Rainich-type Conditions for Null Electrovacuum Spacetimes II

Synopsis

• In this second of two worksheets I continue describing local Rainich-type conditions which are necessary and sufficient for the metric to define a null electrovacuum. In other words, these conditions, which I will call the null electrovacuum conditions, guarantee the existence of a null electromagnetic field such that the metric and electromagnetic field satisfy the Einstein-Maxwell equations. When it exists, the electromagnetic field is easily constructed from the metric. The results illustrated here are based upon [1].

• In this worksheet I consider the null electrovacuum conditions which apply when a certain null geodesic congruence determined by the metric is twisting. I shall illustrate these conditions using a couple of pure radiation spacetimes taken from the literature [3, 4].

• A companion worksheet (Rainich-type Conditions for Null Electrovacuum Spacetimes I) treats the twist-free case, which is considerably simpler.

Theory

• Let \((M, g)\) be a spacetime – a 4-dimensional manifold \(M\) endowed with a Lorentz-signature metric \(g\). The Rainich conditions are geometric conditions on \(g\) such that there exists an electromagnetic field \(F\) with \((g, F)\) satisfying the Einstein-Maxwell equations.

\[
G_{ab} = F_a^c F_{bc} - \frac{1}{4} g_{ab} F_{mn} F^{mn}, \quad \nabla [a F_{bc}] = 0, \quad \nabla_a F^{ab} = 0.
\]

The classical Rainich conditions involve the metric, the Ricci tensor \(R_{ij}\), the covariant derivative \(\nabla\), and the volume form \(\epsilon_{ijhk}\) of the metric, and are given by

\[
R^i_h R^h_j - \frac{1}{4} \delta^i_j R^{hk} R_{hk} = 0, \quad R^i_i = 0, \quad R_{ij} \not\approx 0, \quad \nabla [j \alpha_i] = 0, \quad \text{where} \quad \alpha_i = \frac{\epsilon_{ijhk} R^l_m \nabla^h R^{nk}}{R^n_l R^l_j}.
\]

Here \(i^j\) is any timelike vector field. When these conditions are satisfied there is a straightforward procedure for constructing the electromagnetic field (see RainichElectromagneticField), which is determined by the metric up to a duality rotation:
\[F_{ab} \rightarrow \cos(\theta) \, F_{ab} - \sin(\theta) \ast F_{ab}, \quad \theta \in \mathbb{R}, \]

where \(\ast \) denotes the Hodge dual on 2-forms determined by the metric. If a metric satisfies the Rainich conditions we say that it determines an electrovacuum spacetime.

• A spacetime admits a non-null electromagnetic source if and only if it satisfies the Rainich conditions.

• The Rainich conditions are not defined for null electrovacua, i.e., solutions of the Einstein-Maxwell equations with a null electromagnetic field,

\[F_{ab} F^{ab} = 0, \quad F_{ab} \ast F^{ab} = 0 \]

because such fields have a null energy-momentum tensor and hence a null Ricci tensor:

\[R_{ab} R^{ac} = 0. \]

The Rainich conditions do not provide local, geometric criteria for null electrovacua.

• A geometric description of null electrovacua is as follows [1]. A metric with a null Ricci tensor – a pure radiation spacetime – determines a null vector field \(k^a \) via

\[G_{ab} = R_{ab} = \frac{1}{4} k^a k_b. \]

(1)

The contracted Bianchi identity implies

\[k^b \nabla_b k_a = \left(\nabla_b k^b \right) k_a, \]

which implies that the congruence generated by this vector field \(k^a \) is a geodesic congruence. The vector field \(k^a \) determines a family of 2-forms,

\[f_{ab} = k_{[a} s_{b]}, \]

(2)

where \(s^b \) is any spacelike unit vector orthogonal to \(k^a \). The energy-momentum tensor of \(f_{ab} \) satisfies the Einstein equations in the sense that its energy-momentum tensor equals the Ricci tensor (which is the same as the Einstein tensor in the null case). Therefore, if there is a solution \(F_{ab} \) to the Einstein-Maxwell equations, at each point of \(M \) it must be related to \(f_{ab} \) by a duality rotation. Thus there will exist a function \(\varphi : M \rightarrow \mathbb{R} \) such that the electromagnetic field takes the form

\[F_{ab} = \cos(\varphi) f_{ab} - \sin(\varphi) \ast f_{ab}. \]

(3)

The Maxwell equations for \(F_{ab} \) impose a number of conditions on \(k^a \) and \(\varphi \). In particular,
the vector field \(k^a \) defines a shear-free, null, geodesic congruence. In terms of a null tetrad whose first leg is \(k^a \), and using the associated Newman-Penrose formalism [2], these conditions on \(k^a \) take the form

\[
\sigma = 0 = \kappa \quad \frac{1}{2} (\rho + \overline{\rho}) = \epsilon + \overline{\epsilon} .
\]

To analyze the conditions imposed by the Maxwell equations on \(\varphi \), one must distinguish two cases: the congruence tangent to \(k^a \) is (i) twisting or (ii) is twist-free. The twist, denoted \(\omega \), is defined by

\[
\omega = - \text{Im}(\rho).
\]

The solution spaces for \(\varphi \) – and hence for the electromagnetic field – are significantly different in these two cases. This worksheet considers the twisting case only (see the companion worksheet for the twist-free case).

- In the twisting case the function \(\varphi \) determining the duality rotation must satisfy

\[
\frac{1}{i} \delta \varphi + \tau - 2 \beta = 0, \quad \frac{1}{i} \overline{\delta \varphi} - \overline{\tau} + 2\overline{\beta} = 0, \quad \frac{1}{i} D\varphi - \epsilon + \overline{\epsilon} = 0, \quad \omega \Delta \varphi + i \text{Im}(\mu) (\rho - 2 \epsilon)
\]

\[
+ \text{Re}[(\delta + \overline{\beta} - \alpha)(\tau - 2 \beta)] = 0 .
\]

(5)

Here the letters \(\alpha, \tau, \beta, \epsilon, \delta, \rho, \mu, D, \Delta \) denote the standard Newman-Penrose quantities [2], which are determined once \(k^a \) has been incorporated into the first leg of a null tetrad. As shown in [1], there are two non-trivial integrability conditions for these equations. We express them as a single complex-valued condition:

\[
\mathcal{J} = 0,
\]

where

\[
\mathcal{J} = \omega \delta(\text{Re}(\overline{\delta} - 2\beta)) - \delta \omega + \omega (\tau - \alpha - \beta) \left[\text{Re}\{(\delta + \overline{\beta} - \alpha)(\tau - 2 \beta)\} \right]
\]

\[
+ i \text{Im}(\mu)(\rho - 2 \epsilon) + \frac{\omega}{2} \left[\beta \delta(2 \alpha + \tau - 4 \beta) + \beta \delta(2 \alpha + \overline{\tau} - 4 \overline{\beta}) + 2 i \delta \left[\text{Im}(\mu)(\rho - 2 \epsilon) + \tau \delta(\overline{\beta} - \alpha) + \overline{\tau} \delta(\beta - \alpha) - \alpha \delta(\tau - 2 \beta) - \overline{\alpha} \delta(\overline{\tau} - 2 \overline{\beta}) \right] - i \omega^2 \Delta(\tau - 2 \beta)
\]

\[
+ \omega^2 \left[\nu(\omega + 2 \text{Im}(\epsilon)) - (\tau - 2 \beta)(2 \text{Im}(\gamma) + i \mu) + i \lambda(\overline{\tau} - 2 \overline{\beta}) \right].
\]

(6)

- Conditions (4) – (6) are suitably invariant under the set of local Lorentz transformations which fix \(k^a \); they represent invariant conditions which are defined independently of the choice of null tetrad adapted to \(k^a \).
Conditions (4) and (6) on the null congruence determined by the Ricci tensor (1) provide geometric conditions on the spacetime geometry which are necessary and sufficient for the existence of a (null) electromagnetic source [1]. Thus we obtain Rainich-type conditions for null electrovacuum spacetimes.

Any two solutions to (5) differ by a solution to \(\delta \phi = \delta \phi = D \phi = \Delta \phi = 0 \), i.e., a constant. A metric satisfying (4) and (6) therefore determines the electromagnetic field up to a duality rotation.

Procedures for computing the Maxwell equations and their integrability conditions.

The following procedure computes the Maxwell equations (3) for the function \(\phi \) and isolates the 4 coordinate derivatives. The input is a table of spin coefficients and a table of directional derivatives, both computed from a null tetrad adapted to the principal null vector \(\mathbf{k} \) using the commands \texttt{NPSpinCoefficients} and \texttt{NPDirectionalDerivatives}.

\[
\texttt{NullMaxwellEquations} := \texttt{proc}(\texttt{NPS}, \texttt{NPD})
\]

The following procedure computes the integrability conditions \(\mathcal{J} \) in (4). The input is a table of spin coefficients and a table of directional derivatives, both computed from a null tetrad adapted to the principal null vector \(\mathbf{k} \).

\[
\texttt{NullElectrovacuumConditions} := \texttt{proc}(\texttt{NPS}, \texttt{NPD})
\]

If the command \texttt{NullElectrovacuumConditions} is executed with no arguments, the formula for the integrability conditions is displayed. The quantity \(\delta \mathcal{J} \) is the conjugate operator to \(\delta \).

The symbols \texttt{conj(x)}, \texttt{im(x)}, and \texttt{re(x)} denote the complex conjugate, imaginary part, and real part of \(x \), respectively.

\[
\begin{align*}
\omega \delta (r e(\delta \mathcal{J}(\tau - 2 \beta))) + \omega^2 \text{conj}(\nu) (\omega + 2 \text{im}(\epsilon)) - 1 \omega^2 A(\tau - 2 \beta) - (\delta(\omega) \\
+ \omega (\tau - \text{conj}(\alpha) - \beta)) (r e(\delta \mathcal{J}(\tau - 2 \beta) + (\text{conj}(\beta) - \alpha) (\tau - 2 \beta)) \\
+ 1 \text{im}(\mu) (\rho - 2 \epsilon) + \frac{1}{2} (\omega \text{conj}(\beta) \delta(2 \text{conj}(\alpha) + \tau - 4 \beta) + \beta \delta(2 \alpha) \\
+ \text{conj}(\tau) - 4 \text{conj}(\beta)) + 2 \delta(\text{im}(\mu) (\rho - 2 \epsilon)) + \tau \delta(\text{conj}(\beta) - \alpha) \\
+ \text{conj}(\tau) \delta(\beta - \text{conj}(\alpha))) + \omega^2 ((\tau - 2 \beta) (-2 \text{im}(\gamma) - 1 \mu) \\
+ 1 \text{conj}(\lambda) \text{conj}(\tau - 2 \beta)) - \frac{\omega (\alpha \delta(\tau - 2 \beta) + \text{conj}(\alpha) \delta(\text{conj}(\tau - 2 \beta)))}{2}
\end{align*}
\]
These two bits of code must be executed (e.g., by clicking on the code edit region) before running the following examples.

Example 1: Nurowski-Tafel electrovacuum

Nurowski and Tafel have constructed a class of algebraically special solutions of the Einstein-Maxwell equations [4] with null electromagnetic field. In particular, they have found the only known solutions which have twisting rays and a purely radiative electromagnetic field. These solutions are built from a freely specifiable holomorphic function \(b(\xi) \) and two parameters, \(\alpha \) and \(c2 \). We consider a special case of these solutions, specialized to Petrov type III \((c2 = 0) \) and with \(b(\xi) = b/\xi \), where \(b \) is a real constant. To avoid confusion with the Newman-Penrose spin coefficients, we relabel \(\alpha \) as the parameter \(a \). We verify that the integrability conditions (6) are satisfied and construct the electromagnetic field from the metric using (5) and (3).

Set-up.

We begin by defining the spacetime manifold and various auxiliary quantities needed to define the metric.

```math
> with(DifferentialGeometry): with(Tensor): with(Tools):
> DGsetup([u, r, xi, xil], M, complexconjugatepairs=[[xi, xil]])

frame name: M

(3.1.1)

\[
M > \text{bet} := \text{evalDG}( (r+I*\Sigma)/b(xi)/(1+xi*xil) * dxi);
\]

\[
\text{bet} := \frac{r + I \Sigma}{b(\xi)} \frac{d\xi}{(\xi \xi l + 1)}
\]

(3.1.2)

\[
M > \text{bet1} := \text{simplify(evalDG}((r - I* \Sigma)/b1(xi1)/(1+ xi*xi1) * dxil), \text{symbolic});
\]

\[
\text{bet1} := -\frac{I \Sigma - r}{b1(\xi l)} \frac{d\xi l}{(\xi \xi l + 1)}
\]

(3.1.3)

\[
M > \theta3 := \text{evalDG}(du + L* dxi + L1 * dxil);
\]

\[
\theta3 := du + L \frac{d\xi}{\xi} + L1 dxil
\]

(3.1.4)

\[
M > \Sigma := _\alpha*(1 - xi*xil)/(1+ xi*xil);
\]

\[
\Sigma := \frac{\alpha (-\xi \xi l + 1)}{\xi \xi l + 1}
\]

(3.1.5)

\[
M > L := I* _\alpha*xi/(b(xi)*b1(xil)*(1 + xi * xil)^2) + I* _\alpha* \int (xil*diff(ln(b1(xil)), xil)/(b(xi)*b1(xil)*(1+ xi*xil)^2), xil);
\]

\[
L := \frac{1 - \alpha \xi l}{b(\xi) b1(\xi l) (\xi \xi l + 1)^2} + I - \alpha \left( \begin{array}{c}
\xi l \left( \frac{d}{d\xi l} b1(\xi l) \right) \\
\frac{b1(\xi l)^2 b(\xi)}{b1(\xi l)^2 b(\xi) (\xi \xi l + 1)^2} d\xi l
\end{array} \right)
\]

(3.1.6)

\[
M > L1 := -I* _\alpha*xi/(b1(xil)*b(xi)*(1 + xi * xil)^2) - I
\]

```
Here is a general form of the metric considered in [4].

\[g_0 := \text{evalDG}(2*(r^2 + \Sigma^2)/(b(\xi)*b1(\xi1)*(1+ \xi*\xi1)^2) * d\xi \wedge d\xi1 - 2*\theta3 \wedge (dr + 2*\alpha*I/(1 + \xi*\xi1)^2*(\xi*d\xi1 - \xi1 * d\xi) + (b(\xi)*b1(\xi1) - c2*r/(r^2 + \Sigma^2))*\theta3)): \]

Here we specialize to the case \(b(\xi) = \frac{b}{\xi} \). We also fix \(c2=0 \) which means the spacetime is Petrov type III. The metric \(g \) is quite complicated, so we do not display it.

\[ch := \{b(\xi) = b/\xi, b1(\xi1) = b/\xi1, c2=0\}; \]

\[ch := \left[b(\xi) = \frac{b}{\xi}, b1(\xi1) = \frac{b}{\xi1}, c2 = 0 \right] \]

\[M > g := \text{factor}(\text{eval}(g0, ch)):\]

Adapted tetrad, spin coefficients and the integrability conditions.

Our next task is to identify the tangent vector \(k \) to the preferred congruence and construct a tetrad adapted to it. To this end, we begin by constructing a convenient null tetrad which is used in [4].

\[M > \omega_0 := \text{evalDG}((dr + 2*\alpha*I/(1 + \xi*\xi1)^2*(\xi*\xi1 - \xi1 * d\xi) + (b(\xi)*b1(\xi1) - c2*r/(r^2 + \Sigma^2))*\theta3)): \]

\[M > \omega_1 := \text{eval}(\omega_0, ch); \]

\[M > \text{coframe} := \text{factor}(\text{eval}((\omega_0, \theta3, \beta, \beta1), ch)); \]

\[\text{coframe} := \left[\frac{b^2}{\xi \xi l} du + dr - \frac{1}{\xi^2 \xi l (\xi l + 1)^2} \left(1 - \alpha \left(\ln(\xi l + 1) \xi^2 \xi l^2 + \xi l^2 \xi^2 + 2 \ln(\xi l + 1) \xi l + \xi l + \ln(\xi l + 1) + 1 \right) \right) d\xi \right. \]

\[\left. + \frac{1}{\xi \xi l^2 (\xi l + 1)^2} \left(1 - \alpha \left(\ln(\xi l + 1) \xi^2 \xi l^2 + \xi l^2 \xi^2 + 2 \ln(\xi l + 1) + 1 \right) \right) d\xi \right. \]

\[\left. + \frac{1}{\xi \xi l^2 (\xi l + 1)^2} \left(1 - \alpha \left(\ln(\xi l + 1) \xi^2 \xi l^2 + \xi l^2 \xi^2 + 2 \ln(\xi l + 1) + 1 \right) \right) d\xi \right. \]
+ 1) \xi \xi I + \xi \xi I + \ln(\xi \xi I + 1) + 1 \right) \ dxI, \ du

- \frac{1}{\xi b^2 (\xi \xi I + 1)^2} \left(1 \left(\ln(\xi \xi I + 1) \xi^2 \xi I^2 - \xi I^2 \xi^2 + 2 \ln(\xi \xi I + 1) \xi \xi I

+ \xi \xi I + \ln(\xi \xi I + 1) + 1 \right) \right) \ d\xi + \frac{1}{\xi I b^2 (\xi \xi I + 1)^2} \left(1 \left(\ln(\xi \xi I

+ 1) \xi^2 \xi I^2 - \xi I^2 \xi^2 + 2 \ln(\xi \xi I + 1) \xi \xi I + \xi \xi I + \ln(\xi \xi I + 1) + 1 \right) \right) \ d\xi

\ d\xiI, - \frac{1}{(\xi \xi I + 1)^2} \frac{1}{b} \left(\frac{\alpha \xi \xi I + 1 r \xi \xi I + \alpha + 1 r}{\xi \xi I + 1} \right) \ d\xi,

+ \frac{1}{(\xi \xi I + 1)^2} \frac{1}{b} \left(\frac{\alpha \xi \xi I + 1 r \xi \xi I + \alpha + 1 r}{\xi \xi I + 1} \right) \ d\xiI \right]

Here we check that this coframe does define a null tetrad.

\textbf{N} > \texttt{simplify(map(expand,TensorInnerProduct(g, coframe, coframe)), symbolic)};

\begin{bmatrix}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}

(3.2.2)

\textbf{M} > \texttt{Fr := simplify(DualBasis(coframe), symbolic)};

\begin{align*}
\text{Fr} &= \left[D_r, D_u - \frac{b^2}{\xi \xi I} D_r, - \frac{1}{b \xi^2 \left(\alpha \xi \xi I + 1 r \xi \xi I - \alpha + 1 r \right)} \left(\alpha \left(\ln(\xi \xi I

+ 1) \xi^2 \xi I^2 - \xi I^2 \xi^2 + 2 \ln(\xi \xi I + 1) \xi \xi I + \xi \xi I + \ln(\xi \xi I + 1) + 1 \right) \right) D_u

- \frac{2}{\left(\alpha \xi \xi I + 1 r \xi \xi I - \alpha + 1 r \right)} \frac{b}{\xi} \ D_r

+ \frac{1}{\left(\alpha \xi \xi I + 1 r \xi \xi I - \alpha + 1 r \right)} \frac{b}{\xi} \ D_\xi,

\frac{1}{b \xi I^2 \left(1 r \xi \xi I - \alpha \xi \xi I + 1 r + \alpha \right)} \left(\alpha \left(\ln(\xi \xi I + 1) \xi^2 \xi I^2 - \xi I^2 \xi^2

+ 2 \ln(\xi \xi I + 1) \xi \xi I + \xi \xi I + \ln(\xi \xi I + 1) + 1 \right) \right) D_u
\end{align*}
We verify that the frame satisfies the reality conditions of a null tetrad.

\[
M > \text{DGIm}(Fl[1]); \quad 0 \text{ D}_u \\
M > \text{DGIm}(Fl[2]); \quad 0 \text{ D}_u \\
M > \text{DGconjugate}(Fl[3]) \&\text{minus Fl}[4]; \quad 0 \text{ D}_u
\]

Next we compute the Ricci tensor; it is of the form \(R_{ab} = \frac{1}{4} k_a k_b \), where \(k_a \) is the 1-form \(\theta^a \) defined above. This is also the second 1-form in the null coframe.

\[
\begin{align*}
M > \text{Ric1} &:= \text{factor}(\text{RicciTensor}(g)); \\
M > \text{TensorInnerProduct}(g, \text{Ric1}, \text{Ric1}, \text{tensorindices}=[1]); \quad 0 \text{ du} \otimes \text{du} \\
M > \text{R22} &:= \text{op}(\text{factor}(\text{GetComponents}(\text{Ric1}, [\text{coframe}[2] \&\text{coframe}[2]])))); \\
\end{align*}
\]

\[
R_{22} := \frac{2 b^4 (\xi \xi l + 1)^4}{(-\alpha^2 \xi l^2 + r^2 \xi l^2 - 2 \alpha^2 \xi \xi l + 2 r^2 \xi \xi l + \alpha^2 + r^2) \xi^3 \xi^3 l^3}
\]

For this to be a pure radiation spacetime (a necessary condition for null electrovacuum) we must have \(\chi > 0 \).

We now construct the vector field \(k \) tangent to the preferred congruence.

\[
\begin{align*}
M > \Phi &:= \text{simplify}(\sqrt{R22}, \text{symbolic}) \text{ assuming } \chi > 0, \xi^* \xi l > 0, b > 0; \\
\Phi &:= \frac{\sqrt{2 b^2 (\xi \xi l + 1)^2}}{\xi^3 l^2 \sqrt{-\alpha^2 \xi^2 \xi l^2 + r^2 \xi^2 \xi l^2 - 2 \alpha^2 \xi \xi l + 2 r^2 \xi \xi l + \alpha^2 + r^2}} \\
M > Kdn &:= \text{simplify}(\text{evalDG}(2*Phi*coframe[2])) \text{ assuming } \chi > 0, \xi^* \xi l > 0, b > 0;
\end{align*}
\]
\[d\xi = - \frac{2 \sqrt{2} b^2 (\xi \xi l + 1)^2}{\xi^3 l^3 + \sqrt{-\alpha^2 \xi^2 \xi l^2 + r^2 \xi^2 \xi l^2 - 2 \alpha^2 \xi l + 2 r^2 \xi l + \alpha^2 + r^2}} \]

\[du - \left(2 \sqrt{2} \left(\ln(\xi \xi l + 1) \xi^2 \xi l^2 - \xi^2 \xi l^2 + 2 \ln(\xi \xi l + 1) \xi \xi l + \xi \xi l \right) \right) \]

\[\left(\xi^3 l^3 + \sqrt{-\alpha^2 \xi^2 \xi l^2 + r^2 \xi^2 \xi l^2 - 2 \alpha^2 \xi l + 2 r^2 \xi l + \alpha^2 + r^2} \right) \]

\[d\xi l \]

\[D_r \]

We verify that Kup is a principal null direction, as follows from the Goldberg-Sachs theorem.

\[\text{true} \]

We extend Kup into an adapted null tetrad, NT, by boosting the original null frame.
\[D_r, \]
\[
- \frac{1}{4 b^2 (\xi \xi l + 1)^2} \left(\sqrt{2} \xi^2 \xi l^2 \right|^2 - \alpha^2 \xi \xi l^2 + 2 r^2 \xi \xi l + \alpha^2 + r^2 \right) D_u
\]
\[
+ \frac{1}{4 (\xi \xi l + 1)^2} \left(\sqrt{2} \sqrt{\xi} \sqrt{\xi l} \right)
\]
\[
\sqrt{\alpha^2 \xi^2 \xi l^2 + r^2 \xi^2 \xi l^2 - 2 \alpha^2 \xi \xi l + 2 r^2 \xi \xi l + \alpha^2 + r^2} \right) D_r,
\]
\[
- \frac{1}{b \xi^2 (\alpha \xi \xi l + 1 r \xi \xi l - \alpha + 1 r)} \left(\ln(\xi \xi l + 1) \xi^2 \xi l^2 - \xi l^2 \xi^2 + 2 \ln(\xi \xi l + 1) \xi \xi l + \xi \xi l + \ln(\xi \xi l + 1) + 1) \right) D_u
\]
\[
- \frac{2 \alpha \xi l b}{(\alpha \xi \xi l + 1 r \xi \xi l - \alpha + 1 r) \xi} D_r
\]
\[
+ \frac{1 (\xi \xi l + 1)^2 b}{(\alpha \xi \xi l + 1 r \xi \xi l - \alpha + 1 r) \xi} D_{\xi l},
\]
\[
\frac{1}{b \xi l^2 (1 r \xi \xi l - \alpha \xi \xi l + 1 r + \alpha)} \left(\ln(\xi \xi l + 1) \xi^2 \xi l^2 - \xi l^2 \xi^2 + 2 \ln(\xi \xi l + 1) \xi \xi l + \xi \xi l + \ln(\xi \xi l + 1) + 1) \right) D_u
\]
\[
+ \frac{2 \alpha \xi b}{(1 r \xi \xi l - \alpha \xi \xi l + 1 r + \alpha) \xi l} D_r
\]
\[
+ \frac{1 (\xi \xi l + 1)^2 b}{(1 r \xi \xi l - \alpha \xi \xi l + 1 r + \alpha) \xi l} D_{\xi l}.\]

We check that NT has all the required properties.

\[
\text{M > evalDG(NT[1] - convert(Kup, DGvector))};
\]
\[
0 \quad \text{(3.2.17)}
\]
\[
\text{M > evalDG(EinsteinTensor(g) - 1/4*NT[1] &t NT[1])};
\]
Compute the spin coefficients and directional derivatives.

\[
\begin{align*}
M &> NPS01 := \text{map(factor,} \text{simplify(NPSpinCoefficients(NT)))}; \\
M &> NPS1 := \text{simplify(NPS01) assuming } \chi > 0, \xi * \xi_1 > 0, b > 0; \\
M &> NPD1 := \text{NPDirectionalDerivatives(NT)}; \\
\end{align*}
\]

Check that the congruence defined by \(k \) is shear-free, geodesic and parametrized according to (2).

\[
\begin{align*}
M &> \text{NPS1["sigma"]}; \\
M &> \text{NPS1["kappa"]}; \\
M &> \text{factor(simplify(DGRe(NPS1["rho"])) - 2*DGRe(NPS1["epsilon"]))) assuming } \chi > 0, \xi * \xi_1 > 0, b > 0; \\
\end{align*}
\]

Here we compute the twist of the congruence, which is non-vanishing in general.

\[
\begin{align*}
M &> \text{factor(simplify(DGIm(-NPS1["rho"]))) assuming } \chi > 0, \xi * \xi_1 > 0, b > 0; \\
&\left(2 (\xi \xi I + 1) ^3 b^2 \sqrt{2} (\xi \xi I - 1) _\alpha \right) / \\
&\left(\xi^3 / 2 \xi_1 ^3 / 2 \sqrt{_\alpha^2 \xi^2 \xi_1 ^2 + r^2 \xi^2 \xi_1 ^2 - 2 _\alpha^2 \xi \xi I + 2 r^2 \xi \xi I + _\alpha^2 + r^2} \\
&_\alpha ^2 \xi \xi I _\alpha + 1 r) (1 r \xi \xi I - _\alpha \xi \xi I + 1 r + _\alpha) \right) \\
\end{align*}
\]

Therefore this spacetime is an electrovacuum if and only if \(J = 0 \).

\[
\begin{align*}
M &> \text{NullElectrovacuumConditions(NPS1, NPD1)}; \\
\end{align*}
\]
This spacetime is an electrovacuum.

The electromagnetic field.

We now compute the electromagnetic field by solving equations (5) for ϕ. These equations can be put into the following form.

\[
EQ := \text{NullMaxwellEquations}(NPS1, NPD1);
\]

\[
EQ := \begin{cases}
\frac{\partial}{\partial r} \phi(u, r, \xi, \xi I) \\
\frac{\partial}{\partial u} \phi(u, r, \xi, \xi I) \\
\frac{\partial}{\partial \xi} \phi(u, r, \xi, \xi I)
\end{cases}
\]

\[
\xi I = 0, \frac{\partial}{\partial \xi} \phi(u, r, \xi, \xi I) = \left(-\frac{1}{2} \left(-3 \alpha^2 \xi^2 \xi I^2 - 3 r^2 \xi^2 \xi I^2 \right) \\
+ 41 \alpha r \xi \xi I + 6 \alpha^2 \xi I - 6 r^2 \xi I - 3 \alpha^2 - 3 r^2 \right) \bigg/ ((1 r \xi \xi I \\
- \alpha \xi \xi I + 1 r + \alpha) (-\alpha \xi \xi I + 1 r \xi \xi I - \alpha + 1 r) \xi), \frac{\partial}{\partial \xi} \phi(u, r, \xi, \xi I)
\]

\[
\frac{\partial}{\partial u} \phi(u, r, \xi, \xi I) = \left(-\frac{1}{2} \left(3 \alpha^2 \xi^2 \xi I^2 + 3 r^2 \xi^2 \xi I^2 + 41 \alpha r \xi \xi I - 6 \alpha^2 \xi \xi I + 6 r^2 \xi \xi I \\
+ 3 \alpha^2 + 3 r^2 \right) \bigg/ ((-\alpha \xi \xi I + 1 r \xi \xi I - \alpha + 1 r) (1 r \xi \xi I - \alpha \xi \xi I + 1 r \\
+ \alpha) \xi I) \right) \bigg/ ((1 r \xi \xi I \\
- \alpha \xi \xi I + 1 r + \alpha) (-\alpha \xi \xi I + 1 r \xi \xi I - \alpha + 1 r) \xi)
\]

The solution to this system is as follows.

\[
\phi_{\text{sol}} := \text{combine}(\text{simplify}(\text{combine}(\text{pdsolve}(EQ, \{\phi(u, r, \xi, \xi I)\}), \text{symbolic}), \text{symbolic}), \text{symbolic});
\]

\[
\phi_{\text{sol}} := \left\{ \phi(u, r, \xi, \xi I) = -\frac{3 I \ln \left(\frac{-1}{\xi I} \right)}{2} + \arctan \left(\frac{r \left(\xi I + \xi I \right)}{\left(\xi I - 1 \right) \xi I + 1 r} \right) \right\}
\]
To compute the electromagnetic field it is convenient to work with an anholonomic frame, defined as follows.

\[
M \rightarrow \text{DGsetup}([u, r, xi, xil], M); \\
\text{frame name: } M
\]

\[
M > \text{FD} := \text{FrameData}([\text{NT[1]}, \text{NT[2]}, 1/\sqrt{2}*(\text{NT[3]} + \text{NT[4]}), 1/\sqrt{2}/I^*(\text{NT[3]} - \text{NT[4]})], \text{null}): \\
The \text{third leg of this tetrad is the unit vector field } s^a \text{ orthogonal to } k^a, \text{ used in (2).}
\]

\[
M > \text{DGsetup}(\text{FD}): \\
The \text{metric in this frame is the following.}
\]

\[
\text{null} > \eta := \text{evalDG}(-2*\Theta1 \&s \Theta2 + \Theta3 \&t \Theta3 \\
+ \Theta4 \&t \Theta4); \\
\eta := -\Theta1 \otimes \Theta2 - \Theta2 \otimes \Theta1 + \Theta3 \otimes \Theta3 + \Theta4 \otimes \Theta4
\]

The following 2-form, defined in (2), solves the Einstein equations, but not the Maxwell equations.

\[
\text{null} > f := \text{evalDG}(-1/2*\Theta2 \&w \Theta3); \\
f := -\frac{1}{2} \Theta2 \wedge \Theta3
\]

\[
\text{null} > \text{Gnull} := \text{EinsteinTensor}(\eta); \\
\text{null} > \text{Tnull} := \text{EnergyMomentumTensor("Electromagnetic",} \\
\text{eta, f}); \\
\text{null} > \text{factor(evalDG(Gnull - Tnull));} \\
0 \ E1 \otimes \ E1
\]

We now construct from \(f \) and \(\phi \) the 2-form \(F \), according to (3), which solves the Einstein-Maxwell equations.

\[
\text{null} > \text{fd} := \text{HodgeStar}(\eta, f, \text{detmetric=-1}); \\
\text{fd} := -\frac{1}{2} \Theta2 \wedge \Theta4
\]

\[
\text{null} > \text{Cphi} := \text{eval(cos(phi(u, r, xi, xil)), phisol)}; \\
Cphi := \cos \left(-\frac{3}{2} \ln \left(\frac{\xi}{\xi l} \right) + \arctan \left(\frac{r (\xi \xi l + 1)}{(\xi \xi l - 1) _\alpha} \right) + -C1 \right)
\]

\[
\text{null} > \text{Sphi} := \text{eval(sin(phi(u, r, xi, xil)), phisol)}; \\
Sphi := \sin \left(-\frac{3}{2} \ln \left(\frac{\xi}{\xi l} \right) + \arctan \left(\frac{r (\xi \xi l + 1)}{(\xi \xi l - 1) _\alpha} \right) + -C1 \right)
\]

\[
\text{null} > F := \text{evalDG(Cphi*f - Sphi*fd)};
\]
Because $\frac{\xi}{\xi I}$ is a phase, its natural logarithm is pure imaginary, therefore F is real.

We verify the Maxwell equations:

$$null > \text{MatterFieldEquations("Electromagnetic", } \eta, \ F); \quad 0 \ E1, 0 \ \Theta 1 \wedge \Theta 3$$

We verify the Einstein equations:

$$null > \text{evalDG}(Gnull - \text{EnergyMomentumTensor} \ ("Electromagnetic", \ \eta, \ F)); \quad 0 \ E1 \otimes \ E1$$

\section*{Example 2: A pure radiation spacetime}

This example is taken from a paper by Lewandowski and Nurowski [3]. They relate pure radiation spacetimes with a shear-free, null, geodesic congruence to CR geometry, and exhibit all solutions with a minimum of three conformal Killing vector fields. One class of solutions has Petrov type II and a 3-dimensional conformal symmetry group of type VI (in the Bianchi classification of three-dimensional groups), and it is this class of solutions we consider here. We shall see that these pure radiation spacetimes cannot be electrovacua (for any values of the parameters).

\section*{Set-up.}

Initialize the manifold and define various quantities which are used in [3] to construct the spacetime. We put an underscore in front of some of the quantities used in [3] so they don't get confused with Newman-Penrose spin coefficients later on.
NullElectrovacuumConditions := proc(NPS, NPD)

> DGsetup([u, r, x, y], M);

frame name: M

Omega1 := evalDG(1/y*dx + I/y*dy + d/(d+1)*(y^d*du - 1/y*dx));

\(\Omega I := \frac{dy^d}{d + 1} du + \frac{1}{(d + 1) y} dx + \frac{1}{y} dy\)

Omega := evalDG(-2/(d+1)*(y^d*du - 1/y*dx));

\(\Omega := -\frac{2y^d}{d + 1} du + \frac{2}{(d + 1) y} dx\)

_alpha := -I/2*(1-d); _beta := -1/4*d; _theta := -I/4*d; a := I/8; b := 1/4; C := -1/4*I; w := w0*y^(3/4); W := 2*I*a*exp(I*r) + b;

_\alpha := -\frac{1}{2}(1 - d)

_\beta := -\frac{d}{4}

_\theta := -\frac{1}{4}d

a := \frac{1}{8}

b := \frac{1}{4}

C := -\frac{1}{4}

w := w0*y^(3/4)

W := -\frac{e^{Ir}}{4} + \frac{1}{4}

h := -6*a*DGconjugate(a) + _alpha * DGconjugate(_alpha) - \frac{1}{2}*\beta (I*DGconjugate(_alpha)*b - _alpha*DGconjugate(b));

\(h := -\frac{11}{32} + \frac{(1 - d)^2}{4} + \frac{3d}{8}\)

G := G1 + I*G2;

\(G := G1 + I G2\)

G1 := simplify(1/2*(h + 2 *DGRe(a*(DGconjugate(_alpha - I* b))) + 4*C*DGconjugate(C)));

\(G1 := -\frac{1}{64} + \frac{d^2}{8}\)

H := factor(simplify(2*DGRe(G*exp(2*I*r)) + 2*DGRe((2*G - (DGconjugate(_alpha) + I*DGconjugate(b)))*a)*exp(I*r)) + h,
Here we check the reality properties of the coframe: e^i is the conjugate of e^i, e^i and

\[e^4 \text{ are real.} \]

\[
\begin{align*}
\text{M} & > \text{evalDG(DGconjugate(e1) - e2);} & (4.1.13) \\
\text{0} & \\
\text{M} & > \text{DGIm(e3);} & (4.1.14) \\
\text{0 du} & \\
\text{M} & > \text{DGIm(e4);} & (4.1.15) \\
& \\
\end{align*}
\]

This is the dual basis of vector fields.

\[
\begin{align*}
\text{M} & > \text{Frame := simplify(factor(convert(DualBasis(coFrame), exp), symbolic));} \\
Frame & := \begin{bmatrix}
\begin{array}{c}
\cos\left(\frac{r}{2}\right) \frac{y^{-3/4} - d}{2 w0} D_u + \frac{1}{2} \sin\left(\frac{r}{2}\right) \cos\left(\frac{r}{2}\right) e^{\frac{1}{2} r} \\
\frac{y^{1/4}}{2 w0} D_x - \frac{1}{2} y^{1/4} \cos\left(\frac{r}{2}\right) \frac{\cos\left(\frac{r}{2}\right) y^{-3/4} - d}{2 w0} D_u \\
- \frac{1}{2} \sin\left(\frac{r}{2}\right) \cos\left(\frac{r}{2}\right) e^{\frac{1}{2} r} \\
+ \frac{1}{2} y^{1/4} \cos\left(\frac{r}{2}\right) \frac{\cos\left(\frac{r}{2}\right) y^{-3/4} - d}{2 w0} D_u \\
- \frac{1}{y^{3/2} w0^2} \left(\frac{1}{64} \left(-8 I e^{-21r} d^2 - 16 I d^2 - 16 I e^{1r} d^2 - 16 I e^{-1r} d^2 - 4 I e^{1r} + 4 I e^{-1r} - 6 I e^{21r} G2 - 64 e^{-21r} G2 + 128 e^{1r} G2 - 128 e^{-1r} G2 - 8 I e^{21r} d^2 + 8 I d + 4 I e^{1r} d + 4 I e^{-1r} d + 1 e^{21r} + 6 I \right) \\
\end{array}
\end{bmatrix}
\end{align*}
\]
From this frame we can construct a null tetrad which matches the conventions used in DifferentialGeometry. We will use this as an anholonomic frame. The anholonomic vector basis is denoted $\text{NT}= [E1, E2, E3, E4]$ and the dual basis of 1-forms is denoted $[\Theta1, \Theta2, \Theta3, \Theta4]$.

\begin{verbatim}
M > NT := [Frame[4], Frame[3], Frame[1], Frame[2]]:
M > FD := simplify(factor((map(convert,FrameData(NT, null),
 exp))), symbolic):
M > DGsetup(FD);

frame name: null

\end{verbatim} (4.1.17)

This is the spacetime metric expressed in the null anholonomic coframe.

\begin{verbatim}
M > eta := evalDG(-2*Theta1 &s Theta2 + 2*Theta3 &s Theta4);
 \eta := -\Theta1 \otimes \Theta2 - \Theta2 \otimes \Theta1 + \Theta3 \otimes \Theta4 + \Theta4 \otimes \Theta3

\end{verbatim} (4.1.18)

Here we verify the Petrov type. (This computation takes a little time.)

\begin{verbatim}
null > PetrovType([E1, E2, E3, E4], [u = 0, r = 0, x = 0, y
 = 1]);

"II"

\end{verbatim} (4.1.19)

\section*{Adapted tetrad, spin coefficients and the integrability conditions.}

Now we compute the Einstein tensor to verify that this is a pure radiation spacetime with the preferred null vector field k being parallel to $E1$. (This computation takes a little time.)

\begin{verbatim}
null > Ein := EinsteinTensor(eta):
null > Ein := factor(DGsimplify(simplify(convert(Ein, exp),
 symbolic)));

Ein := \frac{d (4 d + 1) (2 d - 1) \cos \left(\frac{r}{2}\right)^6}{32 \, y^3 \, w0^4} \, E1 \otimes E1

\end{verbatim} (4.2.1)

\begin{verbatim}
null > chi := op(DGinfo(Ein, "CoefficientList", [E1 &t E1])
);

\chi := \frac{d (4 d + 1) (2 d - 1) \cos \left(\frac{r}{2}\right)^6}{32 \, y^3 \, w0^4}

\end{verbatim} (4.2.2)

For this to be pure radiation spacetime the function χ must be positive.

The vector field k we use to define the null congruence is given by the following.

\begin{verbatim}
null > Kup := simplify(evalDG(2*sqrt(chi)*E1), symbolic);

\end{verbatim}
We can create a null tetrad adapted to k by applying a suitable \texttt{boost} to the original null frame.

\begin{equation}
\text{null > ANT} := \text{simplify}(\text{NullTetradTransformation}([E1, E2, E3, E4], \text{"boost"}, \text{evalDG}(2*\text{sqrt(chi))), \text{symbolic}}; \\
\quad \text{ANT} := \begin{bmatrix}
\frac{\sqrt{2} \cos \left(\frac{r}{2} \right)^3 \sqrt{4 d + 1} \sqrt{2 d - 1}}{4 y^3 |^2 w0^2} & E1, \\
\frac{2 \sqrt{2} y^3 |^2 w0^2}{\cos \left(\frac{r}{2} \right)^3 \sqrt{4 d + 1} \sqrt{2 d - 1}} & E2, E3, E4
\end{bmatrix}
\end{equation}

We check that this is in fact a null tetrad and that the first leg of this tetrad satisfies $G^{ab} = \frac{1}{4} k^a k^b$.

The spin coefficients and directional derivatives for this adapted tetrad are computed in the following.

\begin{align}
\text{null > TensorInnerProduct(eta, ANT, ANT);} & \begin{bmatrix}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix} \\
\text{null > evalDG(Ein - 1/4*ANT[1] \&t ANT[1]);} & \begin{bmatrix}
0 & E1 \otimes E1
\end{bmatrix}
\end{align}

We verify that the congruence generated by k is geodesic, shear-free and parametrized as in (2):

\begin{align}
\text{null > NPS2 := simplify(map(convert, NPSpinCoefficients (ANT), exp), symbolic);} & \text{null > NPD2 := NPDirectionalDerivatives(ANT);} \\
\text{null > NPS2["kappa"];} & 0 \\
\text{null > NPS2["sigma"];} & 0
\end{align}
null > DGRe(NPS2["rho"] - 2*NPS2["epsilon"]) = 0

(4.2.9)

The twist of the congruence is given by $\omega = -\text{Im}(\rho)$:

$$\text{null} > \text{simplify}(-\text{DGIm}(\text{NPS2}["rho"]))$$

$$\frac{\sqrt{2} \cos\left(\frac{r}{2}\right)^3 \sqrt{d} \sqrt{4d + 1} \sqrt{2d - 1}}{8 y^3 \frac{1}{2} w_0^2}$$

(4.2.10)

The twist is non-vanishing since $\chi > 0$. Therefore, this spacetime is a null electrovacuum if and only if $\mathcal{J} = 0$, with \mathcal{J} defined in (4).

$$\text{null} > \text{IC} := \text{NullElectrovacuumConditions}(\text{NPS2}, \text{NPD2})$$

$$\text{null} > \text{factor(simplify(convert(IC, exp), symbolic))}$$

$$\frac{-\frac{1}{256} d^3 \frac{1}{2} \sqrt{2} \sqrt{4d + 1} \sqrt{2d - 1} (4d - 1) \cos\left(\frac{r}{2}\right)^6}{y^{15} \frac{1}{4} w_0^5}$$

(4.2.11)

This family of spacetimes does not admit a null electrovacuum.

References

Release Notes
- The illustrated commands are all available in Maple 17 and subsequent releases.

Author
C. G. Torre
Department of Physics
Utah State University
August 28, 2013