Extensions of the Walden-Wintle Model of Charge Transport in Disordered Materials for Charge Injection with Electron Beams

JR Dennison1, Greg Wilson1, Alec Sim2 and Jodie Corbridge Gillespie1

1 Physics Department, Utah State University
2 Physics Department, Irvine Valley College

Abstract

We have extended the Walden-Wintle model for charge transport through highly disordered insulating materials to include charge injection with a charged particle beam. The original model is applicable to charge injection in a dielectric material from a pair of electrodes in a parallel plate geometry. It provides a versatile approach to predict the time-dependant current at a rear grounded electrode, as the injection current density evolves over time with the development of a space charge barrier near the injection electrode. This includes standard Fowler-Nordheim, Schottky injection, space charge limited injection, and various tunneling mechanisms. Our new model modifies the approach to include electrode-less charge injection via a charged particle beam, along with concomitant effects for the injection current, surface voltage, and electron emission as a charge is built up in the insulator. The approach is equally valid for near-surface injection and bulk injection for non-penetrating radiation and for penetrating radiation. The results are based on our dynamic emission model for yields dependant on accumulating charge in both the positive and negative charging regimes.

Work supported through funds from NASA GSFC and a Senior Fellowship from the National Research Council and AFRL.