Physics 3710 – Problem Set #7

David Peak
Utah State University, david.peak@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/
intermediate_modernphysics_problems

Part of the Physics Commons

Recommended Citation
https://digitalcommons.usu.edu/intermediate_modernphysics_problems/7

This Course is brought to you for free and open access by the Intermediate Modern Physics at DigitalCommons@USU. It has been accepted for inclusion in Problems by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
1. The orbital period of Moon about Earth is about 27.3 d, with a radius \(r = 3.85 \times 10^8 \) m.

(a) Calculate the centripetal acceleration of Moon (the orbit is almost circular).
(b) Compare that with the gravitational field strength of Earth at the center of Moon, given that \(M_{\text{Earth}} = 6 \times 10^{24} \) kg.
(c) Any comment?

2. Suppose a shaft could be drilled from the North Pole to the South Pole through the center of Earth. Use the expression \(g_{\text{inside}}(x) = \frac{g_E x}{R_E} \) (page 3, GR1) for the gravitational field strength in the shaft at a distance \(x \) from the center of Earth. (\(g_E \) = surface gravitational field strength = 9.8 m/s\(^2\), \(R_E \) = radius = 6.4\times 10^6 m)

(a) Calculate the time for the object to go from one pole to the other. (Hint: the motion is simple harmonic: \(a = -\omega^2 x \).)
(b) The orbital period of a satellite in low earth orbit is \(T_{\text{LEO}} = \frac{2\pi}{\sqrt{\frac{R_E^3}{GM_E}}} \). What is the relationship of the period of the oscillator found in (a) to \(T_{\text{LEO}} \)?

3. A pencil in the International Space Station (ISS) is displaced 1 cm from the center of the Station in the “normal” direction (\(s_n \)) as described GR2, p1. It subsequently moves relative to the center according to the oscillator equation \(\frac{d^2 s_n}{dt^2} = -\frac{GM_E}{r^3} s_n \). The pencil travels 4 cm in one complete oscillation. How far does the ISS travel in the same amount of time? Assume the ISS is in a circular orbit of radius equal to 6.8\times10^6 m. (Hint: the only difference between the LEO period and that of the ISS is the radii of the orbits.)