
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2005

Synchronized Line-Scan LIDAR/EO Imager for Creating 3D Images Synchronized Line-Scan LIDAR/EO Imager for Creating 3D Images

of Dynamic Scenes: Prototype II of Dynamic Scenes: Prototype II

Donald C. Anderton
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Anderton, Donald C., "Synchronized Line-Scan LIDAR/EO Imager for Creating 3D Images of Dynamic
Scenes: Prototype II" (2005). All Graduate Plan B and other Reports. 1.
https://digitalcommons.usu.edu/gradreports/1

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

SYNCHRONIZED LINE-SCAN LIDAR/EO IMAGER FOR

CREATING 3D IMAGES OF DYNAMIC SCENES: PROTOTYPE II

by

Donald C. Anderton

A report submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Electrical Engineering

Approved:

Dr. Robert T. Pack

Major Professor

Paul Israelsen

Committee Member

Dr. Scott E. Budge

Committee Member

Dr. Rees Fullmer

Committee Member

UTAH STATE UNIVERSITY

Logan, Utah

2005

 ii

Copyright © Donald C Anderton 2005

All Rights Reserved

 iii

ABSTRACT

Synchronized Line-Scan Lidar/EO Imager for

Creating 3D Images of Dynamic Scenes: Prototype II

by

Donald C. Anderton, Master of Science

Utah State University, 2005

Major Professor: Dr. Robert T. Pack

Department: Electrical and Computer Engineering

A second prototype integrated lidar/Electro Optical (EO) camera, or 3D Texel™

camera, has been developed by Utah State University (USU) Center for Advanced

Imaging Ladar (CAIL) that collocates, both temporally and spatially, a CMOS digital

camera readout with a time-of-flight pulsed lidar
1
. The first prototype uses a flying spot

lidar with a double gimbal whereas this prototype uses a single gimbal and rotating

mirror. The selection and design of the second prototype hardware components: lidar,

EO camera, computer, synchronization box, power source (AC to DC and battery box)

and battery charger is discussed and compared with the first prototype.

The new software used for scanning and tiling called LDScanner™ and

1
The methods disclosed within this paper constitute USU owned IP protected by U.S.

Patent 6,664,529, “3D Multispectral Ladar”.

 iv

LDImager™, developed in conjunction with RappidMapper Inc., Salt Lake City Utah, is

explained. Based on the operator input, LDScanner™ initializes the hardware

components, sets them up for scanning, conducts the scan and analyzes the data files.

LDImager™ takes the lidar and EO camera files and converts them into image files for

3D viewing. LDImager™ also allows the operator to analyze preprocessed data files

from the 3D Texel™ camera and create a histogram of the processed image.

The EO requirements to control the region of interest (ROI), set camera

properties, trigger the camera and set the file format are discussed. Third party toolkits

including the EO camera manufacturer’s demo program and Carnegie Melon University’s

(CMU) demo program were considered to implement EO requirements. The

requirements ended up being implemented using a modified CMU demo program. The

software created in the modified CMU demo program and the CMU1394.dll functions

were made accessible through calls to the Camera.dll wrapper. The functions exposed

through the wrapper were also used to construct a Camera Image dialog box. This dialog

box displays the real time EO image and histogram. It also allows the operator to adjust

the shutter speed, gain, brightness, white balance and select the scan azimuth extents.

 (147 pages)

 v

CONTENTS

Page

ABSTRACT... iii

LIST OF TABLES... ix

LIST OF TABLES... ix

LIST OF FIGURES .. x

CHAPTER

1. INTRODUCTION ...1

A. Background ..5

B. Hardware..5

1) Lidar...6

2) Electro Optical Camera..7

3) Inverter ...8

4) Computer..8

5) Synchronization Box..8

6) Power Source – Battery ...9

7) Battery Charger ..10

C. Software ...10

1) Performing a Scan..11

2) Post Processing or Tiling ...14

3) View...14

D. Summary..15

2. DESIGN PROJECT OVERVIEW...16

A. Prototype II Hardware..17

B. Prototype II Software...20

1) Performing a Scan..20

2) Post Processing or Tiling ...21

3) View...21

 vi

C. Design Project Summary ...22

3. PROTOTYPE II HARDWARE...23

A. Lidar...23

1) Lidar Transceiver ...23

2) Two-Axis Scanning Mechanism..23

3) Communications and Power ..25

B. Electro Optical Camera..25

C. Computer..26

D. Synchronization Box..27

E. Power Source ...30

1) AC to DC ...30

2) Battery Box ..30

F. Battery Charger ..32

G. Prototype II Hardware Summary ...33

4. PROTOTYPE II SOFTWARE ..35

A. LDScanner™ ...35

1) Initialization ...37

2) Main Console ...40

3) Scan Console..41

4) Run Scan ..43

5) Scan Complete ...44

6) Debugging LDScanner™...46

7) Advanced Editor ..47

B. LDImager™...50

1) Tile ...52

2) Histogram...54

3) Analyze ..54

C. Create, Edit or Delete LDImager™ Profile ...55

D. Prototype II Software Summary ..55

5. ELECTRO OPTICAL CAMERA INTERFACING..57

 vii

A. Requirements ...57

B. Initial Considerations ...59

1) Third Party Toolkits. ..59

2) ISG Demo Program..61

3) CMU Demo Program...63

C. Implementation Issues ...64

1) Modified CMU Demo..64

a) Initialization ...65

b) Image Acquisition. ...70

c) Shut Down ...71

2) Accessing CMU1394.dll From VB..72

a) Camera.dll Wrapper. ..73

b) VB Module...75

D. Camera Image Dialog Box...77

1) Image..77

2) Properties. ..77

3) Histogram...77

4) Pick Limits. ..78

E. EO Camera Summary ..79

6. RECOMMENDATIONS AND CONCLUSIONS ..80

A. Design Review and Future Work...80

B. Conclusion ...82

REFERENCES ..83

APPENDICES ...85

A. StartRecorder Function ..84

B. Camera.dll Source Code ..89

 viii

C. CMUCamera.vb Source Code ...108

D. Camera Dialog Box Source Code ..115

E. CAIL TEX file format definition...131

 ix

LIST OF TABLES

Table Page

2.1 PROTOTYPE I HARDWARE INTERFACING ..19

2.2 PROTOTYPE II HARDWARE INTERFACING...19

4.1 CAMERASETUP AND GENERALSETUP .XML TABLES..............................49

5.1 CMU FORMAT AND MODE ...68

5.2 DATA TYPES ...76

 x

LIST OF FIGURES

Figure Page

1.1 Lidar x-y-z point cloud, wire mesh and textured 3d image3

1.2 Original perspective, rotated top-view, rotated side-view3

1.3 Prototype I hardware diagram..6

1.4 Reigl pan/tilt scanner ...8

1.5 Prototype I synchronization box signals ..9

1.6 Prototype I scan console structure ...10

1.7 Prototype I operating flow ...12

1.8 Prototype I generate command file GUI..13

2.1 Prototype II hardware relationships ...18

2.2 Prototype II LDScanner™ program structure and program flow..........................22

3.1 Reigl rotating table/rotating mirror sensor...24

3.2 Lidar and EO trigger signals ..29

3.3 Individual battery pack with protection circuit ..31

3.4 Apache li-poly smart charger 2500..34

3.5 Battery charger...34

4.1 LDScanner™ operator interface ..36

4.2 LDScanner™ program flow...37

4.3 LDScanner™ console graphic ...38

4.4 LDScanner™ initialization ..39

4.5 LDScanner™ initialization screen shot ...40

 xi

4.6 LDScanner™ main console ...41

4.7 LDScanner™ scan console screen shot ...42

4.8 LDScanner™ scan console ..43

4.9 LDScanner™ run scan ...45

4.10 LDScanner™ scan complete..45

4.11 Advanced editor screen shot ..48

4.12 LDImager™ GUI...50

4.13 LDImager™ program flow ..51

4.14 TexelEng.dll inputs ..54

4.15 Camera profile editor for LDImager™..56

5.1 EO camera interface...58

5.2 WDM diagram ...60

5.3 ISG ROI ...62

5.4 ISG trigger control ...63

5.5 Modified CMU demo program flow..64

5.6 EO general initialization ..66

5.7 Partial scan initialization..69

5.8 Triggering initialization ...71

5.9 Acquire image. ...72

5.10 Shut down ..72

5.11 CMU wrapper camera.cpp ...73

5.12 C++ function exposure in VB..75

 xii

5.13 Camera image dialog box ..76

CHAPTER 1

INTRODUCTION

A second prototype integrated lidar/EO camera, or 3D Texel™ camera, has been

developed by Utah State University (USU) Center for Advanced Imaging Ladar (CAIL).

The 3D Texel™ camera “synchronizes and aligns CMOS digital camera readouts with

the scan motion of a time-of-flight pulsed lidar” [1]. This technique is CAIL proprietary

intellectual property (IP) and has been proven by the development of two prototype 3D

Texel™ cameras.

The 3D Texel™ camera technology rests on the blending of the output of a color

digital camera with the output of a lidar. Digital cameras produce 2D x-y texel elements,

or texels, without absolute or relative range information. Lidar provides absolute (with

GPS) or relative 3D x-y-z range information with sub-centimeter accuracy. When these

two data sets are combined, a high resolution 3D image with accurate range information

is obtained. The combination of the lidar and digital camera sensors into a single camera

is what CAIL refers to as a 3D Texel™ camera.

The blending of 3D and texture data sets is commonly referred to as data fusion.

Data fusion is not a new idea, but the method that CAIL uses to perform data fusion is.

The CAIL 3D Texel™ technology is unique in that the digital camera and lidar are

combined such that each subframe of the image and pixel of lidar information is collected

at the same time. This means that the output from the digital camera and lidar are

collocated both temporally and spatially. By collecting the data in this manner, the 3D

Texel™ camera can instantaneously create error-free three dimensional color images of

 2

moving objects from a dynamic point of view.

Once collected, the lidar x-y-z point cloud is used to produce a wire mesh. The

2D digital camera output is then “painted” onto the 3D wire mesh to provide the texture

information. The combination of the two data sets produces the final high resolution

textured 3D image. The development sequence of the 3D image is demonstrated in fig.

1.1.

This 3D image information is represented on a computer screen in 2D. Although

these images appear 2D, they can be rotated to viewpoints that are different from the

viewpoint where the image was actually taken. This means that the 3D image viewer can

show the view from an angle, not seen in person, as if a photo had been taken from that

direction. Several different perspectives of the same image are shown in fig. 1.2.

There are many benefits to the CAIL method of producing 3D images. The

system acquires 3D images instantaneously. This means that the images can be viewed

and analyzed in real-time. Because the digital camera and lidar data is collected at the

same time, the system can handle camera motion and/or object motion. Finally, the

acquired data can be positioned accurately in geographic coordinates by using a GPS

Georeferencing system.

The focus of this paper is the work done on this project by the author. This

includes team effort as well as exclusive work. The author worked within the team on

the hardware design, presented in Chapter 3, sections B, D, E and F, and the software

design, presented in Chapter 4. The author worked exclusively on EO camera

interfacing, presented in Chapter 5. Additional work, not completed by the author, is

 3

included within Chapter 1, Chapter 2 and Chapter 3, sections A and C, to keep the

author’s work in context with the overall effort.

Chapter 1 covers the background of the first 3D Texel™ camera technology,

Prototype I, developed by CAIL. This prototype was developed by Dr. Robert Pack, Paul

Israelsen, Brandon Withers and Kylee Sealy.

Chapter 2 is the design overview of the second prototype, or Prototype II. The

overall design of Prototype II was performed by Dr. Robert Pack and Paul Israelsen of

CAIL. The design consisted of both hardware and software components.

Fig. 1.1. Lidar x-y-z point cloud, wire mesh and textured 3d image.

Fig. 1.2. Original perspective, rotated top-view, rotated side-view.

 4

Chapter 3 explains the specific hardware used in Prototype II and compares it to

Prototype I. The lidar, EO camera and laptop were selected by Dr. Robert Pack and Paul

Israelsen. The Synchronization Box was designed by Kylee Sealy and Shayne Rich. The

Synchronization Box was assembled, tested and debugged by Kylee Sealy, Shayne Rich

and the author. The Battery box and charger were designed by the author and Randy

Christensen and then assembled and tested by Shayne Rich and the author. The power

supply was selected by the author and Kylee Sealy. All cabling was assembled by

Shayne Rich.

Chapter 4 presents the custom software LDScanner™ and LDImager™. The

scanning flow, tiling algorithm and pseudo code were defined by Dr. Robert Pack. The

tiling algorithm and pseudo code were coded into a C++ dll by Stan Coleby of Salt Lake

City- based RappidMapper Inc. LDModeler™ was entirely developed by RappidMapper

Inc. The LDScanner™ and the LDImager™ GUI’s and associated control algorithms

were developed and programmed by the author and Kylee Sealy.

Chapter 5 explains how the EO camera was interfaced by the author with

LDScanner™. The LDScanner™ work was split into EO camera interfacing, lidar

interfacing and GUI development. The author interfaced the EO camera, Kylee Sealy

interfaced the lidar and both the author and Kylee Sealy assembled the GUI.

Chapter 6 is the design review and conclusion. Prototype II is summarized and

the design review is discussed. The design review was completed by Dr. Robert Pack,

Paul Israelsen, Shayne Rich, Kylee Sealy, Randy Christensen and the author.

 5

A. Background

CAIL personnel invented the 3D Texel™ camera technology. The CAIL 3D

Texel™ camera uses an integrated lidar scanner and a high resolution CMOS Electro

Optical (EO) camera that are collocated both temporally and spatially to produce a 3D

image. The lidar scanner produces a 3D x-y-z point cloud of the scene and the EO

imager produces a high resolution image patch for each x-y-z point. The EO data set

contains multiple patches that are then mosaiked to build up a 3D image composed of 3D

texture elements (texels). The mosaiked Texel image can be viewed as a 3D image in

any standard 3D viewer, such as LDModeler™ [1].

In previous work CAIL produced a prototype 3D Texel™ camera. Prototype I

consists of hardware and custom software. The hardware components are the sensors

used to collect the 3D x-y-z data and the image information. The software is used to

control the data collection process, tile the collected data and view the final image. The

hardware and software used in Prototype I will be discussed in this section.

B. Hardware

The Prototype I 3D Texel™ camera developed by CAIL consists of a single-

channel flying-spot lidar, EO camera, a desktop computer with wireless monitor,

synchronization box, battery pack and a battery charger. Figure 1.3 shows a simple

schematic of where each of these components fit within the 3D Texel™ camera structure.

In the following section the function of each piece of hardware is explained in further

detail.

 6

Fig. 1.3. Prototype I hardware diagram.

1) Lidar: Lidar (LIght Detection And Ranging or Laser Imaging Detection And

Ranging) is a technology that determines distance to an object or surface using laser

pulses. It is synonymous with the term LADAR (LAser Detection And Ranging) which

is mainly used within military circles. The term “laser radar” is also in use, but is

somewhat misleading as laser light, not radiowaves, is used. However, like the similar

radar technology, the range to an object is determined by measuring the time delay

between transmission of a pulse and detection of the signal reflected from a target [2].

The 3D Texel™ camera uses the lidar sensor to gather 3D information and create

an x-y-z point cloud. The point cloud and EO data are aligned in hardware to produce a

3D Texel™ image. The lidar used in Prototype I is a Riegl LPM i300VHS with a pan/tilt

unit for horizontal and vertical motion, fig. 1.4 [3]. The lidar uses a time-of-flight pulsed

laser transceiver with a range accuracy of ± 5 cm (1-sigma) and a maximum shot rate of

 7

1000 Hz. The beam divergence of this transceiver is approximately 3 mrad, which is

equivalent to a laser spot size of 3 cm at a distance of 10 m. The spot size increases

linearly with the distance from target up to a maximum of 400 m with objects of 80% or

higher reflectivity. The maximum range at 20% reflectivity is approximately 180 m [1].

The laser rangefinder is attached to the Riegl pan and tilt mechanism. The pan

and tilt mechanism uses a rotating table for horizontal movement with a maximum

horizontal scan rate of 628 mrad/s (36
o
/s). An oscillating arm is used for vertical

movement with a maximum vertical scan rate of 1414 mrad/s (81
o
/s). The pan and tilt

unit has a pointing accuracy of approximately 300 µrad (0.018
o
). At a shot spacing of

three mrad intervals, the scan rate is limited to approximately 470 shots/s due to the

maximum vertical scan rate [1].

2) Electro Optical Camera: The EO camera, commonly known as a digital

camera, “reads out a 13 by 13 patch of RGB pixels within the subtended angle of a single

lidar beam footprint” [1]. These images are tiled together to create a high resolution

digital image of the scene. The EO camera used is a Mikrotron MC1303 high speed

color CMOS digital camera with a focal plain array size of 1280(h) x 1024(v) pixels.

The pixels are 12 x 12 µm in size with a fill factor of 40%. The camera is capable of up

to 100 frames/s at full resolution and 5000 frames/s with a 100 x 100 pixel sub-frame or

region of interest (ROI). Using the desired 13 by 13 patch, the camera produces pixels at

approximately 170 times the shot rate of the lidar or 79000 pixels/s. The Mikrotron

camera uses Camera Link™ interface, which requires an external PCI frame grabber, for

data transfer at a rate of greater than 528 Mbs [1].

 8

Fig. 1.4. Reigl pan/tilt scanner.

3) Inverter: The desktop computer requires a 120 V AC 60 Hz power supply.

This means the computer can be plugged directly into a convenience outlet to run.

However, the 3D Texel™ camera needs to be able to operate entirely on lead acid

batteries. In order to use the computer in this configuration a power inverter is used to

convert the DC battery voltage to AC voltage for the computer.

4) Computer: The computer controls data collection from the lidar and EO

camera, the tiling of the EO images and can be used to view the 3D images. This means

that the computer must be able to gather and handle large amounts of data quickly. The

computer used in Prototype I is a custom built miniature desktop from Logisys

Corporation. It has a 2.8 GHz (400 MHz FSB) main processor, 60 GB-7200 rpm hard

drive, 1 GB pc 2700 333 MHz RAM, integrated Intel Extreme Graphic video card and

CD-RW disk drive. The I/O ports included on the computer are serial DB9, parallel,

Ethernet, CF card reader and USB 1.0. The desktop form factor was chosen, rather than a

laptop, because the EO camera required a PCI slot for the frame grabber.

5) Synchronization Box: The lidar scanner produces a trigger signal whenever a

 9

lidar shot occurs. This signal is used by the lidar and EO camera to coordinate the image

capture, but it cannot be used directly by the EO camera because the trigger signal

coming from the lidar camera stays high for only 6 µs. The Mikrotron cannot resolve a

pulse as short as 6 µs. To get the EO camera to trigger, the lidar trigger signal needed to

be extended by using a retriggerable one-shot circuit. A synchronization box was

designed to accept the 6 µs lidar signal and extend this signal to a 142 µs signal that the

EO camera can resolve as shown in fig. 1.5.

6) Power Source – Battery: Prototype I uses more than 160W at peak usage and

must be able to operate for at least four hours in the field. The least expensive battery

option that meets this power requirement is sealed lead-acid batteries.

Three PS-12180 Power-Sonic12V/18Ah batteries [4] were secured to a support

structure and wired in parallel to produce a total of 54Ah. This provides approximately

four hours of operation at the maximum discharge rate of 160W. Each of these batteries

weighs approximately 12 lbs so the total battery weight is more than 37 lbs. This

significantly increases the weight of the 3D Texel™ total field-portable camera package.

Fig. 1.5. Prototype I synchronization box signals.

 10

7) Battery Charger: There are many manufacturers of lead-acid battery

chargers. The one used for Prototype I is a Husky automatic on/off 12V lead-acid battery

charger. The Husky battery charger provides a selectable 2A trickle charge or 6A high

rate charge. The charger can be plugged into any standard 120V AC convenience outlet.

C. Software

The general structure of Prototype I control software is shown in fig. 1.6. The

structure is very open which means there is no specific program flow mandated by the

software in Prototype I. This means the operator has a lot of freedom but must have a

good understanding of what the software does.

Fig. 1.6. Prototype I scan console structure.

 11

When starting, the operator can choose to run the main graphical user interface

(GUI) or view an image. If the operator chooses to run the GUI the program first

initializes and then displays the main window. The main window has four options

available, these options are to “Open Command File and Scan,” “Generate Command

File,” “Tile and Display” and “Analyze and Histogram Files.” Upon completion of any

of the tasks the operator has the option to end the program or perform another task. If the

operator wants to view the previously tiled images then LDModeler™, or any 3D

viewing software, can be used for viewing [5].

Despite the open structure of the software, its main purpose is to scan, tile,

analyze output files and view images. A more in-depth view of the operating flow is

shown in fig. 1.7. This program flow diagram shows how each of the operator’s main

tasks are performed.

1) Performing a Scan: To conduct a scan, the operator first sets up the

equipment at the desired location and then powers up the equipment. Once the

equipment is running the GUI software is started on the computer. The GUI performs

some basic initialization and then presents the operator with the four options discussed in

the software introduction. The operator must first generate a command file.

When the Generate Command File option is selected, the GUI in fig. 1.8 is

displayed. The operator can either use the joystick to move the 3D Texel™ camera to the

desired scan limits or input them directly. If the operator uses the joystick, the opposite

corners of the scan limits are designated by clicking the appropriate image icon, either

upper left or lower right, when the 3D Texel™ camera is located at the desired start or

 12

stop point. The operator also designates the shot spacing in the GUI. As this is done, an

intensity histogram is displayed in real-time so the operator can adjust the camera’s iris

setting and other parameters such as gain. When all the parameters are set, the operator

then saves the settings to a command file.

Fig. 1.7. Prototype I operating flow.

 13

Fig. 1.8. Prototype I generate command file GUI.

Once the command file has been generated, the operator selects the Run Scan

button. The operator is then prompted to select the command file that will be used to

conduct the scan. The software loads the file and the lidar is configured using the

parameters defined within the command file. When the scanning starts, the trigger signal

from the lidar is used to synchronize the EO camera. The 3D Texel™ camera generates a

lidar data file and an EO data file.

Upon completion of the scan, the operator selects the analyze option to create a

histogram of the output images. The validity and quality of the images is determined by

verifying that the file format and size are correct. At this point, the histogram of the

image is an average intensity of all untiled EO frames in the file. Once the files are

 14

verified, the scan process is complete and the operator can choose to conduct another

scan, tile the frames into a texel image or quit.

2) Post Processing or Tiling: The 3D Texel™ camera generates two separate

raw data files when conducting a scan. One of the files is a ladar (lad) file which

contains the lidar point cloud. The other file is a custom texel (tex) file format developed

by CAIL. This file gets its extension because it is a collection of all the texel images

captured from the EO camera during scanning.

Post processing of the two raw data sets involves reformatting the files into a

format that can be rendered by a graphics display engine. The image handling steps

indicated in fig. 1.7 of Bayer pattern decoding, color correction and tiling is done

automatically once the operator designates which files to use. In the Bayer pattern

decoding step, the raw image information from the camera is converted into RGB format.

A color correction filter is then applied to the RGB image so that the image reflects the

true colors of the scene. The last step involves taking the RGB image frames from the

previous steps and mosaicking them to produce a jpeg (jpg) texel image. This is called a

texel image because each texture element can be mapped one-to-one with the lidar x-y-z

data set [1]. When the post processing is complete, the operator can choose to process

another data set, view the recently tiled data set in the 3D viewer or quit the program.

3) View: Once the lad and tex files have been produced, they can be rendered

and viewed within the LDViewer/LDModeler graphics display engine. With some

further reformatting, many 3D graphics engines are available which could be used to

view these images.

 15

D. Summary

With the development of Prototype I, the Center for Advanced Imaging Ladar

proved that a lidar scanner and EO camera synchronized and calibrated within the same

field-of-view can produce high resolution 3D images. The first prototype, or Prototype I,

3D Texel™ camera consists of hardware and software that generate a lidar x-y-z data set

and raw image files. These data files are then used to generate a 3dd file and a single

jpeg image that is matched to the lidar pixels. The x-y-z lidar file and tiled jpeg are then

rendered and viewed as a 3D image in LDModeler™ from RappidMapper.

 16

CHAPTER 2

DESIGN PROJECT OVERVIEW

The specific goal of the second prototype, or Prototype II, 3D Texel™ camera

was to adapt to the use of a rotating mirror line-scan lidar and use a new EO camera with

an on-board frame grabber and thereby improve the software design and features

associated with the Scan, Tile and View tasks. An additional goal was is to improve the

ease of use, speed and robustness of the overall design. This section gives a general

overview of the design of Prototype II and explains the specific work performed on this

project by the author as well as how the work was divided among CAIL and

RappidMapper team members.

In contrast to Prototype I, the rotating mirror scanner allows a vertical line, or

column, of pixels to be captured rapidly for every horizontal increment of the two-axis

scan mechanism. This difference in scan mechanisms between the prototypes means that

the method used to collect and then tile the texel images must be different. In Prototype

I, each time a lidar range point was captured a 13 (h) x 13 (v) RGB pixel patch was

collected from the EO camera. With Prototype II, each time a lidar column is captured, a

16 (h) x 2048 (v) RGB pixel column, or ribbon, is collected from the EO camera. This

means that the tex file generated by Prototype II will contain hundreds of EO ribbons

verses the thousands of EO patches produced by Prototype II. This also means that data

collection in Prototype II from the lidar and EO camera happens more rapidly and a scan

is completed more quickly.

 17

A. Prototype II Hardware

As with the camera for Prototype I, the second prototype 3D Texel™ camera

developed by CAIL consists of a lidar scanner, EO imager, computer, synchronization

box, power supply and charger. Although the equipment is similar, the interaction of

parts is different as shown in fig. 2.1.

The communication methods between the two prototypes are different. Tables

2.1 and 2.2 show the differences in communication from one device to another for each

prototype. Each of the components within the system are listed twice; once in the left

hand column, and once across the top row. These charts indicate one way

communication from the device listed in the left hand column to the device listed in the

top row. For example, the connection in Prototype II from “Synchronization Box” To

“Lidar” is “Power and Trigger”, whereas the connection in Prototype II from “Lidar” To

“Synchronization Box” does not exist and is therefore grayed out.

In both prototypes the computer is used to setup, run and visualize the scans.

Because the frame grabber is in the camera, Prototype II uses a laptop instead of the

small desktop. This improved the power requirements because the computer could be

powered on its own battery which eliminated the need for the power inverter. Because

the power requirement changed, a smaller and lighter battery could be used to power the

rest of the equipment. This affected the role of the power supply and required a custom

built battery charger.

 18

Fig. 2.1. Prototype II hardware relationships.

Another significant change is the role the lidar machine has in the timing process.

In the first prototype, the lidar trigger signal was available externally so the EO camera

could be triggered by the lidar. In Prototype II, the trigger signal is not available from the

lidar so a Synchronization Box was designed to take over the timing responsibilities.

Since the Synchronization Box was taking on a larger role with triggering, it was decided

to add the power distribution into the Synchronization Box as well. Despite the hardware

interaction differences between the two prototypes, they both achieve the same important

objective of gathering lidar and EO data of the same scene at the same time.

The EO camera used in Prototype II is also different from the camera used in

Prototype I. In the first prototype a Mikrotron EO camera with a Camera Link™

interface was used. In contrast, Prototype II uses an Imaging Solutions Group (ISG) EO

camera with a FireWire™ interface. The Camera Link™ technology has a faster data

 19

transfer rate than IEEE 1394a, or FireWire™, but does not have a universal standard like

IIDC DCAM Specification Version 1.3 FireWire™ standard. “Camera Link™ does not

have an associated standardized communication protocol such as that associated with

FireWire™” [6]. Because of this an external capture card that is located in the computer

is required.

The capture card was expensive and required a PCI slot. This limited the

computer choice to a desktop and affected all aspects of the 3D Texel™ camera design.

In the end, the PCI card has been the weakest part of the first prototype and has required

service at regular intervals. Because of these downfalls, an EO camera with a

standardized communications protocol and on-board frame grabbing was desired.

TABLE 2.1

PROTOTYPE I HARDWARE INTERFACING

TABLE 2.2

PROTOTYPE II HARDWARE INTERFACING

 20

B. Prototype II Software

Based on experience with Prototype I, a program flow was established as shown

in fig. 1.7. This program flow is straight forward and simple. Because of this, the

program structure for Prototype II followed the program flow established with Prototype

I. One can think of Prototype II more like a scan Wizard. The operator is prompted to

answer simple questions which determine subsequent options as shown in fig. 2.2.

The program flow of Prototype I was divided into three main tasks: Scan, Tile

and View. With Prototype II, these tasks were divided into three separate programs

called LDScanner™, LDImager™ and LDModeler™. These programs simplify the scan

process by automatically performing most tasks the operator performed manually in

Prototype I. For example, with Prototype I, the Scan task required that the operator

create a command file, conduct the scan and analyze the files in three separate manual

tasks. In Prototype II all three of these tasks are accomplished automatically with

minimal operator input. This is explained in further detail in the following sections in

this chapter.

1) Performing a Scan: The scanning is accomplished through the LDScanner™

software. The scan portion of the 3D Texel™ flow is where the 3D data sets are

collected. The operator chooses to conduct a scan once the hardware (lidar, EO camera,

synchronization box and laptop) is set up at a desired location. The power is then turned

on and the LDScanner™ software is started on the laptop. This software generates and

saves a command file and then automatically uses the command file to configure the lidar

for scanning. The EO camera properties are also configured at the same time. Once the

 21

hardware is configured, LDScanner™ starts the scan through the Trigger box which

controls the lidar and EO camera capture modes.

When the scan is finished, the operator can choose to tile the ribbons into a texel

image, conduct another scan or quit the program. If the operator chooses to run the tiling

program, LDScanner™ closes, the lidar is automatically parked in the storage position

and LDImager™ opens. If the operator chooses not to run the tiling program, the console

automatically recycles and the scan process is started over again. If the operator chooses

to quit, then the lidar is automatically parked in the storage position and LDScanner™

closes.

2) Post Processing or Tiling: The tiling program, called LDImager™, uses a

previously collected set of ribbon shaped frames to create a texel image that corresponds

to points in the 3D point cloud. When using LDImager™, the operator opens the files for

tiling and then runs the program. LDImager™ outputs a texel image in jpeg or other

standard image format.

After tiling the data sets, the operator can tile another, quit the program or open

the image or images in the viewer. The tiling algorithm and implementation will not be

discussed in this paper, but the GUI to the tiling algorithm is discussed in Chapter 4,

section B.

3) View: Like Prototype I, the 3D images that are collected and tiled are then

viewed with LDModeler™ from RappidMapper. The tiling implementation will be

discussed briefly in Chapter 4. After viewing an image the operator can choose to view

another image or the program can be closed.

 22

Fig. 2.2. Prototype II LDScanner™ program structure and program flow.

C. Design Project Summary

Many things were learned while constructing and testing the first prototype 3D

Texel™ camera which affected the design of Prototype II. Using Prototype I as a model,

CAIL designed and built Prototype II. This means that the hardware and software

components are similar in both designs. These components will be discussed in the

following sections.

 23

CHAPTER 3

PROTOTYPE II HARDWARE

A 3D Texel™ camera consists of the following major components: lidar

transceiver, two-axis scan mechanism, EO imager, computer, synchronization box, power

supply and charger. An explanation of each of these components used in Prototype II is

discussed and compared with the similar device used in Prototype I.

A. Lidar

The lidar used in Prototype II is the Riegl LMS-Z210i. This lidar consists of three

main components that will be discussed. These components are the lidar transceiver, the

two-axis scanning mechanism and the communications and power.

1) Lidar Transceiver: The laser transceiver is a time-of-flight pulsed laser with

an accuracy of ± 15 mm (1-sigma) with a maximum laser pulse repetition rate of 24000

Hz and a mean measurement rate of 1/3 of PRR, or 8000 measurements/s for rotating line

scan mode and line scan angle range approximately 80 degrees. The beam divergence of

this transceiver is 3 mrad, which is equivalent to a laser spot size of 3 cm at a distance of

10 m and increases linearly with the distance from target up to a maximum of 400 m with

objects of 80% or higher reflectivity. The maximum range at 20% reflectivity is

approximately 180 m [7].

2) Two-Axis Scanning Mechanism: A major difference between the lidar

scanners used in Prototype I and Prototype II is the method by which the two-axis

 24

scanning is accomplished. The two-axis scan mechanism on Prototype II uses a rotating

table for horizontal movement and a rotating mirror for vertical movement, fig. 3.1 [8].

The horizontal motion for Prototype II is accomplished by panning the laser

transceiver on a rotating table. The range of motion is limited to 360
o

by end switches

and a mechanical end stop [9]. The maximum horizontal scan rate, using a shot spacing

of 4 mrad/s and assuming 20 vertical lines per second, is 80 mrad/s (4.6
o
/s). The shot

spacing and azimuth limits significantly affect the horizontal scan rate and overall scan

time.

The vertical scan mechanism of Prototype I is via nodding of the entire

transceiver. On the other hand, Prototype II uses a three faceted rotating/oscillating

mirror that records a line of data on each facet per rotation, or three lines per rotation, up

to 20 line scans per second [9]. This mirror is mounted above a fixed transceiver and has

a field of view (FOV) of 80
o
 in the vertical (elevation) and 360

o
 in azimuth.

Fig. 3.1. Reigl rotating table/rotating mirror sensor.

 25

The vertical capture rate is independent from the shot spacing and elevations

selected. The lidar will always capture 20 vertical lines per second when the mirror is

rotating at a relatively constant 400 rpm. By using a rotating mirror for the vertical scan

mechanism, Prototype II can collect data an order of magnitude faster than Prototype I.

A scan that took minutes with Prototype I can be scanned in seconds with Prototype II.

3) Communications and Power: The communication between the lidar and

computer in Prototype II can be performed by either a serial and parallel cable

combination or an Ethernet connection. The Ethernet connection was used for this

communication to reduce the cabling and provide a simpler connection method. The

triggering and power for the lidar are performed through the main lidar cable. According

to the LMS-Z210i manual, the lidar requires a TTL voltage signal for triggering and a

single DC power supply with a nominal output of 15V DC but can operate within the

12V to 28V DC range [9].

B. Electro Optical Camera

The EO camera selected needed to meet certain design requirements. These

requirements are that the EO camera has a high resolution addressable CMOS array, an

internal frame grabber, an external trigger capability, high speed data transfer and

customization possibilities. An internal frame grabber enables the use of a laptop

computer.

The Imaging Solutions Group (ISG) LW-3-S-1394-C “Smart” Digital Imaging

Module meets these criteria. This EO camera has an internal frame grabber that

interfaces with the computer using industry standard IEEE 1394a (FireWire™) and a

 26

custom triggering cable. The power to the camera is supplied through the FireWire™

cable. The shutter is synchronous (rolling) to provide high speed capture rates. It can

capture up to 12 frames / second at the maximum resolution of 2048 x 1536 Pixels (3.1

Mp), 27 frames / second at full frame (1.3 Mp), 90 frames / second at VGA quality. It

can be tuned anywhere below or above these speeds based on the Region of Interest

(ROI) designated and the shutter speed or exposure time. The exposure time is tunable

through software [10,11].

Two different external triggering options are available, opto-isolated (up to 60

fps) and differential (in excess of 60 fps). The opto-isolated signal is a +5/0 V on/off

signal. The differential triggering option requires a ± 5 V on/off TTL signal produced by

a differential translator (RS-485 or RS-422) module. The camera includes a Multiple

Frame Image Buffer (SRAM) for up to 10 color images. The camera is fully compliant

with the IIDC DCAM Specification Version 1.3 [8, 9].

In addition to these standard features, ISG supports full customization of the

imager with an on-board FPGA that allows the operator to customize configuration,

image processing, color settings and I/O [9]. For this design these customizable features

of the camera were not used.

C. Computer

The computer is used as the hub between all of the hardware components.

Custom software was designed to interface the lidar, EO camera and synchronization box

all on the computer. The computer must be able to collect and store large amounts of

data in real time, process the large files to produce the tiled jpeg image and view the 3D

 27

images. A computer with a Pentium M 1.5 GHz+ processor, 40Gb Hard Drive, 528 Mb+

of RAM and 128Mb+ dedicated video memory meets these requirements. In addition,

the computer must have FireWire™ with 12V power, serial DB9, Ethernet, and a way to

export data (cd/dvd burner, usb port for thumb drive, etc…). Finally, the computer must

be compact, be able to operate in rugged conditions without problems and have enough

battery power to operate in excess of four hours.

Desktops are much larger, heavier and require more power than a laptop

computer. They are also not as robust since they are not built to be transportable. This

was a major weakness in Prototype I, so, from the start, Prototype II was designed around

a rugged laptop computer. The laptop chosen was a Panasonic Toughbook™ CF-73

provided by RappidMapper. This laptop met or exceeded all of the minimum

requirements for operation.

D. Synchronization Box

The author did not design the printed circuit board and associated circuitry within

the synchronization box but was very involved with the fabrication, testing and

integration of this equipment into the overall system. Therefore, a detailed description of

the function and relationship of the synchronization box within the system is included in

this section.

The synchronization box used in the first prototype received the trigger signal

from the lidar and then outputs a modified signal to the camera. The new

synchronization box does much more. The synchronization box in Prototype II is

designed to distribute power to all components in the 3D Texel™ camera except the

 28

laptop. It also provides the trigger signal for the lidar and EO camera. The

synchronization box requires a 13-18V DC power source. The input power is fed

through the synchronization box directly to the lidar so the synchronization box operating

voltage was selected to be within the lidar power supply range.

The synchronization box also supplies the EO camera with a 12V power supply

fed back to the PCMCIA IEEE 1394 FireWire™ card located in the laptop computer. In

addition, there are internal power requirements on the synchronization box. The optimal

voltage of 14.8V is converted to 5V for the trigger signal to the lidar and then from 5V to

3.3V for the microcontroller supply voltage. The lidar trigger signal is fed through a

buffer to a FET and then to the lidar. The FET on/off is controlled by the

microcontroller.

The trigger signal from the synchronization box is generated by a Zilog Z8

Encore™ 40 pin microcontroller (part no. Z8F6421) programmable in C++ using the

Zilog Developer Studio II (ZDS-II). This microcontroller provides two trigger signals,

one for the lidar and one for the EO camera. The lidar trigger signal is a TTL step signal

that starts the lidar on the rising edge as the signal goes high (+5V) and stops the lidar on

the falling edge as the lidar goes low (0V) [12]. The EO camera trigger signal is a one-

shot pulse width modulated +/- 5V differential signal that triggers the camera on the

rising edge of the signal [10]. This signal is repeated for the duration of the scan at a

frequency of approximately 60 Hz. The lidar receives the trigger signal buffered from

the microcontroller and the EO camera receives the trigger signal buffered through a

differential translator (RS-485) from the microcontroller. The lidar and trigger signals

 29

generated for a single scan are shown in fig. 3.2. These signals will continue in the

manner shown until the scan is complete; at which time both the lidar and EO camera

trigger signals will go to 0V.

The synchronization box microcontroller communicates with the laptop through

the RS-232 serial DB9 port. A switch inside the synchronization box turns the

microcontroller from operating to programming mode so that the Zilog Z8 chip can be

programmed in-line. The microcontroller is programmed to communicate with the laptop

using the following commands: R-Response request (checks for communication), E-End

(stops triggering and counter), C-Count (reports number of pulses sent) and B-Begin

(resets and starts counter).

The outside of the synchronization box has the ports discussed earlier as well as

an in-line fuse holder and heat sink on the side. The top of the synchronization box

contains a voltage meter with on/off switch, a power-on LED (green-solid) with on/off

switch and a CPU busy LED (yellow-blinking).

Fig. 3.2. Lidar and EO trigger signals.

 30

E. Power Source

Power to the 3D Texel™ camera can be provided through a rechargeable battery

box or a DC power supply. The power source for the 3D Texel™ camera was designed

by the author around the lidar supply voltage of 13V-18V with a nominal voltage of 15V.

The power source supplies power for all components in the system except the laptop. It

connects directly to the synchronization box and power is distributed from there. The

two different types of power sources used were the AC to DC 14V Power Supply and the

lithium battery box.

1) AC to DC: A DC power supply was chosen that could run the 3D Texel™

camera from an AC outlet as well as run the battery charger or both at the same time.

The power supply runs from a standard 120V outlet. The output voltage provided is 13.8

– 14.2V with a maximum current of 60A.

2) Battery Box: The battery is designed to be lightweight and able to power the

machine for at least four hours. After reviewing available battery types and limitations, it

was decided that Lithium Ion batteries would be used for the battery box because of their

optimal series voltage of 14.8V and high-power density.

The total synchronization box power required for the Prototype II 3D Texel™

camera is the sum of the maximum power requirements of the lidar, EO camera and the

synchronization box itself. The lidar requires approximately 50W, the EO Camera 3W

and the synchronization box equipment approximately 2W, for a total of approximately

55W. The 3D Texel™ camera must be able to run at least four hours on battery power.

The formula used to calculate the needed battery A-h is shown below where W=Watts

 31

(55W), h=hours (4h), V=Voltage (12V) and Ah=Amp-hours

.** AhVhW =

.
*

V

hW
Ah =

Using this formula, the battery box current rating needed to be at least 14.864 Ah.

To allow for possible individual battery cell failure and extended life, the battery box

current rating was designed to have 20 Ah. This will give a little more than five hours of

run time at full discharge rate.

The battery box is made up of packs of batteries. Each pack has four 3.2V Li-Ion

cells which combine to provide 2 Ah of current. These cells are placed in series to create

a 14.8V, 2 Ah pack. Figure 3.3 shows a picture of one of these battery packs. The

battery box contains ten of these packs wired in parallel to create a 14.8V, 20Ah battery

pack.

Fig. 3.3. Individual battery pack with protection circuit.

 32

The battery packs can be charged at a maximum rate of 1C, at 2.4A/C or 2.4A,

and can be discharged at a maximum rate of 10C, at 2.4A/C or 24A. The maximum

discharge expected from the 3D Texel™ camera is 4.583A, so these batteries can provide

the necessary power at maximum discharge rate. If the battery charge drops below 4.2A,

it is no longer usable. The Cut-off voltage for the batteries is 12V. Each battery pack has

a printed circuit board (PCB) with poly-switch to protect the batteries against charging,

discharging, minimum charge and cut-off voltage limitations [13].

The battery pack required to run Prototype I weighed more than 37.8 lbs. In

Prototype II, each pack in the battery box weighs 6.9 oz and there are ten packs so the

final weight of the battery box is approximately 4.3 lbs. This is a significant

improvement from Prototype I and greatly reduces the overall weight of the 3D Texel™

camera [13].

F. Battery Charger

The battery charger is required to charge the 14.8V, 20Ah battery box discussed

earlier. Rather than using a single charger to charge all the batteries at once, which

would take a considerable amount of time, the author suggested and designed the charger

and battery such that multiple chargers could be used in parallel; this reduces the battery

box charging time. To accomplish this, five chargers capable of charging two battery

packs each were connected to the battery box such that two 14.8 V battery packs are

connected to one battery charger.

The charger was constructed using Apache Li-poly Smart Charger 2500 for 1-4

lithium cells (3.2-14.8V) at a charge rate from 250mA to 2500mA shown in fig. 3.4. The

 33

number of cells and charge rate are selected using jumper connections on each individual

charger so they won’t be bumped into different settings. Each charger has reverse

voltage protection and number-of-cell protection circuits with LED indicators notifying

the operator of problems and charging status. The charger LEDs were wired to the

outside of the box so that all the chargers could be enclosed but still indicate the charging

conditions.

The individual chargers get extremely hot when charging so the charge current

was reduced to 750mA. In addition, a cooling fan attached to the outside of the box runs

constantly when the charger box is powered. The charger connects to any 12-15V battery

or power supply [14]. The completed charging box is shown in fig. 3.5.

G. Prototype II Hardware Summary

The second prototype 3D Texel™ camera created by CAIL incorporated

hardware that was similar to the first prototype. A lidar using a line-scan two-axis scan

mechanism with a standardized EO camera made up the main sensors in the system.

Selection of these components allowed the desktop computer from Prototype I to be

replaced by a robust laptop computer. This reduced the power requirements and weight

of the whole system. In addition, the role of the Synchronization Box changed from

signal conditioning in Prototype I to power distribution and timing coordination in

Prototype II. Overall, the hardware chosen and designed in Prototype II resulted in a

robust, much lighter weight and significantly faster 3D Texel™ camera.

 34

Fig. 3.4. Apache li-poly smart charger 2500.

Fig. 3.5. Battery charger.

 35

CHAPTER 4

PROTOTYPE II SOFTWARE

The hardware components are combined and coordinated using custom designed

software developed and coded by the author and Kylee Sealy. There are three programs

that were written to scan, tile and view the images. These programs are LDScanner™,

LDImager™ and LDModeler™. LDScanner™ and LDImager™ were created by CAIL

and LDModeler™ was created by RappidMapper. The software was designed on a

Microsoft Windows XP platform using Microsoft Visual Studio .Net 2003. The software

was written in Visual Basic and C++. This chapter describes the design of LDScanner™,

including the Advanced Profile Editor, and LDImager™ software.

A. LDScanner™

The 3D Texel™ camera is controlled by the operator through the LDScanner™

software. As shown in fig. 4.1, LDScanner™ provides the communication interface

between the lidar, EO camera and synchronization box. It was programmed in Visual

Basic (VB) and C++. The VB portion contains the code that controls the lidar, the

Camera Image dialog box and the graphical user interface (GUI). The EO camera

controller and associated tiling algorithm were coded in C++.

 36

Fig. 4.1. LDScanner™ operator interface.

The reason why two languages were used is because VB allows a much more

rapid development time. The original goal was to produce the entire software package in

VB, including the EO camera controller. It was discovered that the EO camera interface

between LDScanner™ and the EO camera could not be coded in VB. A considerable

amount of development on the LDScanner™ software had already taken place by the

time the EO camera interface limitations were discovered so, rather than starting over in

C++, a combination of languages was used. This will be discussed in further detail in

Chapter 5.

The basic program flow is shown in fig. 4.2. Each of the dashed line boxes

indicate a major step that the software needs to complete before continuing. Each of

these steps will be discussed in more detail following the brief overview. The program

operates like a wizard in that each step prepares the operator for the next step in the

process. As one step is completed the program moves to the next step.

 37

Fig. 4.2. LDScanner™ program flow.

The LDScanner™ GUI controls the flow of the program through the scan process.

It consists of two main windows called Main Console and Scan Console. Both of these

were designed to emulate a field computer shown in fig. 4.3. The consoles display

different sub-screens as the operator progresses through the scan process. At any point

during the program flow, except during scanning itself, the operator can close the

program by clicking the power button in the lower right portion of the console graphic.

1) Initialization: When starting, LDScanner™ performs some basic

initialization of the lidar, EO camera and the console. Often the Main Console opens

before the initialization has completed in which case Initializing… is displayed in the

sub-screen. If there are problems with initialization, the Main Console sub-screen

displays the error as text and a button labeled “Connect again?”. This allows the operator

to correct the problem and then re-initialize LDScanner™ without having to restart the

program.

 38

Fig. 4.3. LDScanner™ console graphic.

The initialization process is shown in fig. 4.4. This process involves checking for

proper communication between the computer and the three hardware components in the

system. If the devices are not plugged in, not turned on or they have communication

problems, LDScanner™ will detect the problem, notify the operator and will not proceed

until the problem has been fixed. If all the hardware is operating properly then the

program continues to the last step of the initialization.

The last initialization step is to check for the setup.xml file. This file contains the

configuration parameters from the last scan performed. If the file exists, these parameters

are read into the program and set as the default values. If the file does not exist,

 39

LDScanner™ will use preset default values to generate a setup.xml file. Once the values

from the setup.xml file have been loaded, the Main Console displays the lidar voltage and

indicates the 3D Texel™ camera is initialized and ready to run. A button labeled Setup

Scan prompts the operator to continue. The associated screen shot is shown in fig. 4.5.

Fig. 4.4. LDScanner™ initialization.

 40

Fig. 4.5. LDScanner™ initialization screen shot.

2) Main Console: When the operator pushes the Setup Scan button on the Main

Console, the sub-screen displaying the ready status closes and is replaced with the scan

option sub-screen. The scan option sub-screen contains three buttons that allow the

operator to choose Read Scan, New Scan or Duplicate Scan, see fig. 4.6.

Clicking on New Scan brings up the Windows OS Save As… dialog box with

either the default save name or the name of the previous scan incremented by one. The

operator can either use the suggested name or type in a new name as desired.

Clicking the Open… button brings up the Windows Open… dialog box where the

operator can select a previous scan file. It is important to note, however, that when using

 41

this option if the files from the previous scan have not been saved to a different folder,

they will be overwritten without prompting.

If the Duplicate Scan button is pressed the Windows Open dialog box appears

prompting the operator to select the desired scan file. Once selected the Windows Save

As… dialog box immediately appears suggesting the name of the selected file

incremented by one larger than the largest incremented file. The operator can either

accept the suggested name or save the file under a different name. The duplicate scan

option allows the operator to run the same scan repeatedly without writing over the

previous scan. This is helpful if lighting conditions change or in areas with high traffic to

ensure the best image is saved.

3) Scan Console: Any of the three scanning options will close the Main console

then open up the Scan Console as shown in fig. 4.7. The change from the Main console

to the Scan console appears as a screen refresh to the operator and will probably go

unnoticed. The Scan console flow is shown in fig. 4.8.

Fig. 4.6. LDScanner™ main console.

 42

Fig. 4.7. LDScanner™ scan console screen shot.

The first sub-screen in the Scan Console prompts the operator for lidar scan

parameters. The New Setup scan parameters are name, shot spacing (milliradians), lower

and upper azimuth angles (0-360 degrees) and lower and upper elevation angles (50-130

degrees). These parameters can all be typed in directly on this screen.

Alternately, the azimuth angles can be entered by clicking the Pick Limits button

located in the center of the bottom portion of the Scan Console as shown in fig. 4.7. By

clicking this button the Camera Image dialog box appears and the azimuth points can be

selected interactively while viewing the camera output. The camera properties can also

be adjusted using this dialog box. The Camera Image dialog box is discussed further in

Chapter 5, section D.

 43

Fig. 4.8. LDScanner™ scan console.

As shown in fig. 4.8, once all the parameters are entered the Scan button becomes

active. To conduct a scan the operator presses the Scan button. The Scan Console takes

the parameters entered by the operator and checks that all the inputs are valid. If the

parameters are valid then they are sent to the lidar. During this process, LDScanner™

monitors replies from the lidar for any problems and notifies the operator as appropriate.

If the lidar was programmed successfully, the program moves into the Run Scan block.

4) Run Scan: As the Run Scan block starts (see fig. 4.9) a dialog box appears

indicating that the lidar was programmed successfully, giving an approximate scan time

and prompting whether the operator wants to proceed or cancel the scan. If the operator

 44

clicks Cancel, the Scan Console form is restarted with the scan parameters sub-screen

again displayed. The operator can modify the scan parameters and try again or close the

program.

If the operator clicks OK, the Scan Console buttons are all deactivated and the

scan begins. LDScanner™ is not accessible during the scan. This is to prevent problems

during the scan process. An override is provided if the operator wants to interrupt the

scan process. By pressing and holding the CTRL+C key combination the console will

activate and prompt the operator to stop or continue the scan. If the operator chooses to

stop the scan then LDScanner™ will close the files and stop the threads. However, no

communication can take place with the lidar until the lidar is finished scanning. The only

way to stop the lidar during the scan process is to turn the lidar power off, an action that

is not recommended.

While scanning, LDScanner™ stores all collected data into the appropriate lidar

(lda) or EO (tex) files and monitors for when the lidar is finished scanning and has

returned to the starting position. Once the lidar is finished scanning, LDScanner™ ends

all threads. This stops the synchronization box and EO camera and closes all the data

files. LDScanner™ moves into the Scan Complete block once everything is stopped and

closed.

5) Scan Complete: The Scan Complete portion of LDScanner™ is in fig. 4.10.

This portion starts by letting the operator know if there were any errors during the scan.

The error is simply displayed for the operator’s information and does not affect program

flow.

 45

Fig. 4.9. LDScanner™ run scan.

Fig. 4.10. LDScanner™ scan complete.

 46

When the completion of the scan has been acknowledged another dialog box

appears that prompts the operator whether or not to analyze the files. The analyzing

process checks for correct file format and size. Again, the operator can choose to analyze

or not, but the program will continue either way. If the operator chooses to analyze the

files, a dialog box will appear when analyzing is finished indicating whether or not the

files contain errors.

Finally, the last dialog box that appears asks the operator whether or not to start

LDImager™. If the operator clicks Yes, LDScanner™ closes, parks the lidar in the

storage position and LDImager™ is started. If the operator clicks No, LDScanner™

simply starts over. If the operator clicks Cancel, LDScanner™ parks the lidar in the

storage position and closes.

6) Debugging LDScanner™: While LDScanner™ was being put together and

tested; a significant but intermittent bug was encountered. This bug had to do with the

threads used in the program. To handle the different simultaneous tasks that were

required of the computer a new thread, or concurrent process, was started for each device.

As a result there was a thread for the lidar, a thread for the EO camera and a thread for

the synchronization box.

There were a number of different manifestations of the thread problem and were

all caused by the same error: the threads weren’t finishing before the program would

move on. A thread timing problem occurred on a thread.suspend and thread.resume

check. The program would test whether the thread existed or was paused to determine if

it should be started or resumed. If the program determined that the thread was paused,

 47

the resume command was sent but the program would return an error. It was evident that

sometime in between the check and sending the command the thread had changed states

and so the program would error out.

Another related thread problem occurred when the scan was complete. The

program would indicate that the scan was complete before the camera thread could finish.

This would result in the EO camera file either closing prematurely or not closing at all.

The solution to these issues was to ensure that the program was able to finish its

current task before moving on. These tasks didn’t release properly even though they

were within a thread which is a protected region. This was believed to be a VB issue. To

overcome this problem, a brief delay was added to the program to allow the thread to

finish what it was doing before performing the logic test.

7) Advanced Editor: There are several configuration parameters used in

LDScanner™. These parameters are stored in a file called setup.xml. When

LDScanner™ is started it checks to see if the setup.xml file exists. If the file exists the

parameter values stored in the file are assigned to the applicable parameter within the

program. If the file does not exist then LDScanner™ will create the file using default

values stored within the program.

The setup.xml file contains two tables called CameraSetup and GeneralSetup (see

Table 4.1). Within each of the tables are parameters that will change on a regular basis

and parameters that are fixed following calibration. The values for Brightness, Analog

Gain, ShutterSpeed and NextFileName are variables that are changed within

LDScanner™ at runtime. These properties are automatically saved to the setup.xml file

 48

when the operator begins a scan. Every time LDScanner™ starts the setup.xml file is

reloaded using the most recent property values. This saves time when multiple scans are

being conducted.

The remaining parameters of Height, Width, Bottom, Left, PacketSize,

LidarReturn, LidarAmplitudeMax and LidarAmplitudeMin are fixed and are not

modified during normal program operation. The Advanced Editor makes these

parameters available for editing during calibration. A screen shot of the Advanced editor

is shown in fig. 4.11.

Multiple scanning profiles can be created for use in the setup.xml file. The

Advanced Editor allows the operator to create, edit and delete these profiles. It also

allows the operator to see what the current LDScanner™ settings are and save any of the

profiles into the setup.xml file for use as the default settings.

Fig. 4.11. Advanced editor screen shot.

 49

TABLE 4.1

CAMERASETUP AND GENERALSETUP .XML TABLES

When the program is started, the Advanced Editor checks to see if

consoleprofile.xml and setup.xml exist. If they do not exist then consoleprofile.xml is

created with two default profiles called Wide Lens and Narrow Lens. The program then

creates setup.xml using the Wide Lens profile which contains the same default values that

LDScanner™ uses to create the setup.xml file. If the files exist then the .xml tables are

loaded into the editor and the operator can modify the settings from there.

The profile editor allows the operator of the camera to create multiple profiles

based on the lens used to capture the images. The lenses are chosen to increase or

decrease the effective field of view (FOV) available with the camera. The two default

profiles were created for a Wide lens, approximately 80
o
 FOV and a Narrow lens,

approximately 40
o
 FOV. The Advanced Editor allows the operator to modify these

existing profiles as well as add additional profiles as new lenses are incorporated into the

system.

 50

B. LDImager™

LDImager™ converts the raw data sets from the lidar and EO camera, collected

by LDScanner™, into a format that can be rendered and viewed in LDModeler™. This

is accomplished by creating a 3dd and jpg or other standard lidar and image format files.

LDImager™ also allows the operator to analyze any files that have previously been

collected to ensure that the file format and size is correct. Once a data set has been

converted, LDImager™ allows the user to create a histogram of the jpg image showing

the intensity distribution across the entire image. Finally, LDImager™ allows the

operator to create, edit and delete profiles used for the conversion. Figure 4.12 shows a

screen shot of LDImager™.

Fig. 4.12. LDImager™ GUI.

 51

LDImager™ has a simple program flow that allows the operator to Tile,

Histogram or Analyze the collected EO data. The Histogram option is only available

after a data set has been tiled.

Since the Histogram button is initially disabled, the operator really only has two

options when the program starts. These options are to Tile or Analyze Raw Files. The

program flow is very simple and is shown in fig. 4.13. Each of these steps will be

discussed in the following section.

Fig. 4.13. LDImager™ program flow.

 52

1) Tile: If the operator chooses to Tile, the profile must be selected. The

profiles are located in the file tileprofile.xml. When LDImager™ first starts it checks for

the tileprofile.xml file and if the file exists, the profiles are loaded into the program. If

the file does not exist, LDImager™ creates the file with two default profiles called Wide

Lens and Narrow Lens and then loads the two profiles into the program. The operator

can choose the desired profile by selecting it from the drop down box just below the Tile

Raw Image button.

Once the desired profile is selected the operator then selects Tile Raw Image.

When this button is pressed the Windows Open dialog box appears. The operator selects

the tex file that is to be tiled and then the Windows Save As… dialog box appears. The

operator is prompted with a default file name and can choose to accept this file name or

use a different name for the lidar and EO output. Once the operator has selected the

output file, the tiling process begins by displaying a Tiling… busy box. LDImager™

automatically saves the 3D Texel™ image to file as a jpeg image when the tiling is

complete. Then it displays three images to the operator. The intensity image displays the

lidar intensity information from the scan. In addition to range and intensity information,

the lidar receiver also collects the red, green, and blue (RGB) color information for the

individual range points. This color information is displayed in the color channel window.

The last window contains the 3D Texel™ image derived from the tiling operation. The

operator now has the option to histogram the recently tiled image, tile another image or

analyze data sets.

a) Tiling Algorithm: When the data sets are first collected they are not in a

 53

format that is viewable by LDModeler™. The standard formats accepted by

LDModeler™ are 3dd and jpg. The lda file from the lidar contains the x-y-z point cloud,

color channel and intensity information. The tex file contains hundreds of raw images

that are collected at approximately three times the line-scan rate of the lidar data.

LDImager™ takes the two data sets and generates the necessary 3dd and jpg files for

viewing.

The redundant data in the tex file is necessary because of the lack of

synchronization information coming from the lidar. On the previous prototype the lidar

had an internal trigger signal that was made available to the camera so that every time the

lidar took a picture the camera would take a picture also. Unfortunately, no such trigger

signal is available on this scanner. Also, the lidar does not send a signal indicating its

status until the scanner has returned to the start position.

To counter these problems, the lidar and EO camera were synchronized through

the Synchronization Box by starting both sensors at the same time and generating a

known triggering frequency. The lidar frequency is approximately 20 columns per

second and the EO camera approximately 60 columns, or frames, per second. The

triggering rate of both devices is known to double precision.

The algorithm used for tiling the raw images, developed by Dr. Robert Pack, was

coded by Stan Colby of RappidMapper into a dynamically linked library called

TexelEng.dll. The entry point into TexelEng.dll and the entire tiling algorithm is through

a single function called TexelImageProcessing. This function requires thirteen inputs.

These inputs and descriptions of each are shown in fig. 4.14 and can be edited in the

 54

profile editor discussed in Chapter 4, section C.

The LDImager™ GUI provides an interface between the operator and the

TexelEng.dll. The parameter values required by the TexelImageProcessing function are

stored in the tileprofile.xml file for each individual profile. These values can be modified

using the profile editor available within LDImager™.

2) Histogram: Once the 3D Texel™ image has been generated the operator can

generate an intensity Histogram of the image. The Histogram is generated by sub-

sampling every fourth pixel of the jpg 3D Texel™ image. The results are displayed in a

new pop-up window once the histogram process has completed.

3) Analyze: If the operator clicks the Analyze Raw Files button the Windows

Open… dialog box appears. The operator selects the desired tex file to analyze and then

LDImager™ checks the lda file and tex file format and size compatibility. The results

are reported to the operator in a dialog box when completed.

TEXELHANDLE ht, //texel handle
LIDARHANDLE hl, //lidar handle
int uOffset, //u-coordinate of optical center of the FPA
int vOffset, //v-coordinate of optical center of the FPA
double lAzimuthAngle, //radians, Azimuth shift to align camera with
ladar
double lElevationAngle, //radians, Elevation shift to align camera with
ladar,
double uPixelWidth, //millimeters for pixel width of the camera
double vPixelHeight, //millimeters for pixel height of the camera
double focalLength, //millimeters for focal length of camera lens
int xPixelsPerLidar, //ratio of final image x vs lidar columns like
5:1
int yPixelsPerLidar, //ratio of final image y vs lidar rows like 5:1
double lidarTimingRatio,//lidar vs texel ratio normally should be 1.
Int texelFrameOffset //texel frame offset normally should be 0

Fig. 4.14. TexelEng.dll inputs.

 55

C. Create, Edit or Delete LDImager™ Profile

LDImager™ tiles images based on the profile chosen by the operator. Two

default profiles are created and stored in the tileprofile.xml file the first time the program

is started. LDImager™ provides a GUI interface to the tileprofile.xml file that allows

profile creation, editing or deletion. To access the Camera Profile Editor for LDImager™

the operator clicks the Edit Profile button located below the profile drop down box on the

main screen.

After clicking the Edit Profile button, the Camera Profile Editor starts and the

profile editor, similar to fig. 4.15, is displayed. Initially a profile is not selected. The

operator can select one of the default profiles or select the New… option from the

Description drop down box. After selecting a profile, the operator can choose to edit or

delete the profile. The Advanced Settings can be displayed by checking the Show

Advanced Settings checkbox. Changes are saved to the tileprofile.xml file.

D. Prototype II Software Summary

Custom software was developed to control the scan process of the 3D Texel™

camera and then generate 3D standard data files. This software was called LDScanner™

and LDImager™.

LDScanner™ controls the capturing and saving of data from the lidar and EO

camera. This program ensures proper operation of all hardware and validates the files

upon collection. The interface resembles a field computer with a program flow similar to

a Wizard for 3D Texel™ camera setup and operation. The program greatly simplifies the

scanning process while still providing customizability. An Advanced Editor was created

 56

to maintain the initialization parameters saved as profiles in consoleprofile.xml and

setup.xml.

LDImager™ converts the raw data sets collected by LDScanner™ into standard

lidar and texel image formats. This is accomplished by creating a 3dd and jpg file

format. LDImager™ also analyzes data files to ensure data integrity and once a data set

has been tiled, LDImager™ allows the user to Histogram the jpg image for intensity

distribution across the entire image. Tiling profiles can also be created, edited and

deleted by the operator using the profile editor in LDImager™. This data can be quality

controlled in the field and adjustments can be made to ensure quality before leaving the

site.

Fig. 4.15. Camera profile editor for LDImager™.

 57

CHAPTER 5

ELECTRO OPTICAL CAMERA INTERFACING

The Prototype II CAIL 3D Texel™ camera uses the ISG LW-3-S-1394-C 'Smart'

Digital Imaging Module to collect color imagery. There were several initial approaches

to controlling the ISG camera via LDScanner™ but ultimately a modified Carnegie

Melon University (CMU) demo program was used [15]. LDScanner™ was written in

VB so the modified CMU demo program had to be converted into VB. The

CMU1394.dll API has a single entry point through a class declaration and because VB

cannot instantiate a class, a wrapper was created that made individual entry points for all

of the members and functions within CMU1394.dll. This exposed all members and

functions associated with the driver. Once the members and functions were exposed, the

camera could be controlled and the Camera Image dialog box was created. The work in

this chapter was completed exclusively by the author.

A. Requirements

In Chapter 5 LDScanner™ was introduced as an interface between the operator

and the lidar and EO sensors. There is an additional interface between the LDScanner™

software and each of the sensors that handles the low level data flow as shown in fig. 5.1.

The focus of the author’s exclusive contribution to this project was the construction of the

EO camera interface between the LDScanner™ software and the EO camera.

 58

Fig. 5.1. EO camera interface.

The first part of constructing the EO camera interface was to define what

LDScanner™ needed to control. The essential requirements are that the EO camera

interface must allow control over the following items:

� Region of Interest (ROI), or sub frame

� Position on the CMOS array

� Camera properties

� Digital gain

� Brightness

� White balance

� Shutter speed

� Triggering

� File format

The ROI is the desired frame size. There are standard frame sizes that can be

selected, but LDScanner™ needs to be able to isolate a custom rectangular region, or

ROI, and then modify the position of the ROI on the CMOS array. LDScanner™ must

also be able to allow the operator to modify the camera properties to adjust the image

 59

quality. In order to coordinate the lidar and EO camera LDScanner™ must also be able

to trigger the camera. Finally, the images captured from the camera need to be saved out

in a custom file format defined by CAIL.

In addition to these requirements the software needed to be developed as rapidly

as possible with a robust implementation. As with any engineering design, there is a

trade-off between the development time and robustness requirements. This chapter

discusses the solutions that were examined and the implementation of the final solution.

The final solution was written in C++ and then made available to VB. The method used

to allow VB access to the C++ code and the implementation of the Camera Control

dialog box in VB is covered in the latter portion of this chapter.

B. Initial Considerations

When the development of the Prototype II 3D Texel™ camera began the goal was

to finish the camera within three weeks. From the beginning it was known that using the

CMU1394 API would be the most robust method, but it would require the most time for

development. Because of the time limitation, alternative solutions were sought. The

alternate solutions examined were Third Party Toolkits, ISG Lightwise demo and CMU

demo.

1) Third Party Toolkits: Third party toolkits provide tools that can simplify and

expedite the development process. The demo applications of several image toolboxes (IC

Imaging Control, Unibrain, ActiveDcam, etc…) were downloaded and installed into

Microsoft Visual Studio. The most promising one of these was IC Imaging Control. A

sample program was written within a day that allowed a standard 640 (h) x 480 (v) image

 60

to be pulled from the camera in real time at 15 fps and saved to any file format desired.

Unfortunately, this toolbox had limited functionality. The ROI could not be modified,

the position of the ROI on the CMOS array couldn’t be changed, triggering was not

available and no camera properties could be modified.

In order to use a third party toolkit, the FireWire™ driver on the camera had to be

compatible with the Windows Driver Model (WDM). WDM provides a software

interface standard that, when met, controls the communication between the FireWire™

(1394), USB and PCI devices with DirectX/DirectShow. As fig. 5.2 [16] shows, IC

Imaging Control, and all third party toolkits examined, interface with the FireWire™

devices through DirectX and thus require the camera driver to be WDM compliant.

Fig. 5.2. WDM diagram.

 61

The ISG EO camera documentation, however, did not indicate whether it was

WDM compliant or not so ISG was contacted [17]. Unfortunately, ISG had not designed

their camera around a WDM Stream Class Driver, but instead the ISG camera uses an

open source driver from Carnegie Melon University called CMU1394.dll [15]. The

driver and API are freely available from The CMU Robotics Institute [18]. By using the

CMU driver ISG’s camera is not limited to the Windows environment for development,

but this also means that none of the third party toolkits could be used.

2) ISG Demo Program: Once it was established that third party imaging

software toolkits could not be used, another approach was taken. The ISG camera came

with a modified CMU demo program, called Lightwise, which included an additional

Camera Control dialog window designed to control the specific features of their camera

[19]. The ISG demo program was built for this camera which meant that is should meet

all of the camera requirements.

The ISG software includes a Camera Control Dialog box, shown in fig. 5.3, which

allows the ROI and its position on the array to be modified dynamically. The software

can also control the digital gain, brightness, white balance and shutter speed. There were

also several options available for triggering the camera as shown in fig. 5.4. The only

requirement that the ISG software didn’t meet was to allow for a custom output format,

although it was possible to work around this problem.

The biggest disappointment with the ISG software was that, despite it being based

on the open source CMU demo, ISG would not release the source code that included the

additional Camera Control dialog. This meant that either the program works as-is in the

 62

final solution or it doesn’t work at all.

The reason the ISG demo program was not used was that VB could not get a

handle on the program nor could the program functions be accessed through the

command line. The only way to use the ISG demo program from LDScanner™ was to

use the VB SendKeys commands. SendKeys commands are used to emulate the button

presses and mouse movement that an operator would use to run a GUI. There is no

robust error checking methods within the SendKeys command structure so if anything

went wrong, such as the operator pressing a key or minimizing the program while keys

are being sent, nothing could be done to remedy the situation. For this reason the ISG

demo program was not used.

Fig. 5.3. ISG ROI.

 63

Fig. 5.4. ISG trigger control.

3) CMU Demo Program: The ISG demo program is based on the CMU demo

program. Since the ISG program was able to accomplish most of the requirements, it was

presumed that the CMU demo program would also be able to perform most of the

requirements. Unfortunately, this program suffered the same shortcomings as the ISG

demo program did. However, the CMU demo program source code was available and

could be edited. The CMU demo program uses Microsoft Foundation Classes (MFC) and

a substantial portion of development time was consumed in learning MFC in order to be

able to edit the program. Once understood though, the demo program could be easily

modified to incorporate all of the requirements. As it turned out, the CMU demo

 64

program could be modified to implement the requirements in a robust manner.

C. Implementation Issues

The modified CMU demo code met all requirements but had problems being

incorporated into LDScanner™. The problem was that VB couldn’t access the functions

from the CMU1394.dll. To overcome this problem a wrapper was created that exposed

the functions in CMU1394.dll to VB.

1) Modified CMU Demo: The CMU demo was written so that all of the camera

functionality was available to the operator, but the operator had to manually select what

the program was to do. To use the demo code in the final solution it needed to simply

perform the required tasks when LDScanner™ called it. In other words, the CMU demo

program needed to be reduced to a single function. This function needed to Initialize the

camera, Acquire Images according to a trigger signal and then Shut Down. The function

program flow is shown in fig. 5.5. The code developed in the CMU demo could then be

ported to VB and used directly in LDScanner™.

Fig. 5.5. Modified CMU demo program flow.

 65

a) Initialization: Initialization can be broken into two components, the file and

the camera initializations. File initialization takes only a few commands and includes the

CAIL custom tex file format description. The camera initialization is a little more

involved as it covers everything from ensuring that a camera exists to setting camera

properties. Most of the code written in the modified CMU demo was associated with

initializing the camera.

• File Initialization: While the 3D Texel™ camera is operating, the EO camera

collects 2048(v) x 16(h) pixels at a frame rate just over 60 fps. A typical scan runs

around 20 seconds. That means there can be more than 1200 individual frames for one

scan. Having to open and close so many files would slow down the capturing and tiling

processes and would be cumbersome to maintain.

Rather than generating hundreds of individual files, a better way of storing all

these frames was to put them into one file. This required that a custom file format be

defined. The file format took on the extension tex because the file is a collection of texel

images, see Appendix E for complete tex documentation. The tex format used in

Prototype II has a 16 byte header: 4 bytes for the header size, 4 bytes for the frame width,

4 bytes for the frame height and 4 bytes for the period of the frame rate. This is followed

by the individual frames. Each new frame is appended onto the file so that the first frame

follows the header and each succeeding frame is added until the function is stopped. The

file grows continually as the program is running. When scanning is complete the file is

closed and the function ends.

The initialization of this file is straight forward. A file is opened in ab mode

 66

using the fopen command. The ab mode means that all new data will be appended to the

end of the file in binary (untranslated) mode so that carriage-return and linefeed

characters are suppressed. After opening the file, the header is read and the file is left

open. At this point the file initialization is complete and is ready to save images.

• Camera Initialization: The camera initialization is broken into general, partial

scan (within a designated ROI), and triggering initialization. Regardless of the camera

use, the general initialization remains the same. This involves checking to make sure the

camera exists and is working properly, selecting the desired camera, initializing the

necessary resources and filling in the camera register values. The basic code is shown in

fig. 5.6. The critical functions, like CheckLink, provide error checking in case of

problems. If the function returns CAM_SUCCESS then the program continues. If there

are problems with any of the critical functions, the error must be handled by closing the

program. The general initialization must be completed before the partial scan or

triggering can be setup.

if(theCamera->CheckLink() != CAM_SUCCESS)
 return CAM_ERROR;

if(theCamera->InitCamera() != CAM_SUCCESS)
 return CAM_ERROR;

theCamera->InquireControlRegisters();

theCamera->StatusControlRegisters();

Fig. 5.6. EO general initialization.

 67

Next, the partial scan format needs to be set up. Partial scan format is a subclass

within the CMU1394.dll driver that designates the ROI and its position on the CMOS

array. The first step is to query the camera to see if it supports partial scan format. If a

partial scan exists, this function allows the inquire and status functions to be called.

These functions determine the camera properties and fill in the appropriate partial scan

class member variables.

The format and mode of the camera need to be designated next. The CMU driver

supports several standard formats as well as a custom partial scan format, see Table 5.1

[15]. Within each format there are different modes that can be selected. The image size

and color format is based on the format and mode selected except in partial scan format.

The partial scan format allows customization of the size of the region of interest (ROI),

image position, packet size and color format. There are no defined modes within the

partial scan format so by setting the mode the operator defines the mode rather than

querying the driver for predetermined values. Because of this, any mode, zero through

seven, can be selected.

Once the format and mode are selected the specific partial scan settings can be

entered. This includes setting the ROI, image position on the focal plane array, packet

size and color code. Each image transferred between the camera and computer is broken

up into packets. The packet size option defines how large these packets are. The color

code option defines whether the image will be output in RGB, YUV, Mono or RAW

format.

By being able to customize these options the camera can be configured in many

 68

different ways. However, there are some general guidelines to follow. The camera has a

limited ROI granularity value of 8. This means that any ROI can be defined as long as

both the height and width are divisible by 8. The ROI for the 3D Texel™ Prototype II

was defined as 2048 (v) x 16 (h). The camera is mounted on its side so to allow the long

dimension to be vertical. With the camera on its side and using the wide angle lens, the

camera had an 80 degree elevation field-of–view which matches the lidar elevation field-

of-view.

TABLE 5.1

CMU FORMAT AND MODE

 69

Next, the SetPosition function is called. This function positions the ROI on the

array. Initially the ROI was positioned in the center of the array horizontally (1536/2 - 8

= 760) until calibration could be completed. The granularity of the SetPosition command

was determined to be 1 so the ROI can be calibrated down to one pixel.

The packet size also needs to be defined. The default packet size is 4096 bytes

and works if the full array 2048 (h) x 1536 (v) is used. Since a custom ROI is being used,

the packet size needs to be customized. To determine the packet size the equation below

was used. The only other requirement is that the packet size does not exceed the default

size of 4096 bytes because this is the maximum size that the FireWire™ protocol allows.

.0
*

mod =








packetsize

HeightWidth

The last item of the partial scan initialization to set up is the color code. The color

code options are Raw8, Raw10, RGB, YUV and monochrome. The RGB format was

selected for the Prototype II 3D Texel™ camera. The complete partial scan initialization

code is shown in fig. 5.7.

theCamera->m_controlSize.Supported();
theCamera->m_controlSize.Inquire();
theCamera->m_controlSize.Status();

theCamera->SetVideoFormat(7);
theCamera->SetVideoMode(0);

if(theCamera->m_controlSize.SetSize(width, height) != CAM_SUCCESS)
return CAM_ERROR;
if(theCamera->m_controlSize.SetPosition(left, top) != CAM_SUCCESS)
return CAM_ERROR;
if(theCamera->m_controlSize.SetBytesPerPacket(packetSize) !=
CAM_SUCCESS)
return CAM_ERROR;
if(theCamera->m_controlSize.SetColorCode(4) != CAM_SUCCESS)
return CAM_ERROR;

Fig. 5.7. Partial scan initialization.

 70

The last part of the camera initialization is the triggering shown in fig. 5.8. Again

the initialize and status functions for the triggering class need to be called to fill in the

triggering class member variables from the EO camera. A bug was discovered in the

CMU driver on these functions. Both functions are supposed to return CAM_SUCCESS

if they work correctly and CAM_ERROR if there are problems. Both functions always

return CAM_ERROR when called even though the member variables are filled.

Therefore, both functions were called but no error checking was used.

 After calling these functions the triggering mode is set. The triggering mode

determines whether the input signal expected is a one shot or retriggerable signal and

whether the rising or falling edge is used to trigger. The triggering mode selected was for

a one shot signal on the rising edge [11]. Once the mode is set, triggering is turned on by

setting the TurnOn function to true. With the triggering turned on the camera is now

configured and ready to start capturing images.

b) Image Acquisition: With the camera initialized and triggering turned on,

images can now be acquired. The acquisition process, shown in fig. 5.9, is relatively

simple. First, the StartImageAcquisition function is called to initialize the resources

necessary for acquiring images then starts the camera streaming [15]. This command is

called only once. Once the camera is streaming, images can be read from the camera

buffer by using the AcquireImage function. The AcquireImage function grabs a single

frame from the camera and places the frame into a buffer called m_pData. The frame is

pulled out of m_pData by the getRGB function and then written to file using the fwrite

function. The AcquireImage, getRGB and fwrite functions are nested inside a while loop

 71

that runs continually until the scan is complete.

The AcquireImage function won’t read until the image buffer on the camera has

received a new image. If the AcquireImage function waits for more than ten seconds a

timeout occurs and the function returns an error. The coordination of the camera and

trigger signal became critical because of the timeout potential. If the AcquireImage

function is called and the trigger TurnOn value set to true but the camera is not triggered

within ten seconds then the program exits and no images are captured.

c) Shut Down: Once the Acquire Image portion is finished the program begins

the shut down phase, see fig. 5.10. This is a simple process that ensures that the camera

is shut down properly and the file is closed. To close down the camera the

StopImageAcquisition function is called. This function stops streaming video and frees

the resources allocated by StartImageAcquisition [15]. No error checking was used on

this function because it will return CAM_SUCCESS regardless of whether it has

successfully stopped the camera or not. If it does encounter an error in the process, it

traces it, but then continues on to free whatever remaining resource(s) it can.

Once the video has been stopped, the trigger TurnOn function is set to false and

the file is closed using fclose. The m_pBitmap buffer is then deleted to free up resources

and finally, the program exits with CAM_SUCCESS.

theCamera->m_controlTrigger.Inquire();
theCamera->m_controlTrigger.Status();
if(theCamera->m_controlTrigger.SetMode(0,0) != CAM_SUCCESS)
return CAM_ERROR;
if(theCamera->m_controlTrigger.TurnOn(true) != CAM_SUCCESS)
return CAM_ERROR;

Fig. 5.8. Triggering initialization.

 72

while(bView==true)
{
if (theCamera->AcquireImage())
return CAM_ERROR_FRAME_TIMEOUT;

theCamera->getRGB(m_pBitmap);
fwrite(m_pBitmap,1,width * height * 3, fp);

}

Fig. 5.9. Acquire image.

theCamera->StopImageAcquisition()
theCamera->m_controlTrigger.TurnOn(false);
fclose(fp);
delete [] m_pBitmap;
return CAM_SUCCESS;

Fig. 5.10. Shut down.

The CMU demo program was thus modified to initialize, acquire images and shut

down. Once the CMU API was understood, and this sample program written, it needed

to be made available to LDScanner™.

2) Accessing CMU1394.dll From VB: The EO camera was tested and ran

successfully using the modified CMU demo program. This program was written in

Visual C++. The functions within the CMU 1394 software library work in C++, but

LDScanner™ is written in Visual Basic. In order for the final solution to be robust, the

software used to control the EO camera had to be integrated into LDScanner™.

Visual Basic allows use of functions within dll’s with very little effort as long as

each function has its own entry point into the dll. The CMU dll was written so that it

could handle multiple cameras. This is possible by keeping all of the functions within a

class and declaring a new instance of the class for each new camera. This means that the

entry point to all of the CMU functions is through a class. VB cannot instantiate an

 73

instance of a C++ class so the modified CMU demo program could not be converted into

VB nor could LDScanner™ get a handle on the program.

a) Camera.dll Wrapper: Since Visual Basic has no way of accessing functions

contained within the CMU1394.dll driver, a portion of the code would still need to be in

C++. Initially it looked like a separate program would have to be developed in C++ and

VB would simply execute the program without having a handle on it. After much

research, Dan Scofield of the Utah State University Computer Sciences Department

presented a solution. The solution was to make a wrapper around the dll that instantiates

of the CMU1394.dll class within C++ and then exposes all of the required functions [20].

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include "1394Camera.h"

C1394Camera *theCamera; // class instantiation

int __declspec(dllexport) CALLBACK C1394CameraHeight()
{
return(theCamera->m_height);
}

BOOL APIENTRY DllMain(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved
)
{
switch(ul_reason_for_call)
{
case DLL_PROCESS_ATTACH:
{
theCamera = new C1394Camera();
break;
}
case DLL_PROCESS_DETACH:
{
delete theCamera;
break;
}
default:
{
break;
}
}
return TRUE;
}

Fig. 5.11. CMU wrapper camera.cpp.

 74

Dan Scofield set up the framework for the wrapper shown in fig. 5.11. The wrapper

is made up of two files, Camera.cpp and Camera.def. The Camera.cpp file is divided into

three main areas. The top portion of the code contains the libraries needed for the dll and

a single C1394Camera instantiation called theCamera, the middle portion is an example

function declaration and the bottom portion of the code is the entry point into the dll. The

Camera.def file is a function definition file. These two files are compiled into a single

Camera.dll file.

The basic structure demonstrated how to expose a single member of the

CMU1394.dll API within Camera.dll. Using this example the remaining members and

functions within CMU1394.dll were exposed by adding function calls in the middle

portion of the code. The complete Camera.dll source code is included in Appendix B.

In addition to exposing the individual members and functions from the

CMU1394.dll, it was decided that, since the modified CMU demo program was written in

C++, the best way to implement this code was to create an additional function within

Camera.dll. This function contains the modified CMU demo code and is called

StartRecorder, see Appendix A. The StartRecorder function can be started and stopped

from VB since it has an individual entry point through Camera.dll. In order to stop the

function, a second function was created within Camera.dll called StopRecorder.

StopRecorder sets the value bView to false. bView is a Boolean variable used as the test

for the while loop within the StartRecorder function. It is a global variable that is

initialized to true within StartRecorder to allow the while loop to start.

After all functions were created the wrapper was compiled. This exposed and

 75

made individual entry points available for each member and function in the CMU dll.

With the entry points available, this dll could be used by LDScanner™ to control the EO

camera.

b) VB Module: To import the newly created functions from the wrapper into VB

a module called CMUCamera.vb was created. The format for accessing the Camera.dll

function was to declare the function within VB. Just as with any other VB function

declaration the input variables and return variable types are defined as well as the

functions scope. A sample declaration is shown in fig. 5.12.

One of the biggest problems with importing dll functions into VB is data type

integrity. For example, in C++ a bool is 1 byte whereas in VB a bool is 2 bytes. There

were a number of different data types used in the CMU driver and it was essential to

match by equivalent data type rather than by names. A list of the data types used in C++

and their equivalent in VB is shown in Table 5.2.

Every member variable and function within the CMU dll that needed to be

accessed within VB needed to have a function declaration like the one above. The

CMUCamera.vb VB module contained all of the dll members and functions as well as the

StartRecorder and StopRecorder function declarations. The complete CMUCamera.vb is

given in Appendix C. Once this module was constructed the entire CMU1394.dll API

could be used in VB just as it is used in C++.

Friend Declare Function C1394CameraHeight Lib "Camera.dll" () As Integer

Fig. 5.12. C++ function exposure in VB.

 76

TABLE 5.2

DATA TYPES

C++ Data Type Equivalent VB Data Type Bytes

Bool Byte 1

Char Byte 1

Short Boolean, Char or Short 2

unsigned short Short 2

unsigned char* IntPtr 2

Int Integer 4

Long Integer 4

Float Integer 4

unsigned long UInt32 4

Double Double 8

long double Long 8

Fig. 5.13. Camera image dialog box.

 77

D. Camera Image Dialog Box

Before the StartRecorder function can be run, the operator needs the opportunity

to set the camera properties. The camera properties can be changed by CMU1394.dll

through functions that are made available in VB through Camera.dll. To make these

functions accessible to the operator a Camera Image dialog box was created. The dialog

box contains four areas called Image, Properties, Histogram Plot and Pick Points. These

regions are shown in fig. 5.13.

1) Image: The image portion displays a sub-sampled image from the EO camera

in real time. The displayed image is similar in shape to the image to be captured, only

wider. The width of each frame that will be captured corresponds to the width of the

cross-hairs overlaid on the EO image. The cross-hairs also indicate the point that the

lidar and EO camera are viewing which is used in the Pick Azimuth Limits portion of the

dialog box to set start and end points of scan.

2) Properties: The right hand side of the dialog box contains three items. The

portion on the top has the common image property controls of Shutter speed, Analog

Gain, Brightness and White Balance. The maximum and minimum range of these

controls is determined by querying the camera, except in the case of the shutter speed.

The shutter speed had to be limited to within the triggerable region of the camera. A

relative, unitless, maximum shutter value of 44 was determined through experimentation.

3) Histogram: The next portion of the dialog box is the intensity histogram

region. The intensity histogram is created by converting the RGB data collected from the

image into YUV and then displaying the Y, or intensity, value. The equations used to

 78

convert from RGB to YUV are shown below. The intensity information is all that is

needed for the histogram so only the Y value was used. YUV values are calculated by

() () ()
()
().*877.0

*493.0

*114.0*587.0*299.0

YBV

YRU

BGRY

−=

−=

++=

The histogram provides a quantitative representation of the intensity values of the

image being displayed. This allows the operator to mathematically determine the quality

of the image so that over or under saturation does not occur and thus an optimal image is

obtained. The histogram is dynamically scaled so that the chart is relative, not absolute.

The ideal histogram image is an even distribution across all intensity values (from 0 to

255 or black to white). Since an even distribution is not normally possible, the EO

camera is usually adjusted so values do not pile up on the right side (oversaturated) or on

the left side (undersaturated).

4) Pick Limits: The last section of the camera control dialog box contains the

pick limits section duplicated from the scan console. These controls are used to setup the

scan. The left and right arrows move the lidar clockwise and counter-clockwise when

pressed once and continue to rotate until the button is pressed again or the lidar reaches

the internal limit switches.

The lidar orientation can be determined by viewing the cross hairs on the image of

the Camera Image dialog box or by observing the lidar itself. When the lidar has rotated

to the desired position, the operator presses the Set button. When the Set button is

pressed the lidar position encoder is queried and the angle, in degrees, is saved. The text

 79

label on the Camera Image dialog box changes from Pick 1
st
 Az Limit to Pick 2

nd
 Az

Limit. The operator then rotates the lidar to the second point and presses the Set button

again. The lidar position value is saved, the camera dialog box closes and the first and

second position values appear in the corresponding blanks on the scan console.

There are two ways to close the Camera Image dialog box. The first is by

selecting the azimuth limits for the scan. If, however, the operator wants to change the

camera properties without picking azimuth limits, the Apply and Close button will close

the dialog box. The complete Camera Image dialog box source code is in Appendix D.

E. EO Camera Summary

The EO camera is used to collect the texture elements for the 3D images. An ISG

EO camera that uses the open source CMU1394.dll driver with API was used for the

Prototype II 3D Texel™ camera. In order to use this camera, LDScanner™ had to be

programmed to control it. There were several initial approaches to controlling the ISG

camera but ultimately a modified CMU demo program using the CMU1394.dll API was

used. LDScanner™ was written in VB and a wrapper dll was created that made

individual entry points for all of the members and functions within CMU1394.dll. The

exposed members and functions were then used to control the camera and create the

Camera Image dialog box.

 80

CHAPTER 6

RECOMMENDATIONS AND CONCLUSIONS

After the Prototype II 3D Texel™ camera had been designed and constructed it

was then calibrated and tested. When the calibration and testing were complete the

camera was delivered to RappidMapper for commercial use. A design review was then

conducted to discuss the positive and negative aspects of Prototype II. The outcome of

this meeting is discussed briefly, followed by some suggestions for future work. Finally,

the conclusion summarizes the work presented in this paper.

A. Design Review and Future Work

Prototype II was a huge improvement, in many different ways, over Prototype I.

With hardware, the line scan lidar allowed the scan time to be reduced by an order of

magnitude while still maintaining high resolution. The FireWire™ Camera simplified

the image capturing process and, since an external capture card wasn’t needed, also

allowed the use of a lightweight laptop computer. This also meant that less power was

needed to run the camera so the number, size and consequently the weight of the batteries

could be reduced. The cabling, synchronization box, lidar and laptop were designed and

built compact and robust which simplified the packing of the hardware components.

The software was simplified and well thought out. This reduced the scan setup

time. In addition, a considerable amount of enhancements were made to the program to

minimize operator input during instrument operation. Error checking and error handling

 81

were improved and most bugs were removed before release. The design was simple,

effective and robust.

Although the design and construction of Prototype II showed much improvement

from Prototype I it can still be improved. The biggest hardware concern was the

synchronization box. It was designed specifically for this lidar which means that a new

synchronization box would need to be designed for any new prototype 3D Texel™

camera built. For this reason it is recommended that a more generalized synchronization

box be designed that can be used on Prototype I, Prototype II and potentially any other

prototypes.

While redesigning the synchronization box, size should also be a consideration.

Functionality more than size was the concern during construction of the first Prototype II

camera, but if more of these cameras are to be built the synchronization box would need

to be more compact. While reducing the size of the synchronization circuitry, increased

integration of that circuitry into the laptop strain relief or the EO camera mount should

also be considered.

Another hardware concern was the battery box and charger. Although the design

used for the construction of the first Prototype II was adequate, a more robust solution is

desirable. For future work, it is recommended that a commercial lithium battery and

charger be purchased from an outside manufacturer.

The last hardware suggestion for improvement has to do with the 3D Texel™

camera packaging. Currently two separate boxes, one that stores the lidar and the other

that stores everything else but the tripod and gps equipment, are used for the 3D Texel™

 82

camera. A goal during redesign is to reduce the size of as much of the hardware as

possible so that only one box is needed for storage and transport.

The software is continually modified and updated based on the current needs, but

there is one major improvement that could be made if the LDScanner™ and LDImager™

programs were ever revisited. This improvement would be in the languages chosen to

write the software. Currently both of these programs were written in Visual Basic and

then integrated with C++ dll’s. A better solution would be to rewrite both LDScanner™

and LDImager™ into C++ so that the entire package is in one language. This would

remove the need for the language translation modules, Camera.dll and CMUCamera.vb.

B. Conclusion

CAIL has designed and constructed a second prototype integrated lidar/EO

camera, or 3D Texel™ camera. This 3D Texel™ camera produces 3D images by

synchronizing and aligning a line-scan lidar and EO camera outputs. This paper

presented the background of CAIL 3D Texel™ camera technology and the overall design

of Prototype II compared with previous work. The specific hardware, software and EO

camera interfacing contributed to by the author was explained. The paper concluded with

a discussion of the Prototype II design and suggestions for future work on this design.

 83

REFERENCES

[1] R. T. Pack, “A co-boresighted synchronized ladar/EO imager for creating 3D

images of dynamic scenes.” The International Society for Optical Engineering, Vol.

5791, Apr. 2005.

[2] Answers.com, Abbreviationz, “LIDAR.” [http://www.answers.com/topic/lidar-1],

July 2005.

[3] RIEGL USA, [http://www.riegl.com/terrestrial_scanners/lpm-2k_/lpm_2k_all.htm],

Oct. 2005.

[4] PS 12 Volt Batteries, Power Sonic, “Rechargeable Batteries.” [http://www.power-

sonic.com], July 2005.

[5] K. Sealy, Personal Interview. Student, Utah State University Center for Advanced

Imaging Lidar, July 28, 2005.

[6] Prosilica, “Why Firewire? Camera Link”

[http://www.prosilica.com/support/why_firewire.htm], Nov. 2005.

[7] RIEGL Laser Measurement Systems “LMS-Z210i Laser Mirror Scanner: Technical

Documentation and Users Instructions.” pg. 29, 2003.

[8] RIEGL USA, [http://www.riegl.com/terrestrial_scanners/lms-z210i_/210i_all.htm],

Oct. 2005.

[9] RIEGL Laser Measurement Systems “LMS-Z210i Laser Mirror Scanner: Technical

Documentation and Users Instructions.” pg. 14, 2003.

[10] Imaging Solutions Group, “LightWise Camera Series: LW-3-S-1394 FireWire™

Smart Digital Imaging Module.” pg. 3-4, 2004.

[11] Imaging Solutions Group, “LightWise Camera Series: LW-3-S-1394 FireWire™

Smart Digital Imaging Module.” pg. 8-15, 2004.

[12] RIEGL Laser Measurement Systems “LMS-Z210i Laser Mirror Scanner: Technical

Documentation and Users Instructions.” pg. 6, 2003.

[13] Powerizer, “14.8 V 2000mah Li-Ion 18650 battery module with Protection IC.”

[http://batteryspace.com/index.asp?PageAction=VIEWPROD&ProdID=1328], July

2005.

 84

[14] Hobby Lobby, “Chargers for Lithium Poly Cells/Packs: Apache 1-4 Cell Li-Poly

Smart Charger 2500.” [http://www.hobby-lobby.com/chargers_lipoly.htm], July

2005.

[15] C. Baker, “Carnegie Melon 1394 Digital Camera Driver, Help Manual.” Carnegie

Melon Robotics Institute, [http://www.cs.cmu.edu/~iwan/1394/1394camera63.zip],

Mar. 31, 2004.

[16] IC Imaging Control Group, “IC Imaging Control Technical Concept: How does IC

Imaging Control interacts with other components?”

[http://www.imagingcontrol.com/ic/docs/faq/how_components_interact.htm], July

2005.

[17] K. Van Isegham, Personal Interview. Founder, Imaging Solutions Group, Feb. 9,

2005.

[18] Carnegie Melon University, Robotics Institute, “IEEE 1394a Driver.”

[http://www.cs.cmu.edu/~iwan/1394/], July 2005.

[19] Imaging Solutions Group, “LightWise Camera Series: LW-3-S-1394 FireWire™

Smart Digital Imaging Module.” pg. 33, 2004.

[20] D. Scofield, Personal Interview. Student, Utah State University Computer Science

Department, Mar. 7, 2005.

 85

APPENDICES

 86

APPENDIX A

STARTRECORDER FUNCTION

CMU Error Codes [12]

int __declspec(dllexport) CALLBACK StartRecorder(char* filename, int width, int
height, int left, int top, int packetSize)
{
 // File declarations
 unsigned char *m_pBitmap = new unsigned char[height * width * 3];

 // HEADER: sizeofheader - int(4 bytes), width - int(4 bytes), height
 // - int(4 bytes), time between images in ns - unsigned int (4 bytes)
 BYTE texhead[17]; //Little Endean
 FILE *fp;

 //Header Size
 texhead[0] = 0x10;
 texhead[1] = 0x00;
 texhead[2] = 0x00;
 texhead[3] = 0x00;
 //Width
 texhead[4] = (BYTE)(width & 0x000000FF);
 texhead[5] = (BYTE)((width & 0x0000FF00)>>8);
 texhead[6] = (BYTE)((width & 0x00FF0000)>>16);
 texhead[7] = (BYTE)((width & 0xFF000000)>>24);
 //Height
 texhead[8] = (BYTE)(height & 0x000000FF);
 texhead[9] = (BYTE)((height & 0x0000FF00)>>8);
 texhead[10] = (BYTE)((height & 0x00FF0000)>>16);
 texhead[11] = (BYTE)((height & 0xFF000000)>>24);
 //Time - 60Hz
 texhead[12] = 0;
 texhead[13] = 0x4C;
 texhead[14] = 0xFE;
 texhead[15] = 0;

 //Time - 30Hz

 87

 //texhead[12] = 0;
 //texhead[13] = 0x98;
 //texhead[14] = 0xFC;
 //texhead[15] = 0x01;

 // Initialize the camera
 if(theCamera->CheckLink() != CAM_SUCCESS)
 return CAM_ERROR;
 if(theCamera->InitCamera() != CAM_SUCCESS)
 return CAM_ERROR;

 theCamera->InquireControlRegisters();
 theCamera->StatusControlRegisters();

 // reads the feature inquiry registers and fills in the
 // corresponding member variables
 theCamera->m_controlSize.Supported();
 theCamera->m_controlSize.Inquire();
 theCamera->m_controlSize.Status();

 // Set partial scan format and mode
 theCamera->SetVideoFormat(7);
 theCamera->SetVideoMode(0);

 if(theCamera->m_controlSize.SetColorCode(4) != CAM_SUCCESS)
 return CAM_ERROR_BUSY;

 // Set partial scan values
 if(theCamera->m_controlSize.SetSize(width, height) != CAM_SUCCESS)
 return CAM_ERROR_NOT_INITIALIZED;
 if(theCamera->m_controlSize.SetPosition(left, top) != CAM_SUCCESS)
 return CAM_ERROR_INVALID_VIDEO_SETTINGS;
 if(theCamera->m_controlSize.SetBytesPerPacket(packetSize) !=
 CAM_SUCCESS)
 return CAM_ERROR_INSUFFICIENT_RESOURCES;

 // Triggering stuff
 // When trying to error check the Inquire request always returns
 // CAM_ERROR but the triggering function still works. So, don't
 // check for errors on inquire and status
 theCamera->m_controlTrigger.Inquire();
 theCamera->m_controlTrigger.Status();
 if(theCamera->m_controlTrigger.SetMode(0,0) != CAM_SUCCESS)
 return CAM_ERROR_BUSY;
 if(theCamera->m_controlTrigger.TurnOn(true) != CAM_SUCCESS)
 return CAM_ERROR_BUSY;

 // initializes the resources necessary for acquiring images
// and starts the camera streaming. Make sure to use ImageAcquisition
// and NOT ImageCapture
 if (theCamera->StartImageAcquisition())
 {
 theCamera->StopImageAcquisition();
 theCamera->m_controlTrigger.TurnOn(false);
 return CAM_ERROR;
 }

 // Deletes existing file if it exists
 if(remove(filename)==-1);

 88

 fp = fopen(filename,"ab");
 fwrite(&texhead[0],1,16,fp);

 bView = TRUE;
 while(bView == true)
 {
 if (theCamera->AcquireImage() && bView == true)
 {
 theCamera->StopImageAcquisition();
 theCamera->m_controlTrigger.TurnOn(false);
 fclose(fp);
 delete [] m_pBitmap;
 return CAM_ERROR_FRAME_TIMEOUT;

 }
 else if (bView == true)
 {
 theCamera->getRGB(m_pBitmap);
 fwrite(m_pBitmap,1,width * height * 3, fp);
 }
 }
 // Cleans everything up
 if (theCamera->StopImageAcquisition())
 return CAM_ERROR;
 theCamera->m_controlTrigger.TurnOn(false);
 fclose(fp);
 delete [] m_pBitmap;

 return CAM_SUCCESS;
}

 89

APPENDIX B

CAMERA.DLL SOURCE CODE

Camera.def

LIBRARY Camera

EXPORTS
 StopRecorder @1
 StartRecorder @2

 C1394CameraHeight @3
 C1394CameraWidth @4
 C1394CamerapData @5
 C1394CameraLinkChecked @6
 C1394CameraInitialized @7

 CheckLinkVB @8
 SelectCameraVB @9
 InitCameraVB @10
 GetVersionVB @11
 GetNodeVB @12
 GetNumberCamerasVB @13
 GetMaxSpeedVB @14
 MemGetNumberChannelsVB @15
 MemGetCurrentChannelVB @16
 MemLoadChannelVB @17
 MemSaveChannelVB @18
 RegLoadSettingsVB @19
 RegSaveSettingsVB @20
 ReadQuadletVB @21
 WriteQuadletVB @22
 GetVideoFormatVB @23
 SetVideoFormatVB @24
 GetVideoModeVB @25
 SetVideoModeVB @26
 GetVideoFrameRateVB @27
 SetVideoFrameRateVB @28
 StartImageCaptureVB @29
 StopImageCaptureVB @30
 CaptureImageVB @31
 StartImageAcquisitionVB @32
 StopImageAcquisitionVB @33
 AcquireImageVB @34
 AcquireImageExVB @35
 getRGBVB @36
 getDIBVB @37
 YtoRGBVB @38
 Y16toRGBVB @39
 YUV411toRGBVB @40
 YUV422toRGBVB @41

 90

 YUV444toRGBVB @42
 RGB16toRGBVB @43
 InquireControlRegistersVB @44
 StatusControlRegistersVB @45
 SetBrightnessVB @46
 SetAutoExposureVB @47
 SetSharpnessVB @48
 SetWhiteBalanceVB @49
 SetHueVB @50
 SetSaturationVB @51
 SetGammaVB @52
 SetShutterVB @53
 SetGainVB @54
 SetIrisVB @55
 SetFocusVB @56
 SetZoomVB @57

 GetBrightnessMin @58
 GetBrightnessMax @59
 GetBrightnessValue1 @60
 GetAutoExposureMin @61
 GetAutoExposureMax @62
 GetAutoExposureValue1 @63
 GetSharpnessMin @64
 GetSharpnessMax @65
 GetSharpnessValue1 @66
 GetWBMin @67
 GetWBMax @68
 GetWBValue1 @69
 GetWBValue2 @70
 GetWBOnePushStatus @71
 GetHueMin @72
 GetHueMax @73
 GetHueValue1 @74
 GetSaturationMin @75
 GetSaturationMax @76
 GetSaturationValue1 @77
 GetGammaMin @78
 GetGammaMax @79
 GetGammaValue1 @80
 GetShutterMin @81
 GetShutterMax @82
 GetShutterValue1 @83
 GetGainMin @84
 GetGainMax @85
 GetGainValue1 @86
 GetIrisMin @87
 GetIrisMax @88
 GetIrisValue1 @89
 GetFocusMin @90
 GetFocusMax @91
 GetFocusValue1 @92
 GetZoomMin @93
 GetZoomMax @94

 91

 GetZoomValue1 @95

 SetWBOnePush @96

 ControlSizemaxV @97
 ControlSizemaxH @98
 ControlSizeunitV @99
 ControlSizeunitH @100
 ControlSizeunitVpos @101
 ControlSizeunitHpos @102
 ControlSizetop @103
 ControlSizeleft @104
 ControlSizeheight @105
 ControlSizewidth @106
 ControlSizecolorCode @107
 ControlSizepixelsFrame @108
 ControlSizebytesFrameHigh @109
 ControlSizebytesFrameLow @110
 ControlSizebytesPacketMin @111
 ControlSizebytesPacketMax @112
 ControlSizebytesPacket @113
 ControlSizepacketsFrame @114

 SupportedVB @115
 ModeSupportedVB @116
 SetColorCodeVB @117
 SetSizeVB @118
 SetPositionVB @119
 SetBytesPerPacketVB @120
 InquireSizeVB @121
 StatusSizeVB @122

 ControlTriggerpresent @123
 ControlTriggerreadout @124
 ControlTriggeronoff @125
 ControlTriggerpolarity @126
 ControlTriggerMode @127
 ControlTriggerstatusPolarity @128
 ControlTriggerstatusOnOff @129
 ControlTriggerstatusMode @130

 SetTriggerModeVB @131
 SetTriggerPolarityVB @132
 TurnTriggerOnVB @133
 StatusTriggerVB @134
 InquireTriggerVB @135

 92

Camera.cpp

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include "1394Camera.h"

// This is the main camera class used to control the
// external device. It is created here so that the
// DLL can interface with it and give an external
// interface not involving classes.
C1394Camera *theCamera;
bool bView;
extern "C"
/**
**/
/* StopRecorder and StartRecorder Functions used in ladar program
*/
/**
**/
void __declspec(dllexport) CALLBACK StopRecorder()
{
 bView = FALSE;
}
int __declspec(dllexport) CALLBACK StartRecorder(char* filename, int
width, int height, int left, int top, int packetSize)
{
 // File declarations
 unsigned char *m_pBitmap = new unsigned char[height * width * 3];
 // HEADER: sizeofheader - int(4 bytes), width - int(4 bytes),
 // height - int(4 bytes), time between images in ns –
 // unsigned int (4 bytes)
 BYTE texhead[17]; //Little Endian
 FILE *fp;
 //int number = 0;
 int *lpnDroppedFrames = new int[1];

 //Header Size
 texhead[0] = 0x10;
 texhead[1] = 0x00;
 texhead[2] = 0x00;
 texhead[3] = 0x00;
 //Width
 texhead[4] = (BYTE)(width & 0x000000FF);
 texhead[5] = (BYTE)((width & 0x0000FF00)>>8);
 texhead[6] = (BYTE)((width & 0x00FF0000)>>16);
 texhead[7] = (BYTE)((width & 0xFF000000)>>24);
 //Height
 texhead[8] = (BYTE)(height & 0x000000FF);
 texhead[9] = (BYTE)((height & 0x0000FF00)>>8);
 texhead[10] = (BYTE)((height & 0x00FF0000)>>16);
 texhead[11] = (BYTE)((height & 0xFF000000)>>24);
 //Time - 60Hz
 texhead[12] = 0;

 93

 texhead[13] = 0x4C;
 texhead[14] = 0xFE;
 texhead[15] = 0;

 //Time - 30Hz
 //texhead[12] = 0;
 //texhead[13] = 0x98;
 //texhead[14] = 0xFC;
 //texhead[15] = 0x01;

 // Initialize the camera
 if(theCamera->CheckLink() != CAM_SUCCESS)
 return CAM_ERROR;
 if(theCamera->InitCamera() != CAM_SUCCESS)
 return CAM_ERROR;

 theCamera->InquireControlRegisters();
 theCamera->StatusControlRegisters();

 // reads the feature inquiry registers and fills in the
 // corresponding member variables
 theCamera->m_controlSize.Supported();
 theCamera->m_controlSize.Inquire();
 theCamera->m_controlSize.Status();

 // Set partial scan format and mode
 theCamera->SetVideoFormat(7);
 theCamera->SetVideoMode(0);

 // RGB color code 4
 if(theCamera->m_controlSize.SetColorCode(4) != CAM_SUCCESS)
 return CAM_ERROR_BUSY;

 // Set partial scan values
 if(theCamera->m_controlSize.SetSize(width, height) !=
CAM_SUCCESS)
 return CAM_ERROR_NOT_INITIALIZED;
 if(theCamera->m_controlSize.SetPosition(left, top) !=
CAM_SUCCESS)
 return CAM_ERROR_INVALID_VIDEO_SETTINGS;
 if(theCamera->m_controlSize.SetBytesPerPacket(packetSize)
 != CAM_SUCCESS)
 return CAM_ERROR_INSUFFICIENT_RESOURCES;

 // theCamera->SetVideoFrameRate(5);

 // Triggering stuff
 // When trying to error check the Inquire request always returns
 // CAM_ERROR but the triggering function still works. So, don't
 // check for errors on inquire and status
 theCamera->m_controlTrigger.Inquire();
 theCamera->m_controlTrigger.Status();

 if(theCamera->m_controlTrigger.SetMode(0,0) != CAM_SUCCESS)

 94

 return CAM_ERROR_BUSY;
 //if(theCamera->m_controlTrigger.SetPolarity(true) !=
CAM_SUCCESS)
 // return CAM_ERROR_INSUFFICIENT_RESOURCES;
 if(theCamera->m_controlTrigger.TurnOn(true) != CAM_SUCCESS)
 return CAM_ERROR_BUSY;

 // initializes the resources necessary for acquiring images and
 // starts the camera streaming
 // Make sure to use ImageAcquisition and NOT ImageCapture
 if (theCamera->StartImageAcquisition())
 {
 theCamera->StopImageAcquisition();
 theCamera->m_controlTrigger.TurnOn(false);
 return CAM_ERROR;
 }

 // Deletes existing file if it exists
 if(remove(filename)==-1);

 fp = fopen(filename,"ab");
 fwrite(&texhead[0],1,16,fp);

 bView = TRUE;
 //size_t NumBytesWritten = 0;
 //size_t buffsize;
 //char outbuff(20);
 //long counter = 0;
 //FILE* outfp;

 //if(remove(strcat(filename,"n"))==-1);
 //outfp = fopen(filename,"a");

 //outfp = fopen(filename,"at");

 // Captures images and saves to file until bView is FALSE
 // (bView is changed by StopRecorder)
 while(bView == true)
 {
 //if (theCamera->AcquireImage() && bView == true)
 if (theCamera->AcquireImageEx(false, lpnDroppedFrames)
 && bView == true)
 {
 theCamera->StopImageAcquisition();
 theCamera->m_controlTrigger.TurnOn(false);
 fclose(fp);
 delete [] m_pBitmap;
 return CAM_ERROR_FRAME_TIMEOUT;

 }
 else if (bView == true)
 {
 theCamera->getRGB(m_pBitmap);
 fwrite(m_pBitmap,1,width * height * 3, fp);

 95

 }
 }

 // Shutdown
 if (theCamera->StopImageAcquisition())
 return CAM_ERROR;
 theCamera->m_controlTrigger.TurnOn(false);
 fclose(fp);
 //fclose(outfp);
 delete [] m_pBitmap;
 return CAM_SUCCESS;
}

/**
**/
/* Function definitions for the C1394Camera Class Members
*/
/**
**/
int __declspec(dllexport) CALLBACK C1394CameraHeight()
{
 return(theCamera->m_height);
}
int __declspec(dllexport) CALLBACK C1394CameraWidth()
{
 return(theCamera->m_width);
}
unsigned char* __declspec(dllexport) CALLBACK C1394CamerapData()
{
 return(theCamera->m_pData);
}
bool __declspec(dllexport) CALLBACK C1394CameraLinkChecked()
{
 return(theCamera->m_linkChecked);
}
bool __declspec(dllexport) CALLBACK C1394CameraInitialized()
{
 return(theCamera->m_cameraInitialized);
}
/**
**/
/* Function definitions for the C1394Camera Class Functions
*/
/**
**/
int __declspec(dllexport) CALLBACK CheckLinkVB()
{
 return(theCamera->CheckLink());
}
int __declspec(dllexport) CALLBACK SelectCameraVB(int node)
{
 return(theCamera->SelectCamera(node));
}

 96

int __declspec(dllexport) CALLBACK InitCameraVB()
{
 return(theCamera->InitCamera());
}
unsigned long __declspec(dllexport) CALLBACK GetVersionVB()
{
 return(theCamera->GetVersion());
}
int __declspec(dllexport) CALLBACK GetNodeVB()
{
 return(theCamera->GetNode());
}
int __declspec(dllexport) CALLBACK GetNumberCamerasVB()
{
 return(theCamera->GetNumberCameras());
}
int __declspec(dllexport) CALLBACK GetMaxSpeedVB()
{
 return(theCamera->GetMaxSpeed());
}
int __declspec(dllexport) CALLBACK MemGetNumberChannelsVB()
{
 return(theCamera->MemGetNumChannels());
}
int __declspec(dllexport) CALLBACK MemGetCurrentChannelVB()
{
 return(theCamera->MemGetCurrentChannel());
}
int __declspec(dllexport) CALLBACK MemLoadChannelVB(int channel)
{
 return(theCamera->MemLoadChannel(channel));
}
int __declspec(dllexport) CALLBACK MemSaveChannelVB(int channel)
{
 return(theCamera->MemSaveChannel(channel));
}
int __declspec(dllexport) CALLBACK RegLoadSettingsVB(const char *pname)
{
 return(theCamera->RegLoadSettings(pname));
}
int __declspec(dllexport) CALLBACK RegSaveSettingsVB(const char *pname)
{
 return(theCamera->RegSaveSettings(pname));
}
int __declspec(dllexport) CALLBACK ReadQuadletVB(unsigned long address,
unsigned long *pdata)
{
 return(theCamera->ReadQuadlet(address, pdata));
}
int __declspec(dllexport) CALLBACK WriteQuadletVB(unsigned long
address, unsigned long data)
{
 return(theCamera->WriteQuadlet(address,data));
}

 97

int __declspec(dllexport) CALLBACK GetVideoFormatVB()
{
 return(theCamera->GetVideoFormat());
}
int __declspec(dllexport) CALLBACK SetVideoFormatVB(unsigned long
format)
{
 return(theCamera->SetVideoFormat(format));
}
int __declspec(dllexport) CALLBACK GetVideoModeVB()
{
 return(theCamera->GetVideoMode());
}
int __declspec(dllexport) CALLBACK SetVideoModeVB(unsigned long mode)
{
 return(theCamera->SetVideoMode(mode));
}
int __declspec(dllexport) CALLBACK GetVideoFrameRateVB()
{
 return(theCamera->GetVideoFrameRate());
}
int __declspec(dllexport) CALLBACK SetVideoFrameRateVB(
 unsigned long framerate)
{
 return(theCamera->SetVideoFrameRate(framerate));
}
int __declspec(dllexport) CALLBACK StartImageCaptureVB()
{
 return(theCamera->StartImageCapture());
}
int __declspec(dllexport) CALLBACK StopImageCaptureVB()
{
 return(theCamera->StopImageCapture());
}
int __declspec(dllexport) CALLBACK CaptureImageVB()
{
 return(theCamera->CaptureImage());
}
int __declspec(dllexport) CALLBACK StartImageAcquisitionVB()
{
 return(theCamera->StartImageAcquisition());
}
int __declspec(dllexport) CALLBACK StopImageAcquisitionVB()
{
 return(theCamera->StopImageAcquisition());
}
int __declspec(dllexport) CALLBACK AcquireImageVB()
{
 return(theCamera->AcquireImage());
}
int __declspec(dllexport) CALLBACK AcquireImageExVB(
 bool DropStaleFrames,
 int *lpnDroppedFrames)
{

 98

 return(theCamera->AcquireImageEx(DropStaleFrames,
lpnDroppedFrames));
}
void __declspec(dllexport) CALLBACK getRGBVB(unsigned char *pBitmap)
{
 return(theCamera->getRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK getDIBVB(unsigned char *pBitmap)
{
 return(theCamera->getDIB(pBitmap));
}
void __declspec(dllexport) CALLBACK YtoRGBVB(unsigned char *pBitmap)
{
 return(theCamera->YtoRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK Y16toRGBVB(unsigned char *pBitmap)
{
 return(theCamera->Y16toRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK YUV411toRGBVB(unsigned char
*pBitmap)
{
 return(theCamera->YUV411toRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK YUV422toRGBVB(unsigned char
*pBitmap)
{
 return(theCamera->YUV422toRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK YUV444toRGBVB(unsigned char
*pBitmap)
{
 return(theCamera->YUV444toRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK RGB16toRGBVB(unsigned char
*pBitmap)
{
 return(theCamera->RGB16toRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK InquireControlRegistersVB()
{
 return(theCamera->InquireControlRegisters());
}
void __declspec(dllexport) CALLBACK StatusControlRegistersVB()
{
 return(theCamera->StatusControlRegisters());
}
/* CameraControl wrapper functions */
void __declspec(dllexport) CALLBACK SetBrightnessVB(int value)
{
 return(theCamera->SetBrightness(value));
}
void __declspec(dllexport) CALLBACK SetAutoExposureVB(int value)
{

 99

 return(theCamera->SetAutoExposure(value));
}
void __declspec(dllexport) CALLBACK SetSharpnessVB(int value)
{
 return(theCamera->SetSharpness(value));
}
void __declspec(dllexport) CALLBACK SetWhiteBalanceVB(int u,int v)
{
 return(theCamera->SetWhiteBalance(u,v));
}
void __declspec(dllexport) CALLBACK SetHueVB(int value)
{
 return(theCamera->SetHue(value));
}
void __declspec(dllexport) CALLBACK SetSaturationVB(int value)
{
 return(theCamera->SetSaturation(value));
}
void __declspec(dllexport) CALLBACK SetGammaVB(int value)
{
 return(theCamera->SetGamma(value));
}
void __declspec(dllexport) CALLBACK SetShutterVB(int value)
{
 return(theCamera->SetShutter(value));
}
void __declspec(dllexport) CALLBACK SetGainVB(int value)
{
 return(theCamera->SetGain(value));
}
void __declspec(dllexport) CALLBACK SetIrisVB(int value)
{
 return(theCamera->SetIris(value));
}
void __declspec(dllexport) CALLBACK SetFocusVB(int value)
{
 return(theCamera->SetFocus(value));
}
void __declspec(dllexport) CALLBACK SetZoomVB(int value)
{
 return(theCamera->SetZoom(value));
}
/**
**/
/* Function definitions for the C1394CameraControl Class Members
*/
/**
**/
unsigned short __declspec(dllexport) CALLBACK GetBrightnessMin()
{
 return(theCamera->m_controlBrightness.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetBrightnessMax()
{

 100

 return(theCamera->m_controlBrightness.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetBrightnessValue1()
{
 return(theCamera->m_controlBrightness.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetAutoExposureMin()
{
 return(theCamera->m_controlAutoExposure.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetAutoExposureMax()
{
 return(theCamera->m_controlAutoExposure.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetAutoExposureValue1()
{
 return(theCamera->m_controlAutoExposure.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetSharpnessMin()
{
 return(theCamera->m_controlSharpness.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetSharpnessMax()
{
 return(theCamera->m_controlSharpness.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetSharpnessValue1()
{
 return(theCamera->m_controlSharpness.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetWBMin()
{
 return(theCamera->m_controlWhiteBalance.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetWBMax()
{
 return(theCamera->m_controlWhiteBalance.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetWBValue1()
{
 return(theCamera->m_controlWhiteBalance.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetWBValue2()
{
 return(theCamera->m_controlWhiteBalance.m_value2);
}
bool __declspec(dllexport) CALLBACK GetWBOnePushStatus()
{
 return(theCamera->m_controlWhiteBalance.m_statusOnePush);
}
unsigned short __declspec(dllexport) CALLBACK GetHueMin()
{
 return(theCamera->m_controlHue.m_min);
}

 101

unsigned short __declspec(dllexport) CALLBACK GetHueMax()
{
 return(theCamera->m_controlHue.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetHueValue1()
{
 return(theCamera->m_controlHue.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetSaturationMin()
{
 return(theCamera->m_controlSaturation.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetSaturationMax()
{
 return(theCamera->m_controlSaturation.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetSaturationValue1()
{
 return(theCamera->m_controlSaturation.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetGammaMin()
{
 return(theCamera->m_controlGamma.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetGammaMax()
{
 return(theCamera->m_controlGamma.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetGammaValue1()
{
 return(theCamera->m_controlGamma.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetShutterMin()
{
 return(theCamera->m_controlShutter.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetShutterMax()
{
 return(theCamera->m_controlShutter.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetShutterValue1()
{
 return(theCamera->m_controlShutter.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetGainMin()
{
 return(theCamera->m_controlGain.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetGainMax()
{
 return(theCamera->m_controlGain.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetGainValue1()
{

 102

 return(theCamera->m_controlGain.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetIrisMin()
{
 return(theCamera->m_controlIris.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetIrisMax()
{
 return(theCamera->m_controlIris.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetIrisValue1()
{
 return(theCamera->m_controlIris.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetFocusMin()
{
 return(theCamera->m_controlFocus.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetFocusMax()
{
 return(theCamera->m_controlFocus.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetFocusValue1()
{
 return(theCamera->m_controlFocus.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetZoomMin()
{
 return(theCamera->m_controlZoom.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetZoomMax()
{
 return(theCamera->m_controlZoom.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetZoomValue1()
{
 return(theCamera->m_controlZoom.m_value1);
}
/**
**/
/* Function definitions for the C1394CameraControl Class Functions
*/
/**
**/
int __declspec(dllexport) CALLBACK SetWBOnePush()
{
 return(theCamera->m_controlWhiteBalance.SetOnePush());
}
/**
**/
/* Function definitions for the C1394CameraControlSize Class Member
*/
/**
**/

 103

int __declspec(dllexport) CALLBACK ControlSizemaxV()
{
 return(theCamera->m_controlSize.m_maxV);
}
int __declspec(dllexport) CALLBACK ControlSizemaxH()
{
 return(theCamera->m_controlSize.m_maxH);
}
int __declspec(dllexport) CALLBACK ControlSizeunitV()
{
 return(theCamera->m_controlSize.m_unitV);
}
int __declspec(dllexport) CALLBACK ControlSizeunitH()
{
 return(theCamera->m_controlSize.m_unitH);
}
int __declspec(dllexport) CALLBACK ControlSizeunitVpos()
{
 return(theCamera->m_controlSize.m_unitVpos);
}
int __declspec(dllexport) CALLBACK ControlSizeunitHpos()
{
 return(theCamera->m_controlSize.m_unitHpos);
}
int __declspec(dllexport) CALLBACK ControlSizetop()
{
 return(theCamera->m_controlSize.m_top);
}
int __declspec(dllexport) CALLBACK ControlSizeleft()
{
 return(theCamera->m_controlSize.m_left);
}
int __declspec(dllexport) CALLBACK ControlSizeheight()
{
 return(theCamera->m_controlSize.m_height);
}
int __declspec(dllexport) CALLBACK ControlSizewidth()
{
 return(theCamera->m_controlSize.m_width);
}
int __declspec(dllexport) CALLBACK ControlSizecolorCode()
{
 return(theCamera->m_controlSize.m_colorCode);
}
int __declspec(dllexport) CALLBACK ControlSizepixelsFrame()
{
 return(theCamera->m_controlSize.m_pixelsFrame);
}
int __declspec(dllexport) CALLBACK ControlSizebytesFrameHigh()
{
 return(theCamera->m_controlSize.m_bytesFrameHigh);
}
int __declspec(dllexport) CALLBACK ControlSizebytesFrameLow()

 104

{
 return(theCamera->m_controlSize.m_bytesFrameLow);
}
int __declspec(dllexport) CALLBACK ControlSizebytesPacketMin()
{
 return(theCamera->m_controlSize.m_bytesPacketMin);
}
int __declspec(dllexport) CALLBACK ControlSizebytesPacketMax()
{
 return(theCamera->m_controlSize.m_bytesPacketMax);
}
int __declspec(dllexport) CALLBACK ControlSizebytesPacket()
{
 return(theCamera->m_controlSize.m_bytesPacket);
}
int __declspec(dllexport) CALLBACK ControlSizepacketsFrame()
{
 return(theCamera->m_controlSize.m_packetsFrame);
}
/**
/
/* Function definitions for the C1394CameraControlSize Class
Functions*/
/**
/
bool __declspec(dllexport) CALLBACK SupportedVB()
{
 return(theCamera->m_controlSize.Supported());
}
bool __declspec(dllexport) CALLBACK ModeSupportedVB(int mode)
{
 return(theCamera->m_controlSize.ModeSupported(mode));
}
int __declspec(dllexport) CALLBACK SetColorCodeVB(int code)
{
 return(theCamera->m_controlSize.SetColorCode(code));
}
int __declspec(dllexport) CALLBACK SetSizeVB(int width, int height)
{
 theCamera->m_controlSize.Status();
 theCamera->m_controlSize.Inquire();
 return(theCamera->m_controlSize.SetSize(width, height));
}
int __declspec(dllexport) CALLBACK SetPositionVB(int left, int top)
{
 return(theCamera->m_controlSize.SetPosition(left,top));
}
int __declspec(dllexport) CALLBACK SetBytesPerPacketVB(int bytes)
{
 return(theCamera->m_controlSize.SetBytesPerPacket(bytes));
}
int __declspec(dllexport) CALLBACK InquireSizeVB()
{
 return(theCamera->m_controlSize.Inquire());

 105

}
int __declspec(dllexport) CALLBACK StatusSizeVB()
{
 return(theCamera->m_controlSize.Status());
}
/**
**/
/* Function definitions for the C1394CameraControlTrigger Class Methods
*/
/**
**/
bool __declspec(dllexport) CALLBACK ControlTriggerpresent()
{
 return(theCamera->m_controlTrigger.m_present);
}
bool __declspec(dllexport) CALLBACK ControlTriggerreadout()
{
 return(theCamera->m_controlTrigger.m_readout);
}
bool __declspec(dllexport) CALLBACK ControlTriggeronoff()
{
 return(theCamera->m_controlTrigger.m_onoff);
}
bool __declspec(dllexport) CALLBACK ControlTriggerpolarity()
{
 return(theCamera->m_controlTrigger.m_polarity);
}
bool* __declspec(dllexport) CALLBACK ControlTriggerMode()
{
 return(theCamera->m_controlTrigger.m_triggerMode);
}
bool __declspec(dllexport) CALLBACK ControlTriggerstatusPolarity()
{
 return(theCamera->m_controlTrigger.m_statusPolarity);
}
bool __declspec(dllexport) CALLBACK ControlTriggerstatusOnOff()
{
 return(theCamera->m_controlTrigger.m_statusOnOff);
}
int __declspec(dllexport) CALLBACK ControlTriggerstatusMode()
{
 return(theCamera->m_controlTrigger.m_statusMode);
}
/**
**/
/*Function definitions for the C1394CameraControlTrigger Class
Functions*/
/**
**/
int __declspec(dllexport) CALLBACK SetTriggerModeVB(int mode, int
parameter)
{
 return(theCamera->m_controlTrigger.SetMode(mode, parameter));
}

 106

int __declspec(dllexport) CALLBACK SetTriggerPolarityVB(bool polarity)
{
 return(theCamera->m_controlTrigger.SetPolarity(polarity));
}
int __declspec(dllexport) CALLBACK TurnTriggerOnVB(bool on)
{
 return(theCamera->m_controlTrigger.TurnOn(on));
}
int __declspec(dllexport) CALLBACK StatusTriggerVB()
{
 return(theCamera->m_controlTrigger.Status());
}
int __declspec(dllexport) CALLBACK InquireTriggerVB()
{
 return(theCamera->m_controlTrigger.Inquire());
}
/**
** DllMain
** This routine is called when the DLL is loaded, unloaded
** etc. It is also called when threads are entered and
** exited (not dealt with here)
**/
//extern "C"
BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 switch(ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 {
 // Code to run when the DLL is loaded
 // Create camera class here
 // MessageBox(NULL, "A theCamera class has been
instantiated", "Information",
 //MB_OK);
 theCamera = new C1394Camera();
 break;
 }
 case DLL_PROCESS_DETACH:
 {
 // Code to run when the DLL is freed
 // Destroy camera class here
 //MessageBox(NULL, "theCamera destructor has been
called", "Information",
 //MB_OK);
 delete theCamera;
 break;
 }
 case DLL_THREAD_ATTACH:
 {
 // Code to run when a thread is created during the DLL's
lifetime.

 107

 break;
 }
 case DLL_THREAD_DETACH:
 {
 // Code to run when a thread ends normally.
 break;
 }
 default:
 {
 break;
 }
 }

 return TRUE;
}

 108

APPENDIX C

CMUCAMERA.VB SOURCE CODE

Module CMUCamera
#Region "Camera DLL Constants"
 Friend Const CAM_SUCCESS As Int16 = 0
 Friend Const CAM_ERROR As Int16 = -1
 Friend Const CAM_ERROR_NOT_INITIALIZED As Int16 = 1
 Friend Const CAM_ERROR_INVALID_VIDEO_SETTINGS As Int16 = 2
 Friend Const CAM_ERROR_BUSY As Int16 = 3
 Friend Const CAM_ERROR_INSUFFICIENT_RESOURCES As Int16 = 4
 Friend Const CAM_ERROR_PARAM_OUT_OF_RANGE As Int16 = 5
 Friend Const CAM_ERROR_FRAME_TIMEOUT As Int16 = 6
#End Region

 'Recording Functions
 Friend Declare Sub StopRecorder Lib "Camera.dll" ()
 Friend Declare Function StartRecorder Lib "Camera.dll" (_
 ByVal filename As String, _
 ByVal width As Integer, _
 ByVal height As Integer, _
 ByVal left As Integer, _
 ByVal top As Integer, _
 ByVal packetSize As Integer _
) As Integer

 'Function definitions for the C1394Camera Class Members
 Friend Declare Function C1394CameraHeight Lib "Camera.dll" () _
 As Integer
 Friend Declare Function C1394CameraWidth Lib "Camera.dll" () _
 As Integer
 Friend Declare Function C1394CamerapData Lib "Camera.dll" () _
 As Byte 'Pointer Issues
 Friend Declare Function C1394CameraLinkChecked Lib "Camera.dll" ()
_
 As Byte
 Friend Declare Function C1394CameraInitialized Lib "Camera.dll" ()
_
 As Byte

 'Function definitions for the C1394Camera Class Functions
 Friend Declare Function CheckLinkVB Lib "Camera.dll" () As Integer
 Friend Declare Function SelectCameraVB Lib "Camera.dll" (_
 ByVal node As Integer
) As Integer
 Friend Declare Function InitCameraVB Lib "Camera.dll" () As Integer
 Friend Declare Function GetVersionVB Lib "Camera.dll" () As UInt32
 Friend Declare Function GetNodeVB Lib "Camera.dll" () As Integer
 Friend Declare Function GetNumberCamerasVB Lib "Camera.dll" () _
 As Integer
 Friend Declare Function GetMaxSpeedVB Lib "Camera.dll" () As

 109

Integer
 Friend Declare Function MemGetNumberChannelsVB Lib "Camera.dll" ()
_
 As Integer
 Friend Declare Function MemGetCurrentChannelVB Lib "Camera.dll" ()
_
 As Integer
 Friend Declare Function MemLoadChannelVB Lib "Camera.dll" (_
 ByVal channel As Integer _
) As Integer
 Friend Declare Function MemSaveChannelVB Lib "Camera.dll" (_
 ByVal channel As Integer _
) As Integer
 Friend Declare Function RegLoadSettingsVB Lib "Camera.dll" (_
 ByRef pname As Byte _
) As Integer
 Friend Declare Function RegSaveSettingsVB Lib "Camera.dll" (_
 ByRef pname As Byte _
) As Integer
 Friend Declare Function ReadQuadletVB Lib "Camera.dll" (_
 ByVal address As UInt32, _
 ByRef pdata As UInt32 _
) As Integer
 Friend Declare Function WriteQuadletVB Lib "Camera.dll" (_
 ByVal address As UInt32, _
 ByVal pdata As UInt32 _
) As Integer
 Friend Declare Function GetVideoFormatVB Lib "Camera.dll" (_
) As Integer
 Friend Declare Function SetVideoFormatVB Lib "Camera.dll" (_
 ByVal format As UInt32 _
) As Integer
 Friend Declare Function GetVideoModeVB Lib "Camera.dll" () As
Integer
 Friend Declare Function SetVideoModeVB Lib "Camera.dll" (_
 ByVal mode As UInt32 _
) As Integer
 Friend Declare Function GetVideoFrameRateVB Lib "Camera.dll" (_
) As Integer
 Friend Declare Function SetVideoFrameRateVB Lib "Camera.dll" (_
 ByVal frame_rate As UInt32 _
) As Integer
 Friend Declare Function StartImageCaptureVB Lib "Camera.dll" (_
) As Integer
 Friend Declare Function StopImageCaptureVB Lib "Camera.dll" (_
) As Integer
 Friend Declare Function CaptureImageVB Lib "Camera.dll" () As
Integer
 Friend Declare Function StartImageAcquisitionVB Lib "Camera.dll" (
_
) As Integer
 Friend Declare Function StopImageAcquisitionVB Lib "Camera.dll" (_
) As Integer
 Friend Declare Function AcquireImageVB Lib "Camera.dll" () As

 110

Integer
 Friend Declare Function AcquireImageExVB Lib "Camera.dll" (_
 ByVal DropStaleFrames As Byte, _
 ByRef lpnDroppedFrames As Integer _
) As Integer
 Friend Declare Sub getRGBVB Lib "Camera.dll" (ByVal pBitmap() As
Byte)
 Friend Declare Sub getDIBVB Lib "Camera.dll" (ByVal pBitmap() As
Byte)
 Friend Declare Sub YtoRGBVB Lib "Camera.dll" (ByVal pBitmap() As
Byte)
 Friend Declare Sub Y16toRGBVB Lib "Camera.dll" (_
 ByVal pBitmap() As Byte)
 Friend Declare Sub YUV411toRGBVB Lib "Camera.dll" (ByVal pBitmap()
_
 As Byte)
 Friend Declare Sub YUV422toRGBVB Lib "Camera.dll" (ByVal pBitmap()
_
 As Byte)
 Friend Declare Sub YUV444toRGBVB Lib "Camera.dll" (ByVal pBitmap()
_
 As Byte)
 Friend Declare Sub RGB16TORGBVB Lib "Camera.dll" (ByVal pBitmap() _
 As Byte)
 Friend Declare Function SetWBOnePush Lib "Camera.dll" () As Integer

 ' Camera Control Functions
 Friend Declare Sub InquireControlRegistersVB Lib "Camera.dll" ()
 Friend Declare Sub StatusControlRegistersVB Lib "Camera.dll" ()
 Friend Declare Sub SetBrightnessVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetAutoExposureVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetSharpnessVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetWhiteBalanceVB Lib "Camera.dll" (_
 ByVal u As Integer, _
 ByVal v As Integer)
 Friend Declare Sub SetHueVB Lib "Camera.dll" (ByVal value As
Integer)
 Friend Declare Sub SetSaturationVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetGammaVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetShutterVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetGainVB Lib "Camera.dll" (ByVal value As
Integer)
 Friend Declare Sub SetIrisVB Lib "Camera.dll" (ByVal value As
Integer)
 Friend Declare Sub SetFocusVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetZoomVB Lib "Camera.dll" (ByVal value As
Integer)

 111

 ' Camera Control Methods
 Friend Declare Function GetBrightnessMin Lib "Camera.dll" () As
Short
 Friend Declare Function GetBrightnessMax Lib "Camera.dll" () As
Short
 Friend Declare Function GetBrightnessValue1 Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetAutoExposureMin Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetAutoExposureMax Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetAutoExposureValue1 Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetSharpnessMin Lib "Camera.dll" () As
Short
 Friend Declare Function GetSharpnessMax Lib "Camera.dll" () As
Short
 Friend Declare Function GetSharpnessValue1 Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetWBMin Lib "Camera.dll" () As Short
 Friend Declare Function GetWBMax Lib "Camera.dll" () As Short
 Friend Declare Function GetWBValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetWBValue2 Lib "Camera.dll" () As Short
 Friend Declare Function GetWBOnePushStatus Lib "Camera.dll" () As
Byte
 Friend Declare Function GetHueMin Lib "Camera.dll" () As Short
 Friend Declare Function GetHueMax Lib "Camera.dll" () As Short
 Friend Declare Function GetHueValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetSaturationMin Lib "Camera.dll" () As
Short
 Friend Declare Function GetSaturationMax Lib "Camera.dll" () As
Short
 Friend Declare Function GetSaturationValue1 Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetGammaMin Lib "Camera.dll" () As Short
 Friend Declare Function GetGammaMax Lib "Camera.dll" () As Short
 Friend Declare Function GetGammaValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetShutterMin Lib "Camera.dll" () As Short
 Friend Declare Function GetShutterMax Lib "Camera.dll" () As Short
 Friend Declare Function GetShutterValue1 Lib "Camera.dll" () As
Short
 Friend Declare Function GetGainMin Lib "Camera.dll" () As Short
 Friend Declare Function GetGainMax Lib "Camera.dll" () As Short
 Friend Declare Function GetGainValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetIrisMin Lib "Camera.dll" () As Short
 Friend Declare Function GetIrisMax Lib "Camera.dll" () As Short
 Friend Declare Function GetIrisValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetFocusMin Lib "Camera.dll" () As Short
 Friend Declare Function GetFocusMax Lib "Camera.dll" () As Short
 Friend Declare Function GetFocusValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetZoomMin Lib "Camera.dll" () As Short
 Friend Declare Function GetZoomMax Lib "Camera.dll" () As Short
 Friend Declare Function GetZoomValue1 Lib "Camera.dll" () As Short

 112

 ' Camera Control Functions
 Friend Declare Function SetWBOnePush Lib "Camera.dll" (_
 ByVal value As Integer _
) As Integer

 'Function definitions for the C1394CameraControlSize Class Methods
 Friend Declare Function ControlSizemaxV Lib "Camera.dll" () As Byte
 Friend Declare Function ControlSizemaxH Lib "Camera.dll" () As Byte
 Friend Declare Function ControlSizeunitV Lib "Camera.dll" () As
Byte
 Friend Declare Function ControlSizeunitH Lib "Camera.dll" () As
Byte
 Friend Declare Function ControlSizeunitVpos Lib "Camera.dll" () _
 As Byte
 Friend Declare Function ControlSizeunitHpos Lib "Camera.dll" () _
 As Byte
 Friend Declare Function ControlSizetop Lib "Camera.dll" () As Byte
 Friend Declare Function ControlSizeleft Lib "Camera.dll" () As Byte
 Friend Declare Function ControlSizeheight Lib "Camera.dll" () As
Byte
 Friend Declare Function ControlSizewidth Lib "Camera.dll" () As
Byte
 Friend Declare Function ControlSizecolorCode Lib "Camera.dll" () _
 As Byte
 Friend Declare Function ControlSizepixelsFrame Lib "Camera.dll" ()
_
 As Byte
 Friend Declare Function ControlSizebytesframeHigh Lib "Camera.dll"
(_
) As Byte
 Friend Declare Function ControlSizebytesFrameLow Lib "Camera.dll" (
_
) As Byte
 Friend Declare Function ControlSizebytesPacketMin Lib "Camera.dll"
(_
) As Byte
 Friend Declare Function ControlSizebytesPacketMax Lib "Camera.dll"
(_
) As Byte
 Friend Declare Function ControlSizebytesPacket Lib "Camera.dll" (_
) As Byte
 Friend Declare Function ControlSizepacketsFrame Lib "Camera.dll" (
_
) As Byte

 ' Function definitions for the C1394CameraControlSize Class
Functions
 Friend Declare Function SupportedVB Lib "Camera.dll" () As Byte
 Friend Declare Function ModeSupportedVB Lib "Camera.dll" () As Byte
 Friend Declare Function SetColorCodeVB Lib "Camera.dll" (_
 ByVal code As Integer _
) As Integer
 Friend Declare Function SetSizeVB Lib "Camera.dll" (_

 113

 ByVal width As Integer, _
 ByVal height As Integer _
) As Integer
 Friend Declare Function SetPositionVB Lib "Camera.dll" (_
 ByVal left As Integer, _
 ByVal top As Integer _
) As Integer
 Friend Declare Function SetBytesPerPacketVB Lib "Camera.dll" (_
 ByVal bytes As Integer _
) As Integer
 Friend Declare Function InquireSizeVB Lib "Camera.dll" () As
Integer
 Friend Declare Function StatusSizeVB Lib "Camera.dll" () As Integer

 ' Function definitions for the C1394CameraControlTrigger Class
Members
 Friend Declare Function ControlTriggerpresent Lib "Camera.dll" (_
) As Byte
 Friend Declare Function ControlTriggerreadout Lib "Camera.dll" (_
) As Byte
 Friend Declare Function ControlTriggeronoff Lib "Camera.dll" (_
) As Byte
 Friend Declare Function ControlTriggerpolarity Lib "Camera.dll" (_
) As Byte
 'Friend Declare Function ControlTriggermode Lib "Camera.dll" (_
) As Byte 'This is type pointer to byte
 Friend Declare Function ControlTriggerstatusPolarity Lib _
 "Camera.dll" () As Byte
 Friend Declare Function ControlTriggerstatusOnOff Lib "Camera.dll"
(
) As Byte
 Friend Declare Function ControlTriggerstatusMode Lib "Camera.dll" (
_
) As Byte

 ' Function definitions for the C1394CameraControlTrigger Class
 Functions
 Friend Declare Function SetTriggerModeVB Lib "Camera.dll" (_
 ByVal mode As Integer, _
 ByVal parameter As Integer _
) As Integer
 Friend Declare Function SetTriggerPolarityVB Lib "Camera.dll" (_
 ByVal polarity As Byte _
) As Integer
 Friend Declare Function TurnTriggerOnVB Lib "Camera.dll" (_
 ByVal triggerOn As Boolean _
) As Integer
 Friend Declare Function StatusTriggerVB Lib "Camera.dll" () As
Integer
 Friend Declare Function InquireTriggerVB Lib "Camera.dll" (_
) As Integer

 Friend Declare Function InitializeRoutine Lib "Camera.dll" (_
) As Integer

 114

End Module

 115

APPENDIX D

CAMERA DIALOG BOX SOURCE CODE

Imports System.Math

Public Class PicForm
 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As
Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form
Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 Friend WithEvents CMUImageBox As System.Windows.Forms.PictureBox
 Friend WithEvents PicTimer As System.Windows.Forms.Timer
 Friend WithEvents ControlsPanel As System.Windows.Forms.Panel
 Friend WithEvents TextBoxAutoExposure As
System.Windows.Forms.TextBox
 Friend WithEvents LabelAutoExposure As System.Windows.Forms.Label
 Friend WithEvents trbrAutoExposure As System.Windows.Forms.TrackBar
 Friend WithEvents TextBoxBrightness As System.Windows.Forms.TextBox
 Friend WithEvents TextBoxShutter As System.Windows.Forms.TextBox
 Friend WithEvents GroupBox1 As System.Windows.Forms.GroupBox
 Friend WithEvents LabelWBviolet As System.Windows.Forms.Label
 Friend WithEvents LabelWBblue As System.Windows.Forms.Label
 Friend WithEvents trbrWBblue As System.Windows.Forms.TrackBar

 116

 Friend WithEvents trbrWBviolet As System.Windows.Forms.TrackBar
 Friend WithEvents TextBoxWBviolet As System.Windows.Forms.TextBox
 Friend WithEvents TextBoxWBblue As System.Windows.Forms.TextBox
 Friend WithEvents ButtonWBOnePush As System.Windows.Forms.Button
 Friend WithEvents LabelBrightness As System.Windows.Forms.Label
 Friend WithEvents LabelShutter As System.Windows.Forms.Label
 Friend WithEvents trbrBrightness As System.Windows.Forms.TrackBar
 Friend WithEvents trbrShutter As System.Windows.Forms.TrackBar
 Friend WithEvents HistoImageBox As System.Windows.Forms.PictureBox
 Friend WithEvents LeftBtn As System.Windows.Forms.CheckBox
 Friend WithEvents SetBtn As System.Windows.Forms.Button
 Friend WithEvents RightBtn As System.Windows.Forms.CheckBox
 Friend WithEvents PickLimitLbl As System.Windows.Forms.Label
 Friend WithEvents HistLbl As System.Windows.Forms.Label
 Friend WithEvents ApplyCloseBtn As System.Windows.Forms.Button
 <System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()
 Me.components = New System.ComponentModel.Container
 Dim resources As System.Resources.ResourceManager = New
System.Resources.ResourceManager(GetType(PicForm))
 Me.CMUImageBox = New System.Windows.Forms.PictureBox
 Me.PicTimer = New System.Windows.Forms.Timer(Me.components)
 Me.ControlsPanel = New System.Windows.Forms.Panel
 Me.HistLbl = New System.Windows.Forms.Label
 Me.HistoImageBox = New System.Windows.Forms.PictureBox
 Me.TextBoxAutoExposure = New System.Windows.Forms.TextBox
 Me.LabelAutoExposure = New System.Windows.Forms.Label
 Me.trbrAutoExposure = New System.Windows.Forms.TrackBar
 Me.TextBoxBrightness = New System.Windows.Forms.TextBox
 Me.TextBoxShutter = New System.Windows.Forms.TextBox
 Me.GroupBox1 = New System.Windows.Forms.GroupBox
 Me.LabelWBviolet = New System.Windows.Forms.Label
 Me.LabelWBblue = New System.Windows.Forms.Label
 Me.trbrWBblue = New System.Windows.Forms.TrackBar
 Me.trbrWBviolet = New System.Windows.Forms.TrackBar
 Me.TextBoxWBviolet = New System.Windows.Forms.TextBox
 Me.TextBoxWBblue = New System.Windows.Forms.TextBox
 Me.ButtonWBOnePush = New System.Windows.Forms.Button
 Me.LabelBrightness = New System.Windows.Forms.Label
 Me.LabelShutter = New System.Windows.Forms.Label
 Me.trbrBrightness = New System.Windows.Forms.TrackBar
 Me.trbrShutter = New System.Windows.Forms.TrackBar
 Me.SetBtn = New System.Windows.Forms.Button
 Me.RightBtn = New System.Windows.Forms.CheckBox
 Me.PickLimitLbl = New System.Windows.Forms.Label
 Me.LeftBtn = New System.Windows.Forms.CheckBox
 Me.ApplyCloseBtn = New System.Windows.Forms.Button
 Me.ControlsPanel.SuspendLayout()
 CType(Me.trbrAutoExposure,
System.ComponentModel.ISupportInitialize).BeginInit()
 Me.GroupBox1.SuspendLayout()
 CType(Me.trbrWBblue,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.trbrWBviolet,

 117

System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.trbrBrightness,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.trbrShutter,
System.ComponentModel.ISupportInitialize).BeginInit()
 Me.SuspendLayout()
 '
 'CMUImageBox
 '
 Me.CMUImageBox.Location = New System.Drawing.Point(0, 0)
 Me.CMUImageBox.Name = "CMUImageBox"
 Me.CMUImageBox.Size = New System.Drawing.Size(240, 224)
 Me.CMUImageBox.SizeMode =
System.Windows.Forms.PictureBoxSizeMode.AutoSize
 Me.CMUImageBox.TabIndex = 1
 Me.CMUImageBox.TabStop = False
 '
 'PicTimer
 '
 '
 'ControlsPanel
 '
 Me.ControlsPanel.BorderStyle =
System.Windows.Forms.BorderStyle.Fixed3D
 Me.ControlsPanel.Controls.Add(Me.ApplyCloseBtn)
 Me.ControlsPanel.Controls.Add(Me.HistLbl)
 Me.ControlsPanel.Controls.Add(Me.HistoImageBox)
 Me.ControlsPanel.Controls.Add(Me.TextBoxAutoExposure)
 Me.ControlsPanel.Controls.Add(Me.LabelAutoExposure)
 Me.ControlsPanel.Controls.Add(Me.trbrAutoExposure)
 Me.ControlsPanel.Controls.Add(Me.TextBoxBrightness)
 Me.ControlsPanel.Controls.Add(Me.TextBoxShutter)
 Me.ControlsPanel.Controls.Add(Me.GroupBox1)
 Me.ControlsPanel.Controls.Add(Me.LabelBrightness)
 Me.ControlsPanel.Controls.Add(Me.LabelShutter)
 Me.ControlsPanel.Controls.Add(Me.trbrBrightness)
 Me.ControlsPanel.Controls.Add(Me.trbrShutter)
 Me.ControlsPanel.Controls.Add(Me.SetBtn)
 Me.ControlsPanel.Controls.Add(Me.RightBtn)
 Me.ControlsPanel.Controls.Add(Me.PickLimitLbl)
 Me.ControlsPanel.Controls.Add(Me.LeftBtn)
 Me.ControlsPanel.Location = New System.Drawing.Point(256, 8)
 Me.ControlsPanel.Name = "ControlsPanel"
 Me.ControlsPanel.Size = New System.Drawing.Size(272, 472)
 Me.ControlsPanel.TabIndex = 2
 '
 'HistLbl
 '
 Me.HistLbl.Font = New System.Drawing.Font("Microsoft Sans
Serif", 9.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.HistLbl.Location = New System.Drawing.Point(8, 339)
 Me.HistLbl.Name = "HistLbl"
 Me.HistLbl.Size = New System.Drawing.Size(256, 23)

 118

 Me.HistLbl.TabIndex = 38
 Me.HistLbl.Text = "Intensity Histogram"
 Me.HistLbl.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'HistoImageBox
 '
 Me.HistoImageBox.Location = New System.Drawing.Point(8, 208)
 Me.HistoImageBox.Name = "HistoImageBox"
 Me.HistoImageBox.Size = New System.Drawing.Size(256, 128)
 Me.HistoImageBox.TabIndex = 37
 Me.HistoImageBox.TabStop = False
 '
 'TextBoxAutoExposure
 '
 Me.TextBoxAutoExposure.Enabled = False
 Me.TextBoxAutoExposure.Location = New System.Drawing.Point(61,
136)
 Me.TextBoxAutoExposure.Name = "TextBoxAutoExposure"
 Me.TextBoxAutoExposure.Size = New System.Drawing.Size(32, 20)
 Me.TextBoxAutoExposure.TabIndex = 36
 Me.TextBoxAutoExposure.Text = ""
 '
 'LabelAutoExposure
 '
 Me.LabelAutoExposure.Font = New System.Drawing.Font("Microsoft
Sans Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.LabelAutoExposure.Location = New System.Drawing.Point(56, 9)
 Me.LabelAutoExposure.Name = "LabelAutoExposure"
 Me.LabelAutoExposure.Size = New System.Drawing.Size(40, 23)
 Me.LabelAutoExposure.TabIndex = 35
 Me.LabelAutoExposure.Text = "Analog Gain"
 Me.LabelAutoExposure.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'trbrAutoExposure
 '
 Me.trbrAutoExposure.LargeChange = 1
 Me.trbrAutoExposure.Location = New System.Drawing.Point(56, 32)
 Me.trbrAutoExposure.Name = "trbrAutoExposure"
 Me.trbrAutoExposure.Orientation =
System.Windows.Forms.Orientation.Vertical
 Me.trbrAutoExposure.Size = New System.Drawing.Size(42, 104)
 Me.trbrAutoExposure.TabIndex = 34
 Me.trbrAutoExposure.TickStyle =
System.Windows.Forms.TickStyle.Both
 '
 'TextBoxBrightness
 '
 Me.TextBoxBrightness.Enabled = False
 Me.TextBoxBrightness.Location = New System.Drawing.Point(109,
136)
 Me.TextBoxBrightness.Name = "TextBoxBrightness"

 119

 Me.TextBoxBrightness.Size = New System.Drawing.Size(32, 20)
 Me.TextBoxBrightness.TabIndex = 31
 Me.TextBoxBrightness.Text = ""
 '
 'TextBoxShutter
 '
 Me.TextBoxShutter.Enabled = False
 Me.TextBoxShutter.Location = New System.Drawing.Point(16, 136)
 Me.TextBoxShutter.Name = "TextBoxShutter"
 Me.TextBoxShutter.Size = New System.Drawing.Size(32, 20)
 Me.TextBoxShutter.TabIndex = 30
 Me.TextBoxShutter.Text = ""
 '
 'GroupBox1
 '
 Me.GroupBox1.Controls.Add(Me.LabelWBviolet)
 Me.GroupBox1.Controls.Add(Me.LabelWBblue)
 Me.GroupBox1.Controls.Add(Me.trbrWBblue)
 Me.GroupBox1.Controls.Add(Me.trbrWBviolet)
 Me.GroupBox1.Controls.Add(Me.TextBoxWBviolet)
 Me.GroupBox1.Controls.Add(Me.TextBoxWBblue)
 Me.GroupBox1.Controls.Add(Me.ButtonWBOnePush)
 Me.GroupBox1.Font = New System.Drawing.Font("Microsoft Sans
Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.GroupBox1.Location = New System.Drawing.Point(160, 8)
 Me.GroupBox1.Name = "GroupBox1"
 Me.GroupBox1.Size = New System.Drawing.Size(96, 192)
 Me.GroupBox1.TabIndex = 29
 Me.GroupBox1.TabStop = False
 Me.GroupBox1.Text = "White Balance"
 '
 'LabelWBviolet
 '
 Me.LabelWBviolet.Font = New System.Drawing.Font("Microsoft Sans
Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.LabelWBviolet.Location = New System.Drawing.Point(49, 16)
 Me.LabelWBviolet.Name = "LabelWBviolet"
 Me.LabelWBviolet.Size = New System.Drawing.Size(40, 23)
 Me.LabelWBviolet.TabIndex = 9
 Me.LabelWBviolet.Text = "v"
 Me.LabelWBviolet.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'LabelWBblue
 '
 Me.LabelWBblue.Font = New System.Drawing.Font("Microsoft Sans
Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.LabelWBblue.Location = New System.Drawing.Point(4, 16)
 Me.LabelWBblue.Name = "LabelWBblue"
 Me.LabelWBblue.Size = New System.Drawing.Size(40, 23)
 Me.LabelWBblue.TabIndex = 8

 120

 Me.LabelWBblue.Text = "u"
 Me.LabelWBblue.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'trbrWBblue
 '
 Me.trbrWBblue.LargeChange = 1
 Me.trbrWBblue.Location = New System.Drawing.Point(3, 24)
 Me.trbrWBblue.Name = "trbrWBblue"
 Me.trbrWBblue.Orientation =
System.Windows.Forms.Orientation.Vertical
 Me.trbrWBblue.Size = New System.Drawing.Size(42, 104)
 Me.trbrWBblue.TabIndex = 2
 Me.trbrWBblue.TickStyle = System.Windows.Forms.TickStyle.Both
 '
 'trbrWBviolet
 '
 Me.trbrWBviolet.LargeChange = 1
 Me.trbrWBviolet.Location = New System.Drawing.Point(48, 24)
 Me.trbrWBviolet.Name = "trbrWBviolet"
 Me.trbrWBviolet.Orientation =
System.Windows.Forms.Orientation.Vertical
 Me.trbrWBviolet.Size = New System.Drawing.Size(42, 104)
 Me.trbrWBviolet.TabIndex = 3
 Me.trbrWBviolet.TickStyle = System.Windows.Forms.TickStyle.Both
 '
 'TextBoxWBviolet
 '
 Me.TextBoxWBviolet.Enabled = False
 Me.TextBoxWBviolet.Location = New System.Drawing.Point(53, 128)
 Me.TextBoxWBviolet.Name = "TextBoxWBviolet"
 Me.TextBoxWBviolet.Size = New System.Drawing.Size(32, 19)
 Me.TextBoxWBviolet.TabIndex = 17
 Me.TextBoxWBviolet.Text = ""
 '
 'TextBoxWBblue
 '
 Me.TextBoxWBblue.Enabled = False
 Me.TextBoxWBblue.Location = New System.Drawing.Point(8, 128)
 Me.TextBoxWBblue.Name = "TextBoxWBblue"
 Me.TextBoxWBblue.Size = New System.Drawing.Size(32, 19)
 Me.TextBoxWBblue.TabIndex = 16
 Me.TextBoxWBblue.Text = ""
 '
 'ButtonWBOnePush
 '
 Me.ButtonWBOnePush.Font = New System.Drawing.Font("Microsoft
Sans Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.ButtonWBOnePush.Location = New System.Drawing.Point(8, 152)
 Me.ButtonWBOnePush.Name = "ButtonWBOnePush"
 Me.ButtonWBOnePush.Size = New System.Drawing.Size(80, 32)
 Me.ButtonWBOnePush.TabIndex = 20
 Me.ButtonWBOnePush.Text = "Auto WB"

 121

 '
 'LabelBrightness
 '
 Me.LabelBrightness.Font = New System.Drawing.Font("Microsoft
Sans Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.LabelBrightness.Location = New System.Drawing.Point(93, 9)
 Me.LabelBrightness.Name = "LabelBrightness"
 Me.LabelBrightness.Size = New System.Drawing.Size(64, 23)
 Me.LabelBrightness.TabIndex = 28
 Me.LabelBrightness.Text = "Brightness"
 Me.LabelBrightness.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'LabelShutter
 '
 Me.LabelShutter.Font = New System.Drawing.Font("Microsoft Sans
Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.LabelShutter.Location = New System.Drawing.Point(7, 9)
 Me.LabelShutter.Name = "LabelShutter"
 Me.LabelShutter.Size = New System.Drawing.Size(50, 23)
 Me.LabelShutter.TabIndex = 27
 Me.LabelShutter.Text = "Shutter"
 Me.LabelShutter.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'trbrBrightness
 '
 Me.trbrBrightness.LargeChange = 1
 Me.trbrBrightness.Location = New System.Drawing.Point(104, 32)
 Me.trbrBrightness.Name = "trbrBrightness"
 Me.trbrBrightness.Orientation =
System.Windows.Forms.Orientation.Vertical
 Me.trbrBrightness.Size = New System.Drawing.Size(42, 104)
 Me.trbrBrightness.TabIndex = 26
 Me.trbrBrightness.TickStyle =
System.Windows.Forms.TickStyle.Both
 '
 'trbrShutter
 '
 Me.trbrShutter.LargeChange = 1
 Me.trbrShutter.Location = New System.Drawing.Point(11, 32)
 Me.trbrShutter.Name = "trbrShutter"
 Me.trbrShutter.Orientation =
System.Windows.Forms.Orientation.Vertical
 Me.trbrShutter.Size = New System.Drawing.Size(42, 104)
 Me.trbrShutter.TabIndex = 25
 Me.trbrShutter.TickStyle = System.Windows.Forms.TickStyle.Both
 '
 'SetBtn
 '
 Me.SetBtn.BackColor = System.Drawing.SystemColors.Control
 Me.SetBtn.Font = New System.Drawing.Font("Microsoft Sans

 122

Serif", 14.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.SetBtn.Location = New System.Drawing.Point(88, 416)
 Me.SetBtn.Name = "SetBtn"
 Me.SetBtn.Size = New System.Drawing.Size(96, 40)
 Me.SetBtn.TabIndex = 8
 Me.SetBtn.Text = "Set"
 '
 'RightBtn
 '
 Me.RightBtn.Appearance = System.Windows.Forms.Appearance.Button
 Me.RightBtn.Image =
CType(resources.GetObject("RightBtn.Image"), System.Drawing.Image)
 Me.RightBtn.Location = New System.Drawing.Point(200, 416)
 Me.RightBtn.Name = "RightBtn"
 Me.RightBtn.Size = New System.Drawing.Size(48, 40)
 Me.RightBtn.TabIndex = 9
 '
 'PickLimitLbl
 '
 Me.PickLimitLbl.Font = New System.Drawing.Font("Microsoft Sans
Serif", 16.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.PickLimitLbl.Location = New System.Drawing.Point(32, 376)
 Me.PickLimitLbl.Name = "PickLimitLbl"
 Me.PickLimitLbl.Size = New System.Drawing.Size(208, 32)
 Me.PickLimitLbl.TabIndex = 10
 Me.PickLimitLbl.Text = "Pick 1st Az Limit"
 Me.PickLimitLbl.TextAlign =
System.Drawing.ContentAlignment.TopCenter
 '
 'LeftBtn
 '
 Me.LeftBtn.Appearance = System.Windows.Forms.Appearance.Button
 Me.LeftBtn.Image = CType(resources.GetObject("LeftBtn.Image"),
System.Drawing.Image)
 Me.LeftBtn.Location = New System.Drawing.Point(24, 416)
 Me.LeftBtn.Name = "LeftBtn"
 Me.LeftBtn.Size = New System.Drawing.Size(48, 40)
 Me.LeftBtn.TabIndex = 7
 '
 'ApplyCloseBtn
 '
 Me.ApplyCloseBtn.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.ApplyCloseBtn.Location = New System.Drawing.Point(40, 163)
 Me.ApplyCloseBtn.Name = "ApplyCloseBtn"
 Me.ApplyCloseBtn.Size = New System.Drawing.Size(80, 32)
 Me.ApplyCloseBtn.TabIndex = 39
 Me.ApplyCloseBtn.Text = "Apply && Close"
 '
 'PicForm
 '

 123

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.ClientSize = New System.Drawing.Size(530, 495)
 Me.ControlBox = False
 Me.Controls.Add(Me.ControlsPanel)
 Me.Controls.Add(Me.CMUImageBox)
 Me.FormBorderStyle =
System.Windows.Forms.FormBorderStyle.FixedSingle
 Me.Name = "PicForm"
 Me.ShowInTaskbar = False
 Me.Text = "Camera Image"
 Me.ControlsPanel.ResumeLayout(False)
 CType(Me.trbrAutoExposure,
System.ComponentModel.ISupportInitialize).EndInit()
 Me.GroupBox1.ResumeLayout(False)
 CType(Me.trbrWBblue,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.trbrWBviolet,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.trbrBrightness,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.trbrShutter,
System.ComponentModel.ISupportInitialize).EndInit()
 Me.ResumeLayout(False)

 End Sub

#End Region

#Region " Variables Global to PicForm"
 Private Const XDimension As Integer = 768 'X Dimension of
Viewable Image
 Private Const YDimension As Integer = 2048 'Y Dimension of
Viewable Image
 Private Const XLimit As Integer = 1536 - XDimension 'X Dimension
Position Limit
 Private Const XYRatio As Integer = 4 'Ratio of
Viewable Image
 Private pbitmap(XDimension * YDimension * 3 - 1) As Byte 'Buffer
for Image
 Private cmubmp As New Bitmap(CInt(XDimension / XYRatio),
CInt(YDimension / XYRatio), Imaging.PixelFormat.Format24bppRgb) 'Image
Bitmap
 'Private isloaded As Boolean = False
 Private iserror As Boolean = False 'Shows error
 Private histpic As New Bitmap(256, 128) 'Histogram
Bitmap
 Private bins(255) As Integer 'Binning for
Histogram
 Private XPos As Integer = 0 'Position of
Viewable Image
#End Region

#Region " Initialization and Closing "
 Private Sub PicForm_Load(ByVal sender As System.Object, ByVal e As

 124

System.EventArgs) Handles MyBase.Load
 'Size form according to image size
 Me.Height = CMUImageBox.Height + 15
 Me.Width = CMUImageBox.Width + 10

 ' Initialize Camera
 If Not CheckLinkVB() = CAM_SUCCESS Then
 MsgBox("Error: No camera found")
 End
 End If

 If Not InitCameraVB() = CAM_SUCCESS Then
 MsgBox("Error: No camera initialized")
 End
 End If

 InquireControlRegistersVB()
 StatusControlRegistersVB()
 SupportedVB()
 InquireSizeVB()
 StatusSizeVB()

 If Not SetVideoFormatVB(Convert.ToUInt32(7)) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set video format")
 End
 End If

 If Not SetVideoModeVB(Convert.ToUInt32(0)) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set video mode")
 End
 End If

 If Not SetColorCodeVB(4) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set color code")
 End
 End If

 'Make variable x, y dependant on setup settings
 If Not SetSizeVB(YDimension, XDimension) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set video size")
 End
 End If

 'Make variable position dependant on setup settings
 'camerawidth
 If CameraLeft > XLimit Then
 XPos = XLimit
 Else
 XPos = CameraLeft + CameraWidth / 2 - XDimension / 2
 If XPos < 0 Then XPos = 0
 End If

 If Not SetPositionVB(0, XPos) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set video position")

 125

 End
 End If

 If Not SetBytesPerPacketVB(4096) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set packet size")
 End
 End If

 If Not StartImageCaptureVB() = CAM_SUCCESS Then
 StopImageCaptureVB()
 TurnTriggerOnVB(False)
 MsgBox("Error: Unable to set image capture")
 End
 End If

 ' Initialize Camera Controls
 Dim checkshutter As Integer
 Dim checkautoexposure As Integer

 InquireControlRegistersVB()
 StatusControlRegistersVB()

 ' Shutter Initialization
 trbrShutter.Minimum = GetShutterMin
 trbrShutter.Maximum = 44 'This is the largest time that can
still be triggered at 60Hz
 trbrShutter.TickFrequency = (trbrShutter.Maximum -
trbrShutter.Minimum) / 10
 If CameraShutterSpeed > 44 Then CameraShutterSpeed = 44
 If CameraShutterSpeed < trbrShutter.Minimum Then
CameraShutterSpeed = trbrShutter.Minimum
 SetShutterVB(CameraShutterSpeed)
 trbrShutter.Value = GetShutterValue1
 TextBoxShutter.Text = GetShutterValue1

 ' Auto Exposure Initialization
 trbrAutoExposure.Minimum = GetAutoExposureMin
 trbrAutoExposure.Maximum = GetAutoExposureMax 'Reduced slightly
so the tick marks look good
 trbrAutoExposure.TickFrequency = (trbrAutoExposure.Maximum -
trbrAutoExposure.Minimum - (trbrAutoExposure.Maximum - 100)) / 10
 If CameraAnalogGain > trbrAutoExposure.Maximum Then
CameraAnalogGain = trbrAutoExposure.Maximum
 If CameraAnalogGain < trbrAutoExposure.Minimum Then
CameraAnalogGain = trbrAutoExposure.Minimum
 SetAutoExposureVB(CameraAnalogGain)
 trbrAutoExposure.Value = GetAutoExposureValue1
 TextBoxAutoExposure.Text = GetAutoExposureValue1

 ' White Balance Initialization
 trbrWBblue.Minimum = GetWBMin
 trbrWBblue.Maximum = GetWBMax
 trbrWBblue.TickFrequency = (trbrWBblue.Maximum -
trbrWBblue.Minimum) / 10

 126

 trbrWBblue.Value = GetWBValue2
 trbrWBviolet.Minimum = GetWBMin
 trbrWBviolet.Maximum = GetWBMax
 trbrWBviolet.TickFrequency = (trbrWBviolet.Maximum -
trbrWBviolet.Minimum) / 10
 trbrWBviolet.Value = GetWBValue1
 TextBoxWBblue.Text = GetWBValue2
 TextBoxWBviolet.Text = GetWBValue1

 ' Brightness Initialization
 trbrBrightness.Minimum = GetBrightnessMin
 trbrBrightness.Maximum = GetBrightnessMax
 trbrBrightness.TickFrequency = (trbrBrightness.Maximum -
trbrBrightness.Minimum) / 10
 If CameraBrightness > trbrBrightness.Maximum Then
CameraBrightness = trbrBrightness.Maximum
 If CameraBrightness < trbrBrightness.Minimum Then
CameraBrightness = trbrBrightness.Minimum
 SetBrightnessVB(CameraBrightness)
 trbrBrightness.Value = GetBrightnessMax - CameraBrightness
 TextBoxBrightness.Text = GetBrightnessValue1

 ' Digital Gain Initialization
 SetGainVB(GetGainMin) 'sets digital gain to 1

 CMUImageBox.Image = cmubmp
 HistoImageBox.Image = histpic
 PicTimer.Enabled = True
 'isloaded = True
 End Sub

 Private Sub PicForm_Closing(ByVal sender As System.Object, ByVal e
As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing
 KillImage()
 End Sub

 Friend Sub KillImage()
 PicTimer.Enabled = False
 Try
 StopImageCaptureVB()
 TurnTriggerOnVB(False)
 Catch
 End Try
 End Sub

 'Resize form according to image size and place controls
appropriately
 Private Sub CMUImageBox_Resize(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles CMUImageBox.Resize
 Me.Width = CMUImageBox.Width + ControlsPanel.Width + 20
 CMUImageBox.Location = New Point(5, 5)
 ControlsPanel.Location = New Point(CMUImageBox.Width + 10, 5)

 If CMUImageBox.Height > ControlsPanel.Height Then

 127

 Me.Height = CMUImageBox.Height + 40
 Else
 Me.Height = ControlsPanel.Height + 40
 End If
 End Sub
#End Region

#Region " Image Refresh Timer "
 Private Sub PicTimer_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles PicTimer.Tick
 'Try Campturing Image
 If Not CaptureImageVB() = CAM_SUCCESS Then
 StopImageCaptureVB()
 TurnTriggerOnVB(False)
 If Not iserror Then
 MsgBox("The image could not display")
 iserror = True
 End If
 Exit Sub
 End If

 iserror = False
 getRGBVB(pbitmap)

 Dim i, j, k, n, m As Integer
 Dim maxbin As Integer = 0

 Dim binner As Double
 Dim centerY, centerX, halfwidthcross As Integer
 centerY = YDimension / (2 * XYRatio)
 centerX = (CameraLeft + CameraWidth / 2) / XYRatio - XPos /
XYRatio
 halfwidthcross = CameraWidth / (XYRatio * 2)
 Array.Clear(bins, 0, bins.Length)
 k = 0
 For j = 0 To CInt(XDimension / XYRatio) - 1 Step 1
 For i = CInt(YDimension / XYRatio) - 1 To 0 Step -1
 'Place crosshair or image
 If i <= centerY + 10 AndAlso i > centerY - 10 AndAlso j
_
 <= centerX + halfwidthcross AndAlso j > centerX - _
 halfwidthcross Then
 cmubmp.SetPixel(j, i, Color.Red)
 ElseIf j <= centerX + 10 AndAlso j > centerX - 10 _
 AndAlso i <= centerY + halfwidthcross AndAlso i > _
 centerY - halfwidthcross Then
 cmubmp.SetPixel(j, i, Color.Red)
 Else
 cmubmp.SetPixel(j, i, Color.FromArgb(pbitmap(k) _
 , pbitmap(k + 1), pbitmap(k + 2)))
 End If

 'Bin Intensity Image for Histogram -- Use Y image in
YUV

 128

 'translation from RGB
 binner = CDbl(pbitmap(k)) * 0.299 + CDbl(pbitmap(k +
1)) _
 * 0.587 + CDbl(pbitmap(k + 2)) * 0.114
 If binner > 255 Then binner = 255
 bins(CInt(binner)) += 1
 k += XYRatio * 3
 Next i
 k += YDimension * 3 * (XYRatio - 1)
 Next j

 'Create a histogram
 For n = 0 To 255
 For m = 0 To 127
 histpic.SetPixel(n, m, Color.White)
 Next m
 Next n

 For m = 0 To 255
 maxbin = Max(bins(m), maxbin)
 Next m

 For m = 0 To 255
 k = CInt(bins(m) / (maxbin / 128))
 For n = 0 To k - 1
 histpic.SetPixel(m, 127 - n, Color.Black)
 Next n
 Next m

 CMUImageBox.Refresh()
 HistoImageBox.Refresh()
 End Sub
#End Region

#Region " Camera controls "
 ' These functions handle the trackbar scroll commands
 Private Sub trbrShutter_Scroll(_
ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
trbrShutter.Scroll
 CameraShutterSpeed = trbrShutter.Value
 SetShutterVB(CameraShutterSpeed)
 TextBoxShutter.Text = GetShutterValue1
 End Sub

 Private Sub trbrAutoExposure_Scroll(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles trbrAutoExposure.Scroll
 CameraAnalogGain = trbrAutoExposure.Value
 SetAutoExposureVB(CameraAnalogGain)
 TextBoxAutoExposure.Text = GetAutoExposureValue1
 End Sub

 Private Sub trbrBrightness_Scroll(ByVal sender As Object, ByVal e
As System.EventArgs) Handles trbrBrightness.Scroll
 CameraBrightness = GetBrightnessMax - trbrBrightness.Value

 129

 SetBrightnessVB(CameraBrightness)
 TextBoxBrightness.Text = GetBrightnessValue1
 End Sub

 Private Sub trbrWBblue_Scroll(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles trbrWBblue.Scroll
 SetWhiteBalanceVB(trbrWBblue.Value, trbrWBviolet.Value)
 TextBoxWBblue.Text = GetWBValue2
 TextBoxWBviolet.Text = GetWBValue1
 End Sub

 Private Sub trbrWBviolet_Scroll(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles trbrWBviolet.Scroll
 SetWhiteBalanceVB(trbrWBblue.Value, trbrWBviolet.Value)
 TextBoxWBblue.Text = GetWBValue2
 TextBoxWBviolet.Text = GetWBValue1
 End Sub

 Private Sub ButtonWBOnePush_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ButtonWBOnePush.Click
 SetWBOnePush()
 InquireControlRegistersVB()
 StatusControlRegistersVB()
 ' White Balance Initialization
 trbrWBblue.Minimum = GetWBMin
 trbrWBblue.Maximum = GetWBMax
 trbrWBblue.TickFrequency = (trbrWBblue.Maximum -
trbrWBblue.Minimum) / 10
 trbrWBblue.Value = GetWBValue2
 trbrWBviolet.Minimum = GetWBMin
 trbrWBviolet.Maximum = GetWBMax
 trbrWBviolet.TickFrequency = (trbrWBviolet.Maximum -
trbrWBviolet.Minimum) / 10
 trbrWBviolet.Value = GetWBValue1
 TextBoxWBblue.Text = GetWBValue2
 TextBoxWBviolet.Text = GetWBValue1
 End Sub
#End Region

#Region "LIDAR Scanner Controls"
 'Handles Right Push Button (Uses Scan_Console objects)
 Private Sub RightBtn_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles RightBtn.Click
 ScanForm.RightBtn.Checked = Not ScanForm.RightBtn.Checked
 ScanForm.RightBtnAction()
 End Sub

 'Handles Left Push Button (Uses Scan_Console objects)
 Private Sub LeftBtn_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LeftBtn.Click
 ScanForm.LeftBtn.Checked = Not ScanForm.LeftBtn.Checked
 ScanForm.LeftBtnAction()
 End Sub

 130

 'Handles Set Push Button (Uses Scan_Console objects)
 Private Sub SetBtn_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SetBtn.Click
 ScanForm.SetBtn.PerformClick()
 End Sub

 'Handles Clicking of Apply and Close Button (Uses Scan_Console
objects)
 Private Sub ApplyCloseBtn_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ApplyCloseBtn.Click
 ScanForm.PanelSetup.Visible = True
 ScanForm.PanelPickLim.Visible = False
 ScanForm.PickLimBtn.Text = "Pick Limits"
 ScanForm.PickLimitLbl.Text = "Pick 1st Az Limit"
 PickLimitLbl.Text = "Pick 1st Az Limit"
 Try
 Me.KillImage()
 Me.Dispose()
 Catch
 Finally
 ScanForm.Refresh()
 End Try
 End Sub
#End Region

End Class

 131

APPENDIX E

CAIL TEX FILE FORMAT DEFINITION

CAIL TEX file format

The TEX file format was established during the design of Prototype I. The original TEX

file format is a collection of RAW 8 bit (64 (h) x 20 (v) pixel) images written to file

sequentially. Since there is no header attached to this file, there is no way to distinguish

TEX files generated by Prototype I from subsequent TEX files. Therefore, a header is

added to the TEX file in Prototype II: Version 1.0.0. This provides adequate information

about the images captured within the file. To allow for backwards compatibility this

formal document was created. The following document contains the existing TEX file

information as well as the proposed TEX file format.

Prototype I: Version 0.0.0

Structure:

Field # Data Bytes Format Units Offset Description

1 Images Varies RAW8

64 x 20

pixels/image

- 0 Images in

specified format

Images

 132

Prototype II: Version 1.0.0

Structure:

Field # Data Bytes Format Units Offset Description

Header Size 4 integer bytes 0 Number of bytes

in header

Width 4 integer pixels 4 Width of image

Height 4 integer pixels 8 Height of image

1

(header)

Time 4 integer microsecs 12 Period between

image captures

2 Images Varies RGB 3

Bytes/Pixel

- 16 Images in

specified format

Header Images

 133

PROTOTYPE II: VERSION 1.1.0

Field # Data Bytes Format Units Offset Description

Header Size 4 integer bytes 0 Number of bytes

in header

Data Offset 4 integer bytes 4 Number of bytes

to data

Version:

Major

4 integer 8 Major

Version:

Minor

4 integer 12 Minor

Version:

Update

4 integer 16 Update

1

(header)

Date/Time 8 double 20 When the file

was originally

created

Camera Serial

Number

4 integer 28

Pixel Height 8 double µm 32

Pixel Width 8 double µm 40

physical pixel

dimensions

Max Height 4 integer pixels 48 Number of pixels

in height

Max Width 4 integer pixels 52 Number of pixels

in width

Height 4 integer pixels 56 Height of image

Width 4 integer pixels 60 Width of image

Array Offset

Left

4 integer pixels 64 image offset on

array

Array Offset

Bottom

4 integer pixels 68 image offset on

array

Image Format

(needs

changing)

1 byte From

table

72 Pixel data type in

image

Image Scalar

(needs

changing)

1 byte From

Table

73 Number of bytes

per pixel

Focal Length 4 double mm 74 Lens focal length

(EO

info)

Camera

Offset X

8 double m 78 Physical offset

from lidar

Header Images

 134

Camera

Offset Y

8 double m 86

Camera

Offset Z

8 double m 94

centroid

(parallax)

Camera

Rotation X

8 double deg 102

Camera

Rotation Y

8 double deg 110

Camera

Rotation Z

8 double deg 118

Physical rotation

offset of camera

from lidar

centroid

Camera Gain 8 double 126

Camera

Brightness

8 double 124

Camera

Exposure

8 double 132

Camera WB

violet

8 double 140

Camera WB

blue

8 double 148

relative value

Lidar Serial

Number

8 char 156

Az/Hfov

Left

8 double deg 164

Az/Hfov

Right

8 double deg 172

Elevation/

Vfov Top

8 double deg 180

Elevation/

Vfov Bottom

8 double deg 188

tilt angle 8 double deg 196 angle of texel

camera tilt

through tilt axis

tilt offset 8 double 204 ??

(lidar

info)

tilt axis 8 double 212 tilt axis

GPS Serial

Number

8 char 220

GPS Offset X 8 double m 228

GPS Offset Y 8 double m 236

GPS Offset Z 8 double m 244

distance from

lidar centroid to

antenna

(GPS

info)

Latitude/

Northing

8 double deg 252

 135

Longitude/

Easting

8 double deg 260

Azimuth/

Elevation

8 double m 268

Zone (type) 4 integer 276 Indicates lat/long

or N,E and

Azimuth

Projection 4 double 284

Datum 8 char 292

2 Images Varies = byte *

Image Scalar

 300 Images in

specified format

Image Format Value Image Format Image Scalar

0 RAW8 1

1 RAW10 2

2 RGB 3

3 YUV 3

4 Monochrome 1

>=3 Undefined in Vs. 1.1.0 Undefined in Vs 1.1.0

	Synchronized Line-Scan LIDAR/EO Imager for Creating 3D Images of Dynamic Scenes: Prototype II
	Recommended Citation

	Microsoft Word - Don Anderton - Texel Camera Prototype II Report.doc

