Physics 3710 – Problem Set #2

David Peak
Utah State University, david.peak@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/intermediate_modernphysics_problems

Recommended Citation
https://digitalcommons.usu.edu/intermediate_modernphysics_problems/2
Problems 1-4 refer to: Sound travels at about 330 m/s in still air. Observer O is at rest with respect to still air, observer O’ travels with constant velocity +50 m/s in the common x, x’ direction. Event A is the emission of a sound pulse from a stationary source at the origin of O; it occurs at \(x_A = 0 \) at \(t_A = 0 \). Event B is the reflection of the pulse at \(x_B = +100 \) m. Event C is the detection of the reflected pulse at \(x_C = 0 \). Assume the axes and clocks of O and O’ are set up so that the Newtonian transformation rules in BK2 apply. Explain all answers.

1. Sketch an s-t diagram for O with these three events on it. Sketch an s-t diagram for O’ with these three events on it.

2. What are the times \(t_B \) and \(t_C \)? What are the times \(t'_B \) and \(t'_C \)?

3. What are the positions \(x'_B \) and \(x'_C \)?

4. What total distance does the pulse travel from A to B and from B to C according to O’? How does O’ “reconcile” the answers to problem 2 with these distances?