN2 D32 KRU1

Optimal PDOP: 0.1248 0.2367 0.3796 0.4029 0.3378 0.1870

Stations: HBK26 KRU1 KRU1 OKN2 D32 HBK26

DSS17 DSS17 DSS17 D32 OKN2 GHY6

Swap Times [hrs]: 1.4 1.9 1.1 3.1 2.5 2

Note that the dynamics are well de�ned in lunar orbit, resulting in consistently low PDOP

values. Improvement from one station to two stations can decrease PDOP by up to 68%.

The smallest improvement occurs in LLO.4, where OKN2 is the only visible station for most

of the segment.
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8.5 PDOP Results Analysis

Some key patterns occur in the PDOP minimization results. First, as previously

discussed, there is a strong emphasis of swapping between stations that vary signi�cantly

in latitude. Swapping between GHY6 in England and HBK26 in South Africa provides a

large change in latitude, improving measurement geometry. Another powerful change in

the measurement geometry comes from swapping between stations that vary in longitude.

Swapping between KRU1 in South Guiana and OKN2 in Japan represents swapping between

stations that are on opposite sides of the Earth. These two patterns can be used as basic

rules of thumb for PDOP optimization. However, some OD segments did not exhibit these

patterns, indicating the importance of running the optimization tool.

For all results across cislunar space, the optimal schedules with four stations outperform

the Benchmark with six to eight stations. Thus the conclusion is reached that simply adding

many stations to an OD segment is not as powerful as carefully analyzing the dynamic

measurement geometry.
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CHAPTER 9

NEAR-CONTINUOUS NAV-DOLLARS: OPTIMAL TRACKING SCHEDULES

With the optimization of tracking schedules with respect to PDOP complete, analysis

regarding station selection and the dynamic measurement geometry is ful�lled in this

research. However, reviewing the PDOP values in Table 8.1 indicate that the worst PDOP

is only 2.3415 across all OD segments. For a conservative range noise value of 100m, this

tracking schedule would yield a RSS of the position estimation errors of 234m. Furthermore,

it is likely that many combinations of stations producing continuous tracking schedules

produce an acceptable PDOP.

This chapter presents the analysis done to �nd continuous tracking schedules that

produce acceptable PDOP values while also reducing operational costs. The metric of

Nav-Dollars is introduced and implemented in a genetic algorithm to produce optimal, near-

continuous Nav-Dollar tracking schedules. Thus while many continuous tracking schedules

produce acceptable PDOP values, an optimal Nav-Dollar schedule has an acceptable PDOP

with low operational costs.
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9.1 Nav-Dollars and Operational Costs

Nav-Dollars comes from a combination of estimation performance and operational costs.

This section outlines how operational costs are de�ned, how Nav-Dollars are derived, and

how near-continuous tracking schedules are implemented to minimize Nav-Dollars.

The operational cost of a station is an estimate of how much the station costs Intuitive

Machines to contract and operate during measurement generation. Each ground station is

assigned a weighted dollar value, selected from 1, 2, and 2.5, which have been provided by

Intuitive Machines [24]. The operational cost for a station is calculated by multiplying the

station's operation time by its weighted dollar value. Thus, measurements taken from a

station with operational weight of 2 cost twice as much as measurements taken during the

same interval from a station with an operational weight of 1.

With each station assigned di�erent weights, the total operational cost of a tracking

schedules is calculated by summing the operational cost of each station. The results shown

are in units of dollar, but should not be treated as real dollar estimates. Operational costs

provide insight into whether an additional station is worth the PDOP improvement. The

best case scenario is a tracking schedule that minimizes both PDOP and operational costs.

However, the more common scenario is an additional station decreases PDOP and increases

operational costs. To analyze the trade o� between PDOP and operational costs, the two

values are multiplied together to provide a combined metric, referred to as Nav-Dollars.

The Nav-Dollar metric comes from maximizing the information per dollar obtained

through a tracking schedule. Optimization traditionally attempts to minimize an objective

function, so the inverse of information per dollar is minimized. The dollars per information

is calculated by dividing the operational cost by the information obtained from a tracking

schedule. Since PDOP is derived from the inverse of the information matrix, minimizing

the product of PDOP and operational costs, referred to as Nav-Dollars, is equivalent to

maximizing position information per dollar. Furthermore, since PDOP is unitless, Nav-

Dollars has a unit of dollars. Nav-Dollars can be viewed as a navigation weighted operational

cost.
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9.2 Nav-Dollar Implementation

The optimization object for minimizing Nav-Dollars is the same as minimizing PDOP,

consisting of station parameters and swap time parameters.

s =

[
N1 N2 · · · Nn t1:2 t2:3 · · · t(n−1):n

]T
(9.1)

A crucial element of Nav-Dollars minimization is that signi�cant state information can be

obtained from very few measurements. Initial attempts to minimize Nav-Dollars produced

tracking schedules that took measurements for less than 10% of the OD segment. Essentially,

Nav-Dollars are minimized by decreasing either operational costs or the �nal PDOP, and

decreasing the operational costs is far easier to do by taking fewer measurements.

While the non-continuous tracking problem is interesting, and is addressed in

the next chapter, Intuitive Machines requires continuous tracking for their early lunar

missions. Furthermore, the goal of implementing Nav-Dollars in the �rst place is to

determine continuous tracking schedules that produce near-optimal PDOP values for smaller

operational costs. Thus, provisions are implemented into the optimization problem to force

near-continuous coverage.

While not pursued in depth in this research, the �rst attempt to force near-continuous

tracking was done by placing an upper bound on the PDOP. Any tracking produced by the

genetic algorithm that did not produce a PDOP lower than the bound was set to return a

large, default Nav-Dollar. As is common with constrained optimization, the optimization

algorithm returned minimal Nav-Dollar tracking schedules that produced PDOP values at

or near the upper bound. This technique was not further pursued as the upper PDOP bound

was set arbitrarily, the resulting optimal schedules varied greatly depending on the upper

bound, and often did not produce near-continuous tracking schedules. Furthermore, what is

considered an acceptable PDOP for one OD segment may not be for another OD segment.

To e�ectively produce near-continuous tracking schedules that minimize Nav-Dollars,

a lower bound is placed on the percentage of time that measurements are taken. When a

tracking schedule does not cover at least the lower bound implemented, the Nav-Dollar is set
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at a large, default value. By forcing the algorithm to focus on tracking schedules that take

measurements during at least 75% of the OD segment, near-continuous tracking schedules

are produced that minimize Nav-Dollars at acceptable PDOP levels.

As was done in the study to minimize PDOP, tracking schedules that minimize Nav-

Dollars are found with three, four, and �ve stations for each OD segment in cislunar space.

Two station schedules are found for each OD subsegment in lunar orbit.
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9.3 Cislunar Near-Continuous Nav-Dollars Results

Figure 9.1 below depicts the optimal near-continuous Nav-Dollar results found by the

genetic algorithm for the OD segment LVS-CM.

Fig. 9.1: Optimal Nav-Dollar Schedule: LVS-CM
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Table 9.1 depicts the PDOP and Nav-Dollars for the optimal Nav-Dollar. For reference,

the optimal values from the PDOP optimization are reported in red.

Table 9.1: Optimal PDOP/Nav-Dollar Schedule Comparison: LVS-CM

# Stations: 3 4 5

PDOP: 0.4446 (0.4446) 0.4100 (0.3961) 0.3949 (0.3711)

Nav-Dollars: 5,362 (5,362) 4,502 (5,397) 3,664 (4,258)

Note that by optimizing Nav-Dollars with four and �ve stations, the Nav-Dollars are less

than the optimal PDOP's. But importantly, the PDOP is not increased signi�cantly by

optimizing Nav-Dollars. Also note that the tracking schedule that minimizes Nav-Dollars

with three stations is the same schedule that minimizes PDOP.
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Figure 9.2 below depicts the optimal near-continuous Nav-Dollar results found by the

genetic algorithm for the OD subsegment corresponding to the �rst half of CM-TCM1.

Fig. 9.2: Optimal Nav-Dollar Schedule: CM-TCM1H

Note that the �ve station schedule does not actually contain �ve stations. Rather the

optimization adds a "ghost station" to the beginning of the OD segment. This allowed the

time of D32 to start later, and in turn produce a slightly smaller Nav-Dollar. Table 9.2

shows PDOP and Nav-Dollars found by the optimal schedules. For reference, the optimal
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values from the PDOP optimization are reported in red.

Table 9.2: Optimal PDOP/Nav-Dollar Schedule Comparison: CM-TCM1H

# Stations: 3 4 5

PDOP: 2.1183 (1.8086) 1.7122 (1.3492) 1.7037 (1.2515)

Nav-Dollars: 14,665 (17,587) 11,271 (16,391) 11,068 (15,787)

Here note that all optimal Nav-Dollar schedules outperform the Nav-Dollars generated by the

optimal PDOP schedules. For this OD subsegment, adding a �fth station to the optimization

object only improved Nav-Dollars by altering when the �rst station begins. While not

presented here, adding a sixth station to the optimization object also does not truly add a

sixth station, but rather a ghost station.

The question here arises whether the formation of the swap time parameters in the

optimization object is appropriate. If the parameters were start and end times, an analysis

with four stations could have been produced the same schedule found with �ve stations in

Fig. 9.2.

It is the author's opinion that the current optimization object remains advantageous

as it reduces the number of variables from 3N to 2N − 1. Fewer variables consistently

improves the run time and convergence consistency of the genetic algorithm. Furthermore

with the current con�guration the better schedule with four stations is found, just in a

roundabout way. Lastly, as Nav-Dollar inherently attempts to reduce the measurement

time, start and stop time parameters do not as easily lead to continuous schedules as the

swap time parameter does. This OD segment is the only instant in which a ghost station is

present.
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Figure 9.3 below depicts the optimal near-continuous Nav-Dollar results found by the

genetic algorithm for the OD subsegment corresponding to the second half of CM-TCM1.

Fig. 9.3: Optimal Nav-Dollar Schedule: TCM1H-TCM1
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Table 9.3 records the Nav-Dollar comparisons:

Table 9.3: Optimal PDOP/Nav-Dollar Schedule Comparison: TCM1H-TCM1

# Stations: 3 4 5

PDOP: 2.0657 (1.8086) 1.8703 (1.3492) 1.8357 (1.2515)

Nav-Dollars: 19,099 (19,306) 12,761 (16,225) 12,330 (14,303)

Here note that all optimal Nav-Dollar schedules outperform the Nav-Dollars generated by

the optimal PDOP schedules. For this OD subsegment, adding a �fth station does not

signi�cantly reduce Nav-Dollars. Interestingly, the only di�erence between the optimal

solutions found by minimizing PDOP and Nav-Dollars with three stations is the time that

the stations change.
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Figure 9.4 below depicts the optimal near-continuous Nav-Dollar results found by the

genetic algorithm for the OD subsegment corresponding to the �rst half of TCM1-TCM2.

Fig. 9.4: Optimal Nav-Dollar Schedule: TCM1-TCM2H
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Table 9.3 records the Nav-Dollar comparisons:

Table 9.4: Optimal PDOP/Nav-Dollar Schedule Comparison: TCM1-TCM2H

# Stations: 3 4 5

PDOP: 3.3056 (2.5623) 1.6672 (1.5696) 1.6436 (1.4550)

Nav-Dollars: 30,730 (44,215) 20,254 (25,051) 16,755 (22,951)

Here note that all optimal Nav-Dollar schedules outperform the Nav-Dollars generated by the

optimal PDOP schedules. Note that while the PDOP did not change signi�cantly between

the four and �ve station optimal schedules, the Nav-Dollars did signi�cantly.
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Figure 9.5 below depicts the optimal near-continuous Nav-Dollar results found by the

genetic algorithm for the OD subsegment corresponding to the second half of TCM1-TCM2.

Fig. 9.5: Optimal Nav-Dollar Schedule: TCM2H-TCM2
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Table 9.5 records the Nav-Dollar comparisons:

Table 9.5: Optimal PDOP/Nav-Dollar Schedule Comparison: TCM2H-TCM2

# Stations: 3 4 5

PDOP: 3.5496 (1.8086) 1.8853 (1.3492) 1.8366 (1.2515)

Nav-Dollars: 34,316 (46,421) 22,733 (28,082) 19,577 (26,774)

Here note that all optimal Nav-Dollar schedules outperform the Nav-Dollars generated by

the optimal PDOP schedules. For this OD subsegment, adding a �fth station does not

signi�cantly reduce the PDOP, but does impact Nav-Dollars.
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Figure 9.6 below depicts the optimal near-continuous Nav-Dollar results found by the

genetic algorithm for the OD segment corresponding to TCM2-TCM3.

Fig. 9.6: Optimal Nav-Dollar Schedule: TCM2-TCM3
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Table 9.6 records the Nav-Dollar comparisons:

Table 9.6: Optimal PDOP/Nav-Dollar Schedule Comparison: TCM2-TCM3

# Stations: 3 4 5

PDOP: 3.7828 (2.7710) 1.7555 (1.4877) 1.6519 (1.4454)

Nav-Dollars: 44,386 (57,542) 21,406 (29,977) 19,574 (28,806)

Here note that all optimal Nav-Dollar schedules outperform the Nav-Dollars generated by

the optimal PDOP schedules. Both PDOP and Nav-Dollars decrease notably with the

inclusion of additional stations.
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Figure 9.7 below depicts the optimal near-continuous Nav-Dollar results found by the

genetic algorithm for the OD segment corresponding to TCM3-LOI. Generally the position

errors are very small on lunar approach, so the minimization occurs approximately two hours

before LOI.

Fig. 9.7: Optimal Nav-Dollar Schedule: TCM3-LOI
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Table 9.7 records the Nav-Dollar comparisons:

Table 9.7: Optimal PDOP/Nav-Dollar Schedule Comparison: TCM3-LOI

# Stations: 3 4 5

PDOP: 1.3733 (1.8086) 1.2981 (1.3492) 1.4228 (1.2515)

Nav-Dollars: 15,447 (18,638) 13,477 (17,169) 11,906 (15,469)

Here note that all optimal Nav-Dollar schedules outperform the Nav-Dollars generated by

the optimal PDOP schedules. Interestingly, adding a �fth station does reduce Nav-Dollars,

but is the only instance of doing so by also increasing the PDOP.
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9.4 Lunar Orbit Near-Continuous Nav-Dollars Results

Due to lunar occultation, the solution space covering 75% of the OD subsegments is

very limited. Furthermore, it is common for OD subsegments in lunar orbit to only have

one to two stations to select. Table 9.8 depicts the Nav-Dollars from the optimal PDOP

study compared to the Nav-Dollar optimization.

Table 9.8: Optimal PDOP/Nav-Dollar Schedule Nav-Dollar Comparison: LLO

OD Subsegment: LLO.1 LLO.2 LLO.3 LLO.4 LLO.5 LL0.6

Optimal PDOP:

Nav-Dollars: 365 673 912 824 468 343

Stations: HBK26 KRU1 KRU1 OKN2 D32 HBK26

DSS17 DSS17 DSS17 D32 OKN2 GHY6

Swap Times [hrs]: 1.4 1.9 1.1 3.1 2.5 2

Optimal Nav-Dollars:

Nav-Dollars: 301 664 912 824 468 312

Stations: HBK26 KRU1 KRU1 OKN2 D32 HBK26

DSS17 DSS17 DSS17 D32 OKN2 GHY6

Swap Times [hrs]: 0.5 1.5 1.1 3.1 2.5 1.5
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Note the only di�erences are in LLO.1, LLO.2, and LLO.6, where the swap times di�er

in order to spend less time on the more expensive stations. OD subsegments LLO.3, LLO.4,

and LLO.5 are exactly the same as the optimal PDOP schedules. Because of the minimal

changes in Nav-Dollars and the schedule, it is safe to assume that optimizing PDOP alone

is su�cient for reducing Nav-Dollars in lunar orbit. Furthermore, lunar orbit is a crucial

mission segment, and optimizing PDOP may be the wiser method.
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9.5 Optimal PDOP and Nav-Dollar Comparison and Discussion

Some clear patterns appear through minimizing near-continuous Nav-Dollars that are

seen by comparing tracking schedules with the optimal PDOP results. Figure 9.8 shows the

optimal PDOP and optimal Nav-Dollar schedule for the �rst half of CM-TCM1 with four

stations:

Fig. 9.8: Optimal PDOP and Nav-Dollar Comparison: CM-TCM1H

Note that to minimize PDOP, the stations used are OKN2, GHY6, HBK26, and DSS17,

sequentially. To minimize Nav-Dollars, the stations used are D32, GHY6, HBK26, and

DSS17, sequentially. The order of the last three stations is the same, as the geometry

obtained from those three stations helps reduce PDOP at the �nal time. Station D32

replaces OKN2 as D32 has a weight of 1 and OKN2 has a weight of 2. GHY6 also has a

weight of 1, and is used for more time in the Nav-Dollar minimization over HBK26, which

has a weight of 2.5.
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Another great example is seen by comparing the schedules for the �rst half of TCM1-

TCM2. Figure 9.9 shows the four station optimal schedules:

Fig. 9.9: Optimal PDOP and Nav-Dollar Comparison: TCM1-TCM2H

Note the last 12 hours of each OD segment are essentially the same, but the beginning is

di�erent. To reduce operational costs, the Nav-Dollar optimal solution replaces KRU1 in

South Guiana with DSS17 in Kentucky. Doing so only increases the PDOP from 1.5696 to

1.6672, but decreases Nav-Dollars from 25,051 to 20,254. Interestingly, KRU1 is never used

after OD1 in the Nav-Dollar optimization, as DSS17 is almost always visible at the same

times for a lower operational cost.

Future work may be done to study how optimal Nav-Dollar schedules change as the

lower bound of measurement coverage is altered. The lower bound here is set at 75%, and

is generally seen as conservatively low for near-continuous coverage.
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CHAPTER 10

NON-CONTINUOUS NAV-DOLLARS: OPTIMAL TRACKING SCHEDULES

As the nature of minimizing Nav-Dollars emphasizes taking fewer measurements, it is

appropriate to study how Nav-Dollars are minimized with non-continuous tracking. While

non-continuous tracking is not desired for the IM-1 mission, Intuitive Machines has expressed

strong interest in low measurement OD segments for circuitous lunar missions and future

missions.

This chapter outlines how a non-continuous optimization object is formulated and

implemented in a genetic algorithm. Results are shown for each OD segment and subsegment

in cislunar space and in lunar orbit. Trends are discussed and the results are compared to

the results obtained from near-continuous Nav-Dollar schedules.
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10.1 Non-Continuous Optimization Object

In order to create non-continuous tracking schedules, new time metrics are analyzed

beside swap time parameters. The optimization object that allows the greatest �exibility

includes start and end time parameters. For a schedule with two stations, the optimization

object is:

s =

[
N1 N2 t1,s t1,e t2,s t2,e

]
(10.1)

where station N1 begins taking stations at time t1,s and ends taking measurements at time

t1,e, and station N2 begins taking measurements at Where station N1 begins taking stations

at time t2,s and ends taking measurements at time t2,e. This pattern is generalized to

included any number of stations:

s =

[
N1 N2 · · · Nn t1,s t1,e t2,s t2,e · · · tn,s tn,e

]
(10.2)

Note that the size of this optimization object is 3N , where N is the number of stations.

In order to ensure that the stations do not overlap when taking measurements, linear

constraints are implemented. The linear constrains when N = 2 is expressed as:

t1,s + tb ≤ t1,e (10.3)

t2,s + tb ≤ t2,e (10.4)

t1,e ≤ t2,s (10.5)
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Or in matrix/vector form:



0 0 1 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1





N1

N2

t1,s

t1,e

t2,s

t2,e



≤



−tb

0

−tb


(10.6)

The �rst two indicate that a station, when used, must have start and end times that are at

least time tb apart. As previously discussed, a scheduled station must realistically be used

for some minimum time or it cannot be scheduled at all. The last constraint ensures that

the second station does not begin until after the �rst station. Thus this optimization object

allows for �exible, non-continuous tracking schedules to be created and found by the genetic

algorithm.

However, through optimizing several OD segments a clear pattern emerged that once

again indicated Nav-Dollars are minimized by taking as few measurements as possible. When

the linear constraints were implemented, the optimal schedules produced stations that took

as few measurements as possible according to:

tn,s + tb = tn,e (10.7)

As this pattern was consistent across OD segments, the optimization object for minimizing

non-continuous Nav-Dollars is altered to include only the start times:

s =

[
N1 N2 · · · Nn t1,s t2,s · · · tn,s

]
(10.8)
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where measurements are taken from station N starting at time ts for a set measurement

duration tb. Implementing this new optimization object reduces the number of parameters

from 3N to 2N .

10.2 Number of Stations Implemented

As discovered in the previous chapter on near-continuous Nav-Dollars, on occasion

adding an additional station does not truly add an additional station, but rather a ghost

station. This is done by the genetic algorithm primarily to obtain �exibility with the swap

time parameters.

As the non-continuous optimization object is designed to promote non-continuous

schedules, if the author and future users intend to produce schedules with N stations,

N stations must actually be used. Thus if an optimization object with four stations

is implemented, four stations must be in the tracking schedule with no ghost stations.

Provisions are taken within the optimization to penalize schedules that produce ghost

stations.

Thus adding a station to the optimization object forces more measurement time,

increasing operational costs. As is indicated in some OD segments, adding an additional

station does not reduce Nav-Dollars. It is crucial to recall that the optimal schedules are

optimal given the number of stations. As a truly optimal PDOP schedule is optimal with

constant coverage with many stations, a truly optimal Nav-Dollar schedule may include

measurements from only two or one station.

As including additional stations often increases Nav-Dollars, optimal schedules in

cislunar spaced are analyzed with three and four stations, omitting a study on �ve stations.

All cislunar schedules have a measurement duration of 1 hour. The setup in lunar orbit

remains the same with two stations per OD subsegment, but with a half hour measurement

duration.
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10.3 Cislunar Non-Continuous Results

Figure 10.1 depicts optimal schedules with three and four stations for OD segment

LVS-CM:

Fig. 10.1: Non-Continuous Nav-Dollars: LVS-CM
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No clear pattern is evident in this �rst portion, but note that while only using three to

four hours of tracking, the PDOP is less than 2.5 for each schedule. Table 10.1 shows the

Nav-Dollar comparison to the near-continuous Nav-Dollar schedules, shown in blue:

Table 10.1: Nav-Dollar Schedule Comparisons: LVS-CM

# Stations: 3 4

PDOP: 2.2067 (0.4446) 1.2537 (0.4100)

Nav-Dollars: 4,369 (5,362) 3,852 (4,502)
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Figure 10.2 depicts optimal schedules with three and four stations for the �rst half of

OD segment CM-TCM1:

Fig. 10.2: Non-Continuous Nav-Dollars: CM-TCM1H
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Here note that with four stations, three are placed near the end of the OD segment

in to reduce PDOP at the �nal time. Table 10.2 shows the Nav-Dollar comparison to the

near-continuous Nav-Dollar schedules, shown in blue:

Table 10.2: Nav-Dollar Schedule Comparisons: CM-TCM1H

# Stations: 3 4

PDOP: 4.6694 (0.7060) 2.7847 (0.4100)

Nav-Dollars: 7,564 (14,665) 6,516 (11,207)
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Figure 10.3 depicts optimal schedules with three and four stations for the second half

of OD segment CM-TCM1:

Fig. 10.3: Non-Continuous Nav-Dollars: TCM1H-TCM1
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Note that both schedules push the station segments towards the end of the OD segment.

Also note how GHY6 is given additional time with four stations, as GHY6 is the farthest

north in latitude. Table 10.3 shows the comparison to the near-continuous Nav-Dollar

schedules:

Table 10.3: Nav-Dollar Schedule Comparisons: TCM1H-TCM1

# Stations: 3 4

PDOP: 3.3958 (2.0167) 3.1019 (1.8703)

Nav-Dollars: 5,501 (19,099) 5,552 (12,761)
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Figure 10.4 depicts optimal schedules with three and four stations for the �rst half of

OD segment TCM1-TCM2:

Fig. 10.4: Non-Continuous Nav-Dollars: TCM1-TCM2H
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Both schedules push stations toward the end; however, the solution with four stations

places a segment at the very beginning, reducing estimation error growth immediately. Table

10.4 shows the Nav-Dollar comparison to the near-continuous Nav-Dollar schedules:

Table 10.4: Nav-Dollar Schedule Comparisons: TCM1-TCM2H

# Stations: 3 4

PDOP: 3.9645 (3.3056) 2.7274 (1.6672)

Nav-Dollars: 6,423 (30,730) 5,934 (20,254)
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Figure 10.5 depicts optimal schedules with three and four stations for the second half

of OD segment TCM1-TCM2:

Fig. 10.5: Non-Continuous Nav-Dollars: TCM2H-TCM2
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Both schedules push stations toward the end; however, the solution with four stations

places a segment at the beginning, reducing estimation error growth immediately. Table

10.5 shows the Nav-Dollar comparison to the near-continuous Nav-Dollar schedules:

Table 10.5: Nav-Dollar Schedule Comparisons: TCM2H-TCM2

# Stations: 3 4

PDOP: 4.1168 (3.3496) 3.2987 (1.8853)

Nav-Dollars: 6,302 (34,316) 6,105 (22,733)
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Figure 10.6 depicts optimal schedules with three and four stations for the OD segment

TCM2-TCM3:

Fig. 10.6: Non-Continuous Nav-Dollars: TCM2-TCM3
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Both schedules push stations toward the end; however, the solution with four stations

places a segment at the beginning, reducing estimation error growth immediately. Table

10.6 shows the Nav-Dollar comparison to the near-continuous Nav-Dollar schedules:

Table 10.6: Nav-Dollar Schedule Comparisons: TCM2-TCM3

# Stations: 3 4

PDOP: 4.9040 (3.7828) 3.6800 (1.7555)

Nav-Dollars: 7,632 (44,386) 7,286 (21,406)
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Figure 10.7 depicts optimal schedules with three and four stations for the OD segment

TCM3-LOI:

Fig. 10.7: Non-Continuous Nav-Dollars: TCM3-LOI
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On lunar approach, the pattern of pushing measurement segments to the end of the

OD segment is no longer evident. Table 10.7 shows the Nav-Dollar comparison to the near-

continuous Nav-Dollar schedules, shown in blue:

Table 10.7: Nav-Dollar Schedule Comparisons: TCM3-LOI

# Stations: 3 4

PDOP: 3.2994 (3.7828) 2.9073 (1.7555)

Nav-Dollars: 5,345 (15,447) 5,715 (13,477)
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10.4 Lunar Orbit Non-Continuous Nav-Dollar Results

Unlike the case where near-continuous Nav-Dollars experiences a restricted solution

space in lunar orbit, non-continuous Nav-Dollars does not. Figure 10.8 depicts the optimal

non-continuous Nav-Dollar schedules in lunar orbit with a measurement duration of 30

minutes.

Fig. 10.8: Non-Continuous Nav-Dollars: LLO
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Table 10.8 records the Nav-Dollar values from the non-continuous tracking schedules

and compares them to the near-continuous tracking case:

Table 10.8: Nav-Dollar (NAVD) Schedule Comparison: LLO

OD Subsegment: LLO.1 LLO.2 LLO.3 LLO.4 LLO.5 LL0.6

Near-Continuous NAVD:

Nav-Dollars: 301 664 912 824 468 312

Stations: HBK26 KRU1 KRU1 OKN2 D32 HBK26

DSS17 DSS17 DSS17 D32 OKN2 GHY6

Swap Times [hrs]: 0.5 1.5 1.1 3.1 2.5 1.5

Non-Continuous NAVD:

Nav-Dollars: 177 339 446 607 302 213

Stations: HBK26 KRU1 KRU1 OKN2 D32 HBK26

GY6 DSS17 DSS17 OKN2 D32 GHY6

Start Time t1 [hrs]: 0.2 0.7 0.2 0.9 1.0 0.9

Start Times t2 [hrs]: 1.7 2.9 2.2 2.9 3.0 2.7

Note how in lunar orbit signi�cant information can be gathered with smaller tracking times.

The Nav-Dollars produced are around half of those obtained through the other optimal

schedules. As is seen in Fig. 10.8, all PDOP values are either less than 1 or just around 1.
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10.5 Non-Continuous Discussion

The clearest pattern in the non-continuous Nav-Dollar study is that for OD segments in

deep cislunar space, it is advantageous to place either some or all of the station segments at

the end. Doing so provides a signi�cant reduction in PDOP at the end while saving greatly

on operational costs. When the dynamics are better de�ned by the 2-body problem near

Earth or the Moon, this patter is not evident.

Furthermore, GHY6 is the most consistently utilized station due to its geographical

advantage. GHY6 is also frequently paired with southern stations such as HBK26 or D32

to obtain a su�cient geometry lock. Future work can be done to alter the time in which

stations must take measurements, along with how many stations are used. As adding even

a fourth station did not always reduce Nav-Dollars, four stations is seen as su�cient for this

research.

Non-continuous measurements may be implemented in future lunar missions once

Intuitive Machines has developed a signi�cant presence in the industry. Note that despite

the PDOP values for non-continuous coverage being larger than other optimization studies

, the largest PDOP found was only 4.9040. For ground station networks, the noise on range

measurements is unlikely to be greater than 100m, resulting in a RSS of the position errors of

490m. Less than half a kilometer of position errors for cislunar estimation is still acceptable.
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CHAPTER 11

CONCLUSION AND FUTURE WORK

Various topics have been covered in this thesis research, many of which carry signi�cant

conclusions and potential for future work. The main conclusions and takeaways from various

chapters are discussed below, including the impact of the LinCov validation and the potential

it possesses for future navigation optimization. The conclusions and impact of the DOP

algorithm are discussed, and the trends in the optimal tracking schedules are presented.

11.1 Monte Carlo and Linear Covariance Analysis

The importance of Monte Carlo for navigation analysis cannot be understated. The

ability to quantify the estimation errors from an EKF and the nonlinear gravitational

dynamics and measurements will continue to be a large area of research for the author,

Intuitive Machines, and the space industry.

However, the time required to properly analyze EKF estimation performance with

a Monte Carlo analysis is time consuming and incredibly ill-suited for ground station

optimization. Thus the principles of linearization were introduced and a LinCov tool

developed. The LinCov tool on average runs 12,000× faster than a Monte Carlo analysis,

making it ideal for navigation optimization problems.

Before LinCov can be used with con�dence in the results, it must be validated through

Monte Carlo analysis. While Monte Carlo analysis has previously validated LinCov analysis

for cislunar trajectories [17], the research presented represents the �rst known work to the

author in which LinCov has been validated given the exactly the same environment and

measurement models.

The Monte Carlo and LinCov analyses incorporated many factors not previously

incorporated in other research. First, all station biases and SRP disturbances were modeled

as ECRVs, whereas in previous analyses the Monte Carlo tool modeled them as constants
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[17]. Second, the gravitational dynamics for both models were the same, incorporating

gravitational accelerations from the Sun, Earth, and Moon. The Earth and Moon were

modeled with spherical harmonic models, while in previous studies point mass models were

used for LinCov. Thanks to the work done by Carlos Roithmayr [33], the gravity gradient

partials were correctly implemented to model the Earth as an 8×8 body and the Moon as a

25× 25 body. Lastly, both studies implemented Kalman �lters, whereas the previous study

implemented a batch �lter for the Monte Carlo analysis.

With the LinCov tool validated by the Monte Carlo analysis, LinCov can be con�dently

implemented for cislunar analyses and optimization problems. It is highly likely that LinCov

will need to be re-validated for future IM mission trajectories, but this work is a strong

indication that LinCov is valid for most cislunar trajectories.

11.2 Optimal Range Measurement Placement

With the validated LinCov tool, the study on optimal range measurement placement was

performed. By holding the range-rate schedule constant, constrained range measurements

were placed along the tracking schedule and the navigation performance analyzed with

LinCov. The �nal position and velocity errors were analyzed for each possible combination

for a one and two segment case.

The placement of one range segment demonstrated a strong linear pattern in the �nal

velocity errors, with the best placement almost consistently occurring at the beginning of

the OD segment. More interestingly, the �nal position errors indicated that station GHY6

in Goonhilly, England was consistently chosen. While this pattern may not be strictly true

for all range-rate tracking schedules, it was true for the Benchmark schedule provided by

Intuitive Machines.

The placement of two range segments demonstrated that �nal velocity errors are not as

sensitive to the range placement as �nal position errors. The combination of using GHY6 and

HBK26 yielded the optimal �nal position errors. The clear pattern of emphasizing northern

and southern stations with range measurements led to a deeper analysis into Dilution of

Precision techniques and analyzing the dynamic measurement geometry.
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11.3 Dilution of Precision Methods

The work presented to derive the Dilution of Precision algorithm represents considerable

work done by the author and his peers. The generalized Dilution of Precision model from

NASA [37] was taken and patterns were carefully recognized to create a recursive DOP

model. The recursive model was improved by applying the matrix inversion lemma, thus

eradicating the need for constant matrix inversion to calculate PDOP. The implementation

of a condition number tolerance ensured numerical stability and result accuracy, allowing

for both recursive methods to be implemented together to produce an algorithm that runs

approximately 10 times faster than a LinCov analysis.

A weighted DOP analysis was introduced that allowed for a dimensionless PDOP value

to be obtained. A ratio between the range and range-rate measurements was implemented,

allowing the DOP algorithm to run without knowing speci�c measurement noise values.

Thus the DOP algorithm analyzes solely the dynamic measurement geometry, independent

of noise, by incorporating both range and range-rate measurements.

11.4 PDOP Optimal Schedules

The DOP algorithm was embedded into a genetic algorithm to produce optimal tracking

schedules that reduced PDOP at �nal times for key OD segments and subsegments. Optimal

tracking schedules with three, four, and �ve stations were found that reduced PDOP to

values beyond a Benchmark schedule that included more stations than the optimal schedules.

The optimization showed key trends in minimizing PDOP. Varying stations in

latitude greatly improved the dynamic measurement geometry. Also varying stations in

longitude, including the natural rotation of stations, helped reduce PDOP. Ultimately

the results indicated that signi�cant information can be obtained with just three stations,

outperforming the results obtained from a Benchmark schedule with more stations.
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Signi�cant future work with this optimization tool will be done by Intuitive Machines

for their lunar missions. Optimal schedules will vary depending on the trajectory, launch

date, and available stations. Thus this optimization tool will remain a powerful device for

many years and missions to come.

Future analysis is to be considered with di�erent noise ratios k. The work done in this

thesis corresponded to k = 1e4. Varying the value of k has already shown to produce di�erent

optimal schedules, and selecting the correct k value will be crucial for best performance.

11.5 Nav-Dollar Optimal Schedules

Many continuous tracking schedules produce PDOP values that are acceptable for

mission success. Thus the Nav-Dollar metric, derived from maximizing information per

dollar, was implemented to create near-continuous and non-continuous tracking schedules.

The near-continuous Nav-Dollar schedule demonstrated a pattern of keeping expensive

stations for their geographical advantages, while substituting as much time as possible from

more expensive stations with cheaper stations.

The genetic algorithm's consistent attempts to minimize Nav-Dollars with as few

measurements as permitted led to non-continuous tracking schedules. These non-continuous

tracking schedules, while only covering up to 4 hours, reduced the PDOP to acceptable levels

for an extremely low operational cost.

Considerable future work is to be done with Nav-Dollars, as Intuitive Machines wishes

to save money to promote their commercial payload business. The minimum time required

for near-continuous Nav-Dollars will be set at di�erent percentages, and di�erent range-

measurement durations implemented for non-continuous schedules.

Ultimately the optimization tool created for this thesis is to be delivered to Intuitive

Machines for future use. As the tool can be applied to many trajectories, the work done will

continue to arise in many topics and the �eld of optimal navigation planning will continue

to become a more common discussion in the space industry.
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