Utah State University DigitalCommons@USU

Fall Student Research Symposium 2021

Fall Student Research Symposium

12-9-2021

Disambiguation of Large-Scale Educational Network Data for Social Network Analysis

Adam Weaver Utah State University, adamweaver2000@gmail.com

Follow this and additional works at: https://digitalcommons.usu.edu/fsrs2021

Part of the Engineering Education Commons

Recommended Citation

Weaver, Adam, "Disambiguation of Large-Scale Educational Network Data for Social Network Analysis" (2021). *Fall Student Research Symposium 2021*. 6. https://digitalcommons.usu.edu/fsrs2021/6

This Book is brought to you for free and open access by the Fall Student Research Symposium at DigitalCommons@USU. It has been accepted for inclusion in Fall Student Research Symposium 2021 by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Introduction

Research shows that under certain conditions, social interactions relate to student performance and retention. As a result, researchers frequently deploy Social Network Analysis (SNA) methods for identifying and incentivizing positive social conditions. SNA is a research method that quantifies connections between individuals that form a network according to traits of interest. Researchers mathematically represent connections using an *adjacency matrix* (Figure 1), and then analyze this data using contrast methods, or by visualizing them through sociograms (Figure 1). Unfortunately, genuine educational networks often exhibit ambiguity (i.e., names with not-obvious connections), and this steers many researchers away from studying these types of networks, even though they are most authentic to the educational context. To address this issue, this presentation describes our current work to disambiguate large scale social network data.

Γ					
	Name	Nickname	Peer1	Peer2	Peer3
	John Deer	None	Alex Sociogram	Bob Survey	
	Bob Survey	Bobby	John Deere	Gerry Network	Hannah Nodal
	Earl Excel	None	J.D	Matt Response	Rick Social
	Gerry Network	Jerry	Lindsey Analysis	J-Dawg	Bob
	Rick Social	None	Matthew Response	Lindsey Analysis	John, D
	Lindsey Analysis	None	Gerry Network	John	Alex Sociogram
	Hannah Nodal	None	Jon Deer	Earl Excel	
	Jared Interaction	None	Lindsey Analysis	John, Deer	
	Alex Sociogram	None	Deer, John	Bob Survey	
	Matthew Response	Matt	John, D		

Node/ Node	1	2	3	4	5	6	7	8	9	B	
1	0	1	0	0	0	0	0	0	1	0	
2	1	0	0	1	0	0	1	0	0	0	-
3	1	0	0	0	1	0	0	0	0	1	
4	1	1	0	0	0	1	0	0	0	0	-
5	1	0	0	1	0	1	0	0	0	1	
6	1	0	0	1	0	0	0	0	1	0	-
7	1	0	1	0	0	0	0	0	0	0	-
8	1	0	0	0	0	1	0	0	0	0	
9	1	1	0	0	0	0	0	0	0	0	
10	1	0	0	0	0	0	0	0	0	0	

Figure 1. Survey responses are downloaded into an excel spreadsheet (A). Each person in the network is assigned a "node", and ties between nodes are consolidated into an **adjacency matrix (B).** The adjacency matrix is analyzed statistically and used to create **sociograms (C)** for visual analysis.

Methods

We organized the overarching network development task into discrete stages to filter responses according to unique name-ambiguity circumstances. To complete these stages, we relied on a hybrid blend of automation rooted in Excel and python, with following manual substitution.

This material is based upon work supported by the mentor Jack Elliott's National Science Foundation Graduate Research Fellowship under Grant No. DGE1745048. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Results

UtahStateUniversity

Adam Weaver Utah State University Department of Engineering Education adamweaver2000@gmail.com

