Utah State University DigitalCommons@USU

Problems

Intermediate Modern Physics

1-8-2018

Physics 3710 - Problem Set #7

David Peak Utah State University, david.peak@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/

intermediate_modernphysics_problems

Part of the Physics Commons

Recommended Citation

Peak, David, "Physics 3710 – Problem Set #7" (2018). *Problems*. Paper 7. https://digitalcommons.usu.edu/intermediate_modernphysics_problems/7

This Course is brought to you for free and open access by the Intermediate Modern Physics at DigitalCommons@USU. It has been accepted for inclusion in Problems by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Physics 3710 – Problem Set #7

Newtonian gravity

1. The orbital period of Moon about Earth is about 27.3 d, with a radius $r = 3.85 \times 10^8$ m.

(a) Calculate the *centripetal acceleration* of Moon (the orbit is almost circular).

(b) Compare that with the *gravitational field strength* of Earth at the center of Moon, given that $M_{earth} = 6 \times 10^{24}$ kg.

(c) Any comment?

2. Suppose a shaft could be drilled from the North Pole to the South Pole through the center of Earth. Use the expression $g_{inside}(x) = g_E x / R_E$ (page 3, GR1) for the gravitational field strength in the shaft at a distance x from the center of Earth. (g_E = surface gravitational field strength = 9.8 m/s², R_E = radius = 6.4x10⁶ m)

(a) Calculate the time for the object to go from one pole to the other. (Hint: the motion is simple harmonic: $a = -\omega^2 x$.)

(b) The orbital period of a satellite in low earth orbit is $T_{LEO} = 2\pi \sqrt{\frac{R_E^3}{GM_E}}$. What is the relationship of

the period of the oscillator found in (a) to T_{LEO} ?

3. A pencil in the International Space Station (ISS) is displaced 1 cm from the center of the Station in the "normal" direction (s_n) as described GR2, p1. It subsequently moves relative to the center

according to the oscillator equation $\frac{d^2s_n}{dt^2} = -\frac{GM_E}{r^3}s_n$. The pencil travels 4 cm in one complete oscillation. How far does the ISS travel in the same amount of time? Assume the ISS is in a circular orbit of radius equal to 6.8×10^6 m. (Hint: the only difference between the LEO period and that of the ISS is the radii of the orbits.)