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ABSTRACT 

Sperm chromatin not only has a unique structure to condense and protect the paternal DNA in 25 

transit, but also provides epigenetic information that supports embryonic development. Most of 

the unique sperm nuclear architecture is formed during the sweeping postmeiotic chromatin 

remodeling events in spermiogenesis, where the majority of nucleosomes are removed and 

replaced by protamines. The remaining histones and other chromatin proteins are located in 

structurally and transcriptionally relevant positions in the genome and carry diverse 30 

posttranslational modifications relevant to the control of embryonic gene expression. How such 

postmeiotic chromatin-based programming of sperm epigenetic information proceeds, and how 

susceptible the process is to modulation by exogenous factors are key questions for 

understanding the inheritance of acquired epigenetic marks through the male germ line. We 

propose that transient DNA strand breaks mediated by topoisomerase 2 beta and the subsequent 35 

activation of DNA damage response pathways result in defined posttranslational modifications 

of histones in spermiogenesis. These pathways, likely along with others, may contribute to 

chromatin remodeling in elongating spermatids, influence chromatin-based intergenerational 

inheritance of epigenetic information, and may be defective in pathologies of abnormal male 

gametogenesis and infertility.  40 
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1. INTRODUCTION 

There is now accumulating evidence of non-genetic (epigenetic) inheritance through the male 

germ line allowing individual ancestors to transfer information about their environment to their 

progeny [1–7].  45 

 Four distinct but interconnected molecular pathways that permit epigenetic information 

transfer from sperm to progeny have been discovered so far:  (i) Coding and non-coding RNA, as 

well as tsRNA [8–13] in sperm, (ii) DNA methylation of the sperm genome ([14], reviewed in 

[15]), (iii) gene positioning and sperm nuclear architecture [16–18], and (iv) sperm chromatin 

components including  histones and other DNA binding proteins [19–22].   50 

 How exactly germ cells obtain clues to environmental factors and encode them in some 

form of epigenetic information remains enigmatic at this time. However, the influence of 

environmental factors on the epigenome of male germ cells appears to be most impactful if it 

happens during a developmental phase when these cells are epigenetically reprogrammed. It has 

been established that male germ cells undergo at least two of such major epigenetic 55 

programming phases, namely during the prenatal differentiation of primordial germ cells, and 

during differentiation of germ cells into spermatogonia for the execution of spermatogenesis 

[3,23–25]. An additional window of opportunity likely also exists in the adult male, where 

continuous spermatogenesis is a life-long continuous process that could provide sensing of 

environmental cues and translation into epigenetic messages carried by the mature sperm to the 60 

next generation. [26,27].  Focusing on the emerging role of sperm chromatin proteins in 

intergenerational epigenetic inheritance, a review of recent data yields overwhelming evidence 

that certain chromatin-borne epigenetic signatures in mature sperm are important to embryonic 

development. How these signatures are established during spermatogenesis is poorly understood, 
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in part because they depend to an unknown extent on complex and not yet well characterized 65 

chromatin remodeling events [28]. Particularly the postmeiotic chromatin remodeling events, 

where spermatids develop into sperm, are probably among the most dramatic ones in cell biology 

and the question arises how sperm epigenetic information survives these events or may even be 

dependent on them. Here, we review emerging concepts and vehicles of sperm chromatin-based 

epigenetic inheritance and explore the potential influence of DNA damage repair (DDR) 70 

pathways on epigenetic programming of sperm in the context of postmeiotic chromatin 

remodeling events. 

 

2.  SPERM CHROMATIN AS A CARRIER OF EPIGENETIC INFORMATION 

2.1 Spermiogenesis and the origin of sperm nucleosomes  75 

Sperm are both, highly adapted to ensure safe transport of the paternal genome complement to 

the egg as well as epigenetically configured to support embryonic programming and totipotency 

of the zygote. To accommodate both of these functions, the protamine-based chromatin and 

compact nuclear architecture of sperm is uniquely organized and very different from the 

nucleosomal nuclear organization of the archetypal cell type [29]. Sperm DNA is not 80 

superspiralized but relaxed and associated with protamines that are cross-linked by disulfide 

bonds to form comparatively large toroid-like loops [17,30], which are physically very stable. To 

accomplish that chromatin change, the majority of histones are temporarily replaced by transition 

proteins (TP1 and TP2) and then finally by protamines (PRM1, PRM2) during the postmeiotic 

phase of spermatogenesis, termed spermiogenesis [31].  Only a small portion of the genome 85 

remains nucleosomal (approximately 2 % to 15 % in mice and humans, respectively [32,33]). 

Initial investigations revealed that at least a portion of the remaining nucleosomes are retained in 
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defined telomeric and pericentromeric chromosome regions of mammalian sperm, where they 

have important structural roles [33,34]. Besides their structural functions, histones often also 

carry posttranslational modifications (PTM) that are able to control gene activity, and therefore 90 

have the potential to transmit epigenetic information to the offspring [35].  Until recently, sperm 

were not thought to provide much histone-mediated epigenetic information because the majority 

of histones have been replaced by protamines during spermatid differentiation and the remaining 

ones were thought to be restricted to non-coding repetitive sequences in pericentromeric and 

telomeric heterochromatin.  95 

 Newer studies then found that another portion of the remaining sperm histones are 

located also elsewhere in the genome, but their exact positions, their functions, and their 

posttranslational modifications have been controversially discussed. Results of individual studies 

varied considerably, which may in part be due to differences in experimental details of the 

general technical approach used to map histones to the sperm genome [36,37], which is based on 100 

sequence analysis of DNA bound to nucleosomes separated from protaminated chromatin by 

limited micrococcal nuclease (MNase) digestion of sperm nuclei followed by chromatin 

immunoprecipitation (ChIP-seq) [38].  Some studies using this approach found sperm histones to 

be enriched in intergenic regions rather than in promoter regions [36,37,39] while other reports 

place histones at gene promoters, imprinted gene clusters, microRNA,  HOX gene clusters and 105 

binding sites of the chromatin insulator protein CCCTC-binding factor (CTCF) [19–21,37].  

There is some consensus that a portion of the sperm histones maps to DNA in GC-rich, 

hypomethylated promoter regions and first exons in most genes in human and murine sperm 

[36,37,40–42]. The potential association of residual sperm histones with promoters of specific 

genes and other genomic regions relevant to embryonic development gave rise to the concept 110 
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that such sperm histones may regulate gene expression in the early embryo [19–21,43–45,37,41]. 

Supporting this hypothesis, a direct link between the location and number of histones in sperm 

gene promoter regions and the expression of these genes in resulting 2-cell embryos could be 

shown using two mouse models with altered poly(ADP-ribose) metabolism [41]. Further 

supporting the concept that sperm chromatin carries a rich source of gene regulatory information, 115 

Jung and colleagues recently found that most promoter regions in mouse sperm are flanked by 

active histone modifications when they used transposase Tn5 instead of MNase processing to 

map accessible open chromatin states. They also used ChIP-seq analyses of MNase-digested 

sperm chromatin to demonstrate that adult enhancer regions carrying gene activating histone 

marks are already specified in sperm, and that CTCF and cohesin are important factors that 120 

organize the three-dimensional (3D) structure in sperm [22]. CTCF and cohesin are also involved 

in the formation of topologically associating domains (TADs) of chromosomes that form a 3D 

structure of mammalian nuclei, including sperm [46,47,16] and of nuclear lamina-associated 

domains (LADs) [48]. TADs in sperm are unique in that they are characterized by extra-long-

range interactions and frequent inter-chromosomal interactions in addition to having conserved 125 

TADs found in somatic cells [16,49]. Pioneering, microscopy-based investigations have long 

shown that sperm exhibit a nuclear architecture that is very distinct from that found in somatic 

cells. In human and murine sperm, pericentromeric heterochromatin is clustered in the center of 

the nucleus, and telomeres with their subtelomeric repeats are located near its surface [50,51]. 

These heterochromatic sequences appear to be important for the specific and systematic 130 

arrangement of chromosomes during meiosis to form the specific sperm nuclear structure which 

has long been considered to constitute an additional layer of epigenetic information in itself  

[18,50,52–55]. The unique nuclear structure may therefore explain a subset of the unique TADs 
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found in sperm. The extent to which the sperm TAD structure is inherited by the embryo is 

unclear as the high-order structures of both the paternal and maternal genomes in zygotes and 135 

two-cell embryos are not well defined but are later gradually re-established through development 

[49]. 

Given the important roles of heterochromatic, nucleosomal regions in sperm nuclei, it is not 

surprising that genome-wide nucleosome mapping also suggests that a large portion of sperm 

nucleosomes are preferentially located at repetitive sequences throughout the genome, e.g. SINE, 140 

LINE, and retrotransposons [39]. These findings, which appear also to be in line with other 

studies [56,57] have been disputed [58], because histone enrichment in repetitive sequences may 

be overestimated by certain computational approaches to map high-throughput sequencing reads 

to the genome. While this may be true, the overall result that sperm nucleosomes are 

preferentially retained in repetitive sequences [59] is consistent with results from other groups 145 

who used histone immunostaining or fluorescence in situ hybridization (FISH) of sperm nuclei. 

These investigations support the hypothesis that sperm histones tend to co-localize with repeat-

enriched constitutive heterochromatin blocks such as found in pericentromeric regions 

[37,57,60]. All of these findings are, however, not inconsistent with the overwhelming evidence 

that at least a portion of sperm histones occupy gene regulatory and other genomic regions in a 150 

way that is expected to direct early embryonic gene expression, because these regions represent 

only a comparatively small fraction of the genome.  

 In addition to histones and CTCF, other DNA binding proteins capable of genome 

regulation and transcriptional regulation, such as transcription factors and the transactive 

response DNA binding protein (TDP-43) have been detected in mature sperm [19,22,37,61,62]. 155 

The roles of these proteins in sperm mediated epigenetic inheritance have yet to be determined. 
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2. 2. Testicular histone variants as carriers of epigenetic information. 

Canonical histone genes (H2A, H2B, H3 and H4) are clustered in the mammalian genome and 

expressed from these clusters solely in S-phase to permit histone incorporation into newly 160 

replicated DNA. In addition, non-canonical variants of all canonical histones except for H4 are 

present in mammals, where they are expressed from individual genes throughout the cell cycle 

[7,63].  Male germ cells express a large number of non-canonical histone variants, including 

H2AFX (also known as H2A.X) [64], H2A.Z, TH2A [65], H3.3 [66–68], H3T [69], three H2AL 

and two H2BL variants [57], TH2B [70], as well as macroH2A.1, macroH2A.2 and their 165 

subtypes [71,72] (reviewed in [28,63]). Histone H1 has 11 variants, of which H1t [73,74], H1T2 

[75] and HILS1 [76] are selectively expressed in the testis (reviewed in [77]). Expression of 

testicular histone variants is regulated temporally and spatially during germ cell development. 

They fulfill various structural and gene regulatory functions during spermatogenesis, and may 

contribute to epigenetic mark formation in response to environmental clues [63].  170 

 Structurally, histone variants deviate from canonical histones by small protein sequence 

alterations that changes the stability of the nucleosomes they are incorporated in. A change in 

nucleosomal stability goes along with a changed degree of chromatin condensation and a 

changed accessibility of the DNA for binding factors, which has consequences for transcription 

and chromatin reorganization during later phases of spermatogenesis. Some functions of 175 

testicular histone variants appear to be limited to germ cell development, without directly 

affecting subsequent embryo development. For example, H2AL1 and H2AL2 disappear rapidly 

from the paternal genome after fertilization [78], and it is unknown whether they convey any 

epigenetic information to the embryo. A recent report proposed functions of H2AL2 in the 
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loading of transition proteins onto the DNA in elongating spermatids where protamines are 180 

recruited subsequently to facilitate histone eviction from the DNA [79]. 

 TH2B is a testis-specific histone variant that replaces most of the canonical H2B histones 

during the meiotic prophase of spermatogenesis [80]. TH2B destabilizes nucleosomes in 

spermatids because its carboxyterminal surface reduces nucleosomal binding affinity to DNA. 

As a consequence, incorporation of TH2B is thought to facilitate the transition of nucleosomes to 185 

transition proteins and protamines [80,81]. This raises the question whether selective placement 

of TH2B could be involved in epigenetic memory formation. Some TH2B is found in mature 

sperm [82] and an interesting open question is whether TH2B is mostly eliminated alongside 

with canonical H2B from the elongating spermatid nucleus or whether it is able to selectively 

escape nucleosome removal during spermiogenesis, with possible epigenetic consequences. 190 

 In sperm, histone variant H3.3 is enriched at promoter regions (CpG islands, CGI) of 

genes that are highly transcribed during spermiogenesis, while canonical histones H3.2 and H3.1 

are less enriched at these regions, suggesting that they were replaced by H3.3 during gene 

transcription events in round spermatids [40,83]. 

  In summary, DNA replication-independent expression of non-canonical histone variants 195 

and their insertion into the chromatin of actively transcribed genes, where they substitute 

canonical histones, could be one of the mechanisms of sperm chromatin mark formation [67]. If 

that is the case, then a form of histone variant-based epigenetic information could exist in sperm 

chromatin to represent a memory of gene activity that occurred during spermatogenesis and that 

could be transmitted to the next generation to inform progeny. However, mechanisms underlying 200 

the sensing of environmental influences (diets, toxicant exposures) by germ cells and how gene 

expression could be altered in response to such environmental cues are currently still unclear. 
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2.3. Posttranslational modifications (PTM) of sperm histones with the potential to control 

gene expression. 205 

Sperm histones carry various PTMs that can regulate chromatin functions and gene expression. 

PTM in the testis include mono-, di- and trimethylation of lysine residues, acetylation, 

phosphorylation, ubiquitination, ADP-ribosylation [84],  crotonylation [85] and others (reviewed 

in [28,62]). Most of these histone PTM are regulated by a complex interplay of enzymes either 

adding or removing defined molecular groups to histone N-terminal domains. The acetylation of 210 

histones is generally associated with gene activation and transcription [86]. Constitutive 

heterochromatin, e.g. as it is found in pericentromeric, telomeric and repeat-rich genomic 

regions, is marked by trimethylation of lysine 9 on histone H3 (H3K9me3), a silencing histone 

modification, and by DNA methylation. Both marks persist in heterochromatic regions during 

fertilization [87,88]. Di- and trimethylated lysine 4 on histone H3 (H3K4me2 and H3K4me3), 215 

both generally considered activating histone marks, are enriched at certain developmental 

promoters and paternally expressed loci [20]. Genes important for developmental regulation and 

cellular homeostasis concurrently carry both, H3K4me2 and H3K27me3 chromatin marks [21].  

The simultaneous presence of markings with apparently contradictory function in the same 

region, e.g. silencing H3K27me3, in addition to activating H3K4me3, marks “bivalent” 220 

promoters of developmental genes expressed in embryonic development [20,21]. Both markings 

can occur on the same nucleosome, but typically not on the same histone N-terminal tail within 

one histone [20,89].  

During Xenopus spermiogenesis, the activating H3K4me2 and H3K4me3 marks are removed 

from a subset of developmentally important genes to prevent their promiscuous expression in 225 
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early embryogenesis [90], further highlighting the importance of sperm chromatin epigenetics for 

embryo development. Generally, H3K4me2 is an activating mark that is found on meiotic sex 

chromosomes and elsewhere throughout the spermatid genome and that has been suggested as an 

important mediator of heritable epigenetic memory in mammals [20,21,91].  H3K27me3 marks 

are mediated by the polycomb repressor protein complex PRC2 [92]. This mark, which is 230 

recognized and bound by a second complex, PRC1, is important for Trithorax- and Polycomb-

mediated gene silencing, and paternal diet affecting H3K27 methylation in sperm may represent 

one mechanism by which an epigenetic signature forms due to environmental factors [93].  

 Dietary methyl (C1) donors, such as folate, methionine and choline, are known players 

important for methylation of DNA in spermatogenesis [94] and variations in the availability of 235 

those metabolites change the DNA methylation component of the sperm epigenome. How 

deficient or excessive uptake of these methyl donor changes body-wide and importantly germ 

cell-specific methylation of histones is not understood [95–99]. Targeted research needs to 

address the question to what extent dietary C1 donors affect the sperm chromatin-borne 

epigenome, specifically the methylation of histones, in addition to the sperm DNA methylome 240 

[95].  The importance of sperm histone methylation patterns for the regulation of embryonic 

development was recently demonstrated in male transgenic mice with H3K4 demethylase 

KDM1A overexpression. Progeny of such animals with reduced sperm H3K4 dimethylation 

were developmentally impaired and had reduced survival rates [100]. Similar results were 

obtained from a different group who used a heat-inducible testicular KDM1A overexpressing 245 

mouse model [101]. In summary, while the exact mechanism remains unclear, pathways that 

modulate the activity of H3K4me3 or H3K27me3 demethylating enzymes during 

spermatogenesis in response to environmental cues may be able to affect the sperm epigenetic 
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program and consequently embryonic gene expression. The activity of poly(ADP-ribose) (PAR) 

polymerase (PARP) enzymes in response to DNA strand breaks is an example for a DDR 250 

pathway with a modulating influence on the establishment of histone methylation marks that can 

also respond to environmental cues (see also 3.1. below).  Given the apparent importance of 

H3K4 and H4K27 methylation in sperm, it is puzzling that the paternal genome, but not the 

maternal genome, appears to become depleted of H3K4me3 peaks in zygotes [102]. In addition, 

Zheng et al. observed global erasure of H3K27me3 marks from sperm after fertilization, 255 

accompanied by inheritance of distal H3K27me3 from oocytes downstream of gene transcription 

start sites [103]. More investigations are needed to understand the roles of H3K4 and H3K27 

methylation in sperm and after fertilization. An attractive, but untested hypothesis is that these 

histone modifications could be involved in directing the rapid DNA de- and remethylation events 

that occur during and shortly after fertilization to direct gene expression later in development.  260 

Besides sperm histones, which provide potential epigenetic information in the form of at least 26 

different modifications, protamines have recently also been shown to bear at least 11 PTM, 

which may add a whole new layer of sperm chromatin-borne epigenetic information [35]. The 

exact functions of these remain to be elucidated. 

 265 

3. DNA DAMAGE RESPONSE PATHWAYS IN SPERMATID CHROMATIN 

REMODELING 

Mouse embryos derived from injection of round spermatids into oocytes develop into adult mice 

at much lower frequencies than embryos generated by the injection of sperm, which highlights 

how functionally important the mature sperm chromatin structure is [104,105]. The process that 270 

leads to the typical protamine-based chromatin structure during spermiogenesis in mammals 
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requires extensive nucleoprotein exchange (see 2.1) and controlled DNA strand breaks. These 

breaks accommodate the DNA conformational change from the superspiralized, histone-based 

nucleosomal conformation to a linear, relaxed one stabilized by protamines. [7,63,82,106–112]. 

DDR pathways that are associated with controlled DNA strand breaks are therefore emerging as 275 

major factors driving the necessary nucleoprotein exchange during chromatin remodeling in the 

elongating spermatid (see also Figure 1).  

 

3. 1. Topoisomerase II beta (TOP2B) provides DNA relaxation and triggers a DNA damage 

response 280 

Because homologous recombination is not an option for repairing the DNA double strand breaks 

(DSBs) that occur during chromatin condensation in haploid spermatids, free DNA breaks could 

theoretically only be repaired by the alternative, more error-prone pathway of non-homologous 

end joining (NHEJ), or remain unrepaired until after fertilization. Classical NHEJ repair is not 

functional in spermatids, and the effectiveness of the alternative NHEJ pathway in repairing 285 

DSBs in spermatids is unclear [113].  

While such DNA DSBs may exist as rare events in spermatids, the majority of them seem to 

occur as a result of type II topoisomerase activity to allow for DNA relaxation and 

reorganization of chromatin loops [114–117]. In this process, which in spermiogenesis is 

mediated by topoisomerases, including the topoisomerase variant 2 (TOP2B), DNA ends 290 

remain covalently bound to the enzyme during the decatenation reaction (Figure 1a-c) 

[107,114,115,118]. It is unclear whether TOP2B is able to perform DNA relaxation in a 

sequence-specific way. In somatic cells, the enzyme preferentially binds to DNA sites that are 

supercoiled or arranged in a four-way junction, which is a conformation of DNA in torsional 
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stress, such as during transcription [119]. Such sites are mostly AT- rich and occur throughout 295 

the mammalian genome, particularly in nuclear matrix- and scaffold- attachment sites [120].  In 

elongating spermatids, binding of TOP2B to a given genomic locus therefore could be driven by 

torsional stress in supercoiled DNA during or prior to the histone-to-protamine exchange and 

occur near nuclear matrix attachment sites [107,121]. An interesting observation is that 

elongating spermatids become positive in the Terminal deoxynucleotidyl transferase (TdT) 300 

dUTP Nick-End Labeling (TUNEL) assay, which recognizes only free, but not protein-bound  

DNA ends, suggesting that a large portion of these breaks are not the result of normal TOP2B 

activity [122]. Both single and double strand breaks are present in elongating spermatids, raising 

the possibilities that TOP2B activity may either be abortive at times, and that a tyrosyl-DNA 

phosphodiesterase (likely TDP1) may remove TOP2B from the DNA, forming a true DNA break  305 

[107,108,121]. The excision of stalled TOP2B by TDP1 from the DNA, followed by NHEJ as a 

potential alternative repair pathway, has been shown in somatic cells, but not in spermatids so far 

[108] (Figure 1c). Alternatively, SPO11, an endonuclease responsible for creating breaks during 

the meiotic recombination process in spermatocytes, may also form DNA strand breaks in 

elongating spermatids [121]. In somatic cells, TOP2B creates DNA single strand breaks in silent 310 

promoters to activate poly(ADP-ribose) polymerase 1 (PARP1), which facilitates the 

replacement of the silencing histone H1 by high mobility group B protein, which then allows 

transcription to proceed [123,124]. Whether this mode of TOP2B/PARP1 interaction also exists 

in elongating spermatids is not clear, but the activation of PARP enzymes in elongating 

spermatids has been shown [125,126].  315 

 In somatic cells PARP1 and PARP2 enzymes are rapidly recruited to DNA single and 

double strand breaks, where their catalytic domains become immediately activated. Activated 
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PARP enzymes cleave NAD+ to synthesize poly(ADP-ribose) (PAR) as a first signal that DNA 

strand breaks are present (black arrow in Figure 1a) [127] (reviewed in [128]). In somatic cells, 

PAR formation mediates subsequent recruitment of MRE11, NBS1 and ATM to the DNA lesion 320 

(see further below) [129]. PAR is a highly electronegative biopolymer that is attached to target 

proteins like PARP enzymes themselves, histones and other chromatin proteins as a large 

posttranslational modification. The strong electronegative charge of PAR reduces or fully 

neutralizes the ability of target proteins to bind DNA and leads to a profound local chromatin 

decondensation required for DNA repair and transcription [130,131]. Subsequently, PAR is 325 

degraded by the catabolic enzyme PAR glycohydrolase (PARG), which is also expressed in 

spermatids [109,132]. The concerted activity of PARP and PARG enzymes thus results in a rapid 

local consumption of NAD+ and turnover of PAR near DNA strand breaks that facilitates 

chromatin decondensation as well as histone displacement, which has been studied extensively in 

somatic and germ cells such as spermatocytes [133–136] (Figure 1a, 1b). The DNA strand breaks 330 

that activate PARP in elongating spermatids could also stem from other sources than TOP2B, 

such as SPO11, however, it could be demonstrated that PAR formation by PARP negatively 

regulates TOP2B activity both in vitro and in elongating mouse spermatids in vivo. The activities 

of PARP1 and PARP2 therefore seem to curb TOP2B activity by providing a negative feedback 

loop [125]. PAR degradation by PARG is necessary to remobilize TOP2B to complete its DNA 335 

unknotting activity and the combined activity of PARP1, PARP2, PARG and PAR appears to be 

important for the regulation of TOP2B activity [125]. After completion of TOP2B-mediated 

DNA decatenation that is necessary to achieve the chromatin structure in mature sperm (Figure 

1d), TOP2B may remain bound to loops of nucleosomal DNA between toroids of protaminated 

DNA where it could play a role in sperm chromatin fragmentation and unpacking of the paternal 340 
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genome after fertilization [17,137,138]. Altering PAR metabolism in elongating spermatids 

using genetic or pharmacologic intervention results in abnormal histone retention in sperm, 

deviant sperm head shaping and altered epigenetic regulation of embryonic gene expression in 2-

cell embryos, highlighting the importance of PARP-mediated chromatin remodeling in the 

establishment of sperm chromatin [41,60,82,109,126,139–141].  PARP activity is modulated by 345 

various endogenous and exogenous substances and pathways, e.g. the presence of endogenous 

PARP inhibitors (e.g. vitamin D3 metabolites, certain other vitamins, and unsaturated fatty acids 

[142,143], reviewed in [142]), and by the availability of NAD+ as the substrate. In humans, blood 

NAD+ levels vary according to nutritional vitamin B3 (niacin, nicotinic acid and nicotinamide) 

intake [145–148], since vitamin B3is the main dietary precursor of NAD+. Whether a niacin 350 

uptake-dependent modulation of PARP activity in spermiogenesis occurs is an open question. 

Furthermore, in somatic cells, ADP-ribosylation of histone N-terminal tails  influences other 

histone modifications such as H4K16ac and H3K27me3 on the same nucleosomes in somatic 

cells either by direct competition for the same amino acid or indirectly by steric hindrance  

[84,139,141,149,150] (see Figure 2). Further research is necessary to determine whether PARP 355 

activity has any influence on histone modifications in spermiogenesis as well. 

Interestingly, PARP is also directly involved in the regulation of the activity of the protein 

demethylases KDM5B and KDM4D. These enzymes remove methylation marks at H3K4me3 

and H3K9me3, respectively. In  somatic cells, PARP activity in the vicinity of DNA strand 

breaks inhibits these demethylases [151–153]. According to Krishnakumar and Kraus [154], 360 

PARP1 binds to promoter regions of active promoters where KDM5B binds as well, where it 

ADP-ribosylates KDM5B and thus inhibits KDM5B from removing H3K4me3 in somatic cells. 

By inhibiting this demethylase, PARP therefore maintains the active H3K4me3 mark to keep 
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genes active in these cells. The regulation of other KDM enzymes by PARP1 may be different as 

Gong and colleagues reported recently that PARP1 recruits KDM5A to DNA DSBs  in somatic 365 

cells to help removing H3K4me3 in the vicinity and to silence genes affected by DNA strand 

breakage [155]. While interactions of PARP with any of these histone-modifying enzymes in 

spermatogenesis are likely, they are hypothetical at this time. In addition, PARP1 in somatic 

cells also directly ADP-ribosylates H3K27 as a posttranslational modification that competes with 

methylation of this lysine residue [84,149], but to-date no comparable insights are available for 370 

male germ cells. In summary, DNA strand breaks that occur naturally in elongating spermatids 

trigger DNA damage response signaling, including PARP activation.  

 

3. 2. Activation of the ATM/ATR pathway by TOP2B to phosphorylate H2AFX 

The ataxia telangiectasia mutated (ATM) signaling network is an important part of DNA repair 375 

pathways that are activated by TOP2B activity in spermatids, as well as by other sources of DNA 

double strand breaks  [108,113,156]. As discussed above, the classical NHEJ pathway is likely 

not present in spermatids, but the alternative Parp1/XRCC1 dependent NHEJ pathway is active 

in these cells to recruit ATM and Rad3-related protein (ATR) [113,156].  It was shown in both 

somatic and testicular cells that the serine/threonine-protein kinase ATM and ATR interact to 380 

phosphorylate the histone variant H2AFX (H2A.X, in phosphorylated form also known as 

gamma-H2AX) in response to DNA DSBs (Figure 1b) [157]. The ATM/ATR-mediated H2AFX 

phosphorylation spreads along the DNA for hundreds of thousands of base pairs surrounding the 

break, where the modification is bound by MDC1 (mediator of DNA damage checkpoint 1) 

[158]. Phosphorylated H2AFX as well as the histone variant H2A.Z (H2AFZ) are also essential 385 

in DNA damage response signaling in somatic cells [159–161]. Transient PAR/NAD+ turnover 



18 
 

18 
 

mediated by PARP1/2 and PARG activity after DNA strand breakage is critical for activation of 

the ATM signaling pathway, and absence of PARP activity impairs ATM/ATR phosphorylation 

[162,163] (Figure 1b).  

Interestingly, the activities of several proteins involved in DDR pathways that are discussed here 390 

are also essential for the progression of meiosis, inactivation and epigenetic programming of the 

sex chromosomes (meiotic sex chromosome inactivation, MSCI) and chromatin remodeling that 

takes place during male meiosis [91,164]. For example, SPO11, an enzyme that creates DNA 

double strand breaks for genetic recombination, activates the ATM pathway in pachytene 

spermatocytes. ATM provides a negative feedback regulation to limit SPO11 activity, and thus 395 

the number of DNA strand breaks formed by SPO11 during meiosis, which renders Atm-/- testes 

sterile due to meiotic recombination defects [165]. Phosphorylation of H2AFX by ATR, and to a 

lesser extent by ATM, is a hallmark of XY body formation as part of the MSCI where several 

DDR enzymes colocalize to silence sex chromosomal gene expression ([166] reviewed in [167]). 

The interplay of ATR with other proteins such as ATM, BRCA1, MDC1 and the topoisomerase 400 

II-binding protein (TOPBP1) is a central mechanism that promotes meiotic sex chromosome 

silencing by H2AFX phosphorylation. In mice, genetic disruption of several DDR proteins 

therefore mostly leads to a halt of meiotic progression, which illustrates their importance in 

meiotic surveillance [166–168].  H2AFX phosphorylation is also involved in H2AFZ deposition, 

as outlined in the next section, which could have an influence on embryonic gene expression.  405 

 

3. 3. Functions of H2AFZ in the DNA damage response in spermatids 

In mammalian somatic cells, spermatocytes, and round spermatids H2AFZ is inserted into the 

chromatin to replace H2A and macroH2A in nucleosomes. The canonical H2A is exchanged 
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after its ubiquitination by RNF8 in an interaction with MDC1. In male meiosis, H2AFZ is 410 

enriched in facultative heterochromatin of inactivated sex chromosomes [169], where it is 

involved in the activation of genes that escape transcriptional silencing due to MSCI [91].  

Insertion of H2AFZ depends at least partially on the binding of phosphorylated H2AFX by 

MDC1 [158] (Figure 1b) but the precise mechanism has not been elucidated in spermatids. In 

somatic cells, MDC1 recruits the NuA4 complex with its TIP60 (Tat-interacting protein of 60 415 

kDa) and p400 motor ATPase subunits to the DNA strand break [170] (Figure 1c, panel i). The 

p400 motor ATPase exchanges canonical H2A/H2B dimers for H2AFZ/H2B dimers in 

nucleosomes in the vicinity of the DNA strand break, where H2AFZ and H4 subsequently 

become acetylated by the TIP60 histone acetyl transferase subunit. Whether the scenario is the 

same in spermatids is not known. Comparable to PAR-mediated local chromatin decondensation, 420 

incorporation of H2AFZ into nucleosomes and the subsequent acetylation step by TIP60 and the 

interacting protein EPC1 locally opens the chromatin structure [7,63,170,171] (Figure 1c, panel 

i). In somatic cells, H2AFZ-containing nucleosomes are located directly at transcriptional start 

sites and where they are involved in transcriptional control [172].  H2AFZ also promotes 

recruitment of DNA repair factors and ubiquitination of chromatin components by the RNF8 425 

(RING finger protein 8) ubiquitin ligase [170].  

 In line with expectations extrapolated form somatic cells, recent analyses of knock-out 

animals with functionally disrupted TIP60 function showed reduced histone acetylation in 

spermatids as well as impaired elongation and condensation of spermatids [171]. Therefore, 

certain protein factors involved in DDR in somatic cells also fulfill important functions in 430 

epigenetic remodeling during meiosis and the subsequent spermatid development. The interplay 
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of TIP60 and EPC1 is essential for histone acetylation, particularly of H4, which is a prerequisite 

for the exchange of nucleosomes for protamine [171], as outlined in the next section. 

 

3. 4. Histone H4 Acetylation 435 

Global lysine residue hyperacetylation of core histones, including H4, is an important, but not 

completely understood step preceding nucleosome eviction during spermiogenesis in various 

species, e.g. flies, roosters and mammals [173–180].  The proteins MDC1,TIP60 and EPC1 seem 

to account for most of the observed global histone acetylation observed in round spermatids 

[171].  Besides the acetylation of H3 (H3K122 and H3K64) and other histones, the increasing 440 

acetylation of H4 in lysine residues K5, K8, K12 and K16 adds negative charges to the histone, 

which destabilizes the nucleosome and weakens its binding to DNA [181]. While the net result is 

likely a general chromatin decondensation, the individual acetylation marks of H4 also serve 

specific functions in spermatid gene expression. In addition to histone acetylation, the acylation 

of histones with different types of lysine posttranslational modifications other than acetylation, 445 

such as propionylation, butyrylation, crotonylation and others, have been linked the regulation of 

gene expression and the metabolism of acyl-CoA in somatic cells [182,183]. Spermatid gene 

expression is regulated by both, histone acetylation and butyrylation marks [184]. H4 marked 

with both H4K5ac and H4K8ac are bound by the first bromodomain (BD1) of the testis-specific 

bromodomain protein BRDT [185–187], a protein that stimulates the transcription of certain 450 

spermatogenesis-specific genes by binding directly to their transcriptional starts sites. While 

histone butyrylation generally directly stimulates transcription, butyrylation of H4K5 prevents 

the binding of BRDT, which leads to a dynamic regulation of genes marked with both, 

acetylation and butyrylation of H4 in their promoter regions [184]. BRDT also functions in 
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transcriptional repression during spermatogenesis, where it interacts with HDAC1, PRMT5 and 455 

TRIM28 [188] and in RNA processing [189]. 

  The interaction of BRDT with acetylated H4K5 and H4K8 is essential for successful 

histone removal and sperm development as deletion of BD1 results in deformed sperm with 

excessive histone retention [190]. How BRDT binding of H3K5ac and H3K8ac contributes 

mechanistically to histone eviction is still unclear, but a direct mechanical ‘squeezing’ of 460 

chromatin fibers by polymerizing BRDT proteins has been proposed [191] (Figure 1c, panel ii). 

Dhar and colleagues reported that this process involves binding of other proteins including beta 

actin and SMARCE1, which is a subunit of the SWI/SNF family of ATP-dependent chromatin 

remodelers [192]. In humans, strong H4 acetylation already appears in early round spermatids 

long before nucleosome eviction [193], indicating that additional events besides 465 

H4K5ac/H4K8ac binding may be required for BRDT-mediated histone eviction.   

 The bromodomain protein BRD4  and likely other proteins, have also been proposed to 

have important roles in the removal of nucleosomes from spermatid chromatin [194] (Figure 1c, 

panel iii). Other H4 acetylation events include H4K12 acetylation, but its involvement in histone 

removal for protamine deposition is unlikely. Genome-wide mapping showed that H4K12ac 470 

remains present at least in part in human mature sperm, where it is enriched in binding sites of 

the chromatin insulator CTCF (CCCTC-binding factor) and in the promoter regions of genes that 

are later expressed in 8-cell embryos and blastocysts, suggesting a role of the histone mark in 

epigenetic inheritance [195]. 

 In contrast, H4K16 acetylation is an event in elongating spermatids that is common to all 475 

mammals and that occurs just prior to histone eviction. The H4K16ac mark is formed 

independently from H4K5 and H4K8 acetylation specifically in response to DNA strand breaks 
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[91]. H4K16ac is created by the acetyltransferase KAT8 (MYST1, MOF), which is 

phosphorylated by the DNA DSB-activated ATM/ATR pathway. All protein factors of this 

pathway, which also involves the kinase TSSK6 [196] colocalize with phosphorylated H2AFX in 480 

the vicinity of DNA strand breaks in somatic cells [197] (Figure 1b and 1c, panel ii). As 

discussed above (3.2), the TOP2B-mediated DNA torsional relaxation activates PARP and 

ATM/ATR signaling, which provides a hypothetical but plausible link between DDR signaling 

and histone H4K16 acetylation in elongating spermatids.  

 Although MDC1, TIP60 and EPC1 seem to account for most of the observed H4 485 

acetylation, not all histone acetyl transferases (HAT) that are responsible for H4 hyperacetylation 

may have been conclusively identified. Deletion of Chd5 (chromodomain helicase DNA binding 

protein 5) in mice resulted in reduced expression of the GCN5-related N-acetyltransferase 8 

(GCN5-related) family member 5 (Nat8f4 in mice, 1700019G17Rik) and in reduced H4 

acetylation in elongating spermatids [111,198], indicating that NAT8F4 may also be involved in 490 

the acetylation process. Chd5 binds to unmodified H3 and H3K27me3 nucleosomes [199–201] 

and may act as a multifunctional key orchestrator of nucleosome acetylation and eviction prior to 

transition protein and protamine deposition (Figure 1c, panel iii) [111].   

 After highly acetylated histones, which also carry the H4K16ac mark, have been removed 

from chromatin, they are eliminated by a large and unique proteasome complex 495 

(“spermatoproteasome”) [202]. A spermatoproteasome comprises a spermatid-specific alpha 

subunit (PSMA8), the catalytic beta subunits of immunoproteasomes and an activator protein 

PA200 (Figure 1c).  The activator protein binds acetylated histones with a bromodomain-like 

domain, and mice lacking PA200 have defects in both, acetylation-dependent degradation of 
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canonical histones and histone disappearance during sperm head condensation [202,203] (Figure 500 

1c, panel ii).  

 Overall, the DNA strand break-dependent H4K16ac mark may be emerging as the 

possible final and crucial negative charge needed to tip the balance towards histone binding of a 

remodeling complex via BRDT or another bromodomain protein, and the eviction of 

nucleosomes, underscoring the importance of DNA damage response pathways in the chromatin 505 

remodeling process in elongating spermatids. The observation that assisted reproduction in 

humans by round spermatid injection into oocytes (ROSI, ROSNI) is possible, but inefficient, 

likely because of the immature epigenetic information in round spermatids, illustrates that the 

defined eviction of histones is important for correct epigenetic programming of sperm, 

[204,205]. 510 

 

3. 5. Epigenetic marks of genotoxic agent exposure in sperm  

External mutagens that elicit DNA repair in germ cells have an impact on the epigenome of 

sperm [63,206–208] and on testicular gene expression of progeny [209]. Besides purely 

mutagenic effects of DNA damaging agents that are considered rare events based on 515 

unsuccessful DNA repair, DNA repair events themselves leave epigenetic marks in chromatin 

domains and gene loci even after successful repair. This has been demonstrated in rodents treated 

with bleomycin, etoposide and cis-platinum (BEP) to emulate a testicular cancer chemotherapy 

regimen. In that study, BEP treatment led to DNA hyper- and hypo-methylation, partly in 

preferred loci, suggesting either an interference with normal methylation patterning or abnormal 520 

repair of damaged patterns during spermatogenesis [207]. Furthermore, epimutations, i.e. 
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epigenetically abnormal gene regulation, can cause genetic mutations if such epimutations affect 

DNA repair enzymes [210], likely contributing to transgenerational epigenetic inheritance.   

Nutritional parameters and genotoxic insults are closely interconnected. For example, metabolic 

syndrome is associated with hyperglycemia, hyperinsulinism and hyperlipidemia causing 525 

elevated oxidative stress (reviewed by Rani et al. [211]).  Interesting but unknown is whether 

oxidative stress and resulting DNA damage caused by metabolic syndrome affects selective 

chromatin regions in spermatids, e.g. by triggering DNA repair events in Dad’s germ cells during 

spermatogenesis, similar to the ones shown in Figure 1, with epigenetic consequences to the 

sperm chromatin, and ultimately the offspring.  530 

 

4. AFTER FERTILIZATION 

The significance of sperm epigenetic information hinges on its potential to exert long-term 

consequences on the offspring. After fusion of sperm and oocyte, the sperm nucleus is rapidly 

unpacked, protamines are efficiently removed from the DNA and replaced by maternally 535 

provided histones that are hypomethylated or acetylated and lack silencing marks [87]. At the 

same time, there is genome-wide DNA demethylation in the male, but not in the female 

pronucleus. Differentially methylated regions of paternally imprinted genes are the exception as 

they remain methylated in the male pronucleus [212]. Persisting sperm-associated histones 

apparently remain at their original loci in the male PN throughout this extensive process [213].  540 

Such persistence is important because core histones present in sperm retain their posttranslational 

modifications  [19–21], similar to differentially methylated DNA regions of imprinted genes that 

survive the global DNA demethylation in the 1-cell stage. In Xenopus, paternal H3K4me2/3 and 

H3K27me3 influence embryonic gene expression, further supporting this theory [90].  
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In somatic cells, gene silencing histone PTM ( such as H3K9me2, H3K9me3) and DNA 545 

methylation were found to promote each other [214].  In contrast, activating histone PTM (such 

as H3K4 methylation) generally prevent de novo DNA methylation and preserve an 

unmethylated DNA state. This seems highly relevant prior to the first cell division in mammals 

when the DNA of the paternal PN becomes largely demethylated except for some regions, e.g. 

imprinted genes and regions associated with H3K9me2. The maternal genome in contrast is 550 

protected from this active DNA demethylation step in the zygote by PGC7/STELLA [215,216]. 

As the preimplantation embro develops differentiated tissues, the DNA of both chromosome sets 

is methylated to program cells for pluripotency and for differentiation. In view of this extensive 

de- and re-methylation of the paternal DNA during the zygotic chromatin remodeling, it is a 

plausible hypothesis that residual sperm histones bound to gene regulatory sequences may direct 555 

embryonic DNA methylation patterns according to the nature of their PTM and position in the 

genome, which would have delayed effects on embryonic transcription. 

 Preimplantation embryos are initially transcriptionally silent and use maternally provided 

RNA until their genome becomes activated during the maternal-to-embryonic transition (e.g. in 

mid-late 2-cell stage in murine embryos [217]).  It is therefore also theoretically possible that the 560 

retention or elimination of histones in the sperm nucleus, which upon fertilization becomes the 

paternal pronucleus, could also immediately affect embryonic gene expression based on their 

activating or silencing PTM. Experimental evidence obtained in mice shows that changing the 

numbers and positions of sperm nucleosomes in gene promoters correlates highly significantly 

with altered expression of corresponding genes in  2-cell embryos sired by such sperm, providing 565 

some support of this hypothesis [41].  
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5. CONCLUSIONS 

While other mechanisms that were not discussed here may exist as well, current evidence 

supports the idea that DNA damage signaling and DNA repair events in elongating spermatids, 570 

as well as transcription in round spermatids, are essential steps in sperm epigenetic programming 

to support embryonic development. Similar to other phases of the mammalian germline life 

cycle, in which major epigenetic programming occur, namely during primordial germ cell (PGC) 

development and after fertilization in the early embryo (reviewed in [218,219]), chromatin 

remodeling in spermiogenesis represents a potential window of opportunity for the acquisition of 575 

epigenetic marks in response to the environment. Interestingly, and comparable to 

spermiogenesis, successful epigenetic reprogramming in PGC development and programming of 

the zygote also depend on DNA repair pathways involving strand breaks and the resulting DNA 

damage response signaling [220–223]. A major difference between the reprogramming events in 

PGC, the zygote and the spermatid is that there is no known DNA demethylation in 580 

spermiogenesis but, on the other hand, spermatid maturation is the time of one the most dramatic 

chromatin protein reorganization events in mammalian biology.  
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FIGURE LEGENDS 

Fig. 1: Proposed model of DNA damage repair (DDR) signaling involvement in chromatin 

remodeling and nucleoprotein exchange in elongating spermatids.  

Please see also detailed discussion of this figure in the main body of the text. Processes shown in 1200 

panels (a)-(d) may be successive or concurrent events. Events that have been demonstrated only 

in somatic cells and are considered hypothetical in spermatids are marked with an asterisk* (a) 

TOP2B activity initiated by DNA torsional stress or other, currently unknown factors, potentially 

including the formation of DNA strand breaks by nucleases like SPO11, results in 

PARP1/PARP2 activation. Modification of PARP enzymes and histones with PAR results in 1205 

partial core histone and H1 removal from the site [224] and PAR recruits diverse DNA repair 

factors including ATM. After recruitment by PARP, KDM5A removes H3K4me3 in somatic 

cells; whether this also occurs in spermatids has not been investigated. Histones may be already 

partly acetylated such as in H4K5ac and H4K8ac. (b) During and after TOP2B-facilitated DNA 
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decatenation, PARP-mediated activation of the ATM pathway results in KAT8 and H2AFX 1210 

phosphorylation and H4K16ac formation as the last step of histone H4 hyperacetylation 

necessary for histone eviction and replacement by transition proteins. The deacetylase SIRT1, 

which normally counteracts H4 acetylation in somatic and earlier germ cells, is likely no longer 

present at this time. PARP, auto-modified with PAR, is gradually removed from the site of 

TOP2B activity. MDC1 binds to phospho-H2AFX and recruits RNF8 to ubiquitinate H2A 1215 

histones. (c) Panel i: MDC1 recruits the TIP60 (KAT5) histone acetyltransferase complex that 

also replaces H2A/H2B for H2AFZ/H2B in nucleosomes. This is an event that was also taking 

place earlier in spermatocytes. The TIP60 complex also acetylates ATM to enhance 

phosphorylation of histones including H2AFX and H2AFZ. Histones acetylated at H4K16 by 

MYST1/KAT8 are removed from the DNA by a complex containing BRDT, or a different 1220 

bromodomain protein like BRD4, replaced by transition proteins or protamines, and degraded 

(panel ii). Alternatively, or additionally, histones are bound by CHD5 and acetylated by NAT8F4 

for removal (panel iii). TDP1 may remove stalled TOP2B covalently bound to DNA, creating a 

strand break that could be repaired by a non-homologous end joining pathway or remain 

unrepaired. (d) The final sperm chromatin structure is based on protamine-based toroid structures 1225 

with nucleosomal linker chromatin domains carrying epigenetic information.  

 

Figure 2) A model of epigenetic modifier regulation by DNA strand break-dependent 

poly(ADP-ribose) metabolism.  

TOP2B activity relaxes DNA in elongating spermatids in a decatenation reaction and for 1230 

reorganization of chromatin loops. This step triggers PARP1/2 activation and resulting 

poly(ADP-ribose) (PAR) formation provides a feedback loop to regulate TOP2B activation 
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[123–125]. PARP activation is necessary for activation of the ATM/ATR kinase pathway 

[162,163], leading to phosphorylation of H2AFX [157] and H4K16 acetyltransferase MYST1 

(KAT8, MOF) [197]. Direct ADP-ribosylation by PARP1 in H3K27 position (H3K27-ADPR) 1235 

may compete with H3K27 methylation [84,225] but PARP1 also interacts with histone 

demethylases of the KDM family either through PARP enzyme-bound PAR chains or through 

direct protein interaction at PARP binding sites in the genome. For instance, KDM5A is 

recruited by PARP1 and activated to remove H3K4me3 from promoter sites as part of DNA 

damage-mediated gene silencing [155]. In contrast, KDM5B has been reported to be inhibited by 1240 

PARP1 and excluded from DNA strand breaks to maintain H3K4me3 and transcription near sites 

of DNA damage repair [154]. These may be mutually exclusive pathways or they could depend 

on the activity of the PAR digesting activity of poly(ADP-ribose) glycohydrolase (PARG). 

KDM4D, which removes H3K9me2 associated with promoters of retinoic acid receptor-

dependent genes heterochromatin, is inhibited by PARP1, unless PARG is present to allow for 1245 

retinoic acid-dependent gene expression [151]. Events that have been demonstrated only in 

somatic cells are considered hypothetical in spermatids and are marked with an asterisk*. 
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