First Year Investigation of Gravity Waves and Temperature Variability over the Andes

Jonathan Pugmire
Utah State University

Neal R. Criddle
Utah State University

Michael J. Taylor
Utah State University

Dominique Pautet
Utah State University

Yucheng Zhao
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/graduate_presentations

Part of the Atmospheric Sciences Commons, and the Physics Commons

Recommended Citation

https://digitalcommons.usu.edu/graduate_presentations/8
First Year Investigation of Gravity Waves and Temperature Variability over the Andes

Jonathan Pugmire
N. Criddle, M.J. Taylor, P.-D. Pautet, Y. Zhao
Center for Atmospheric and Space Sciences
Utah State University
Overview

- Instrumentation
- USU Mesospheric Temperature Mapper
- Andes Lidar Observatory, Cerro Pachon, Chile
- Example OH Intensity and Temperature Data
- Seasonal Result
- Seasonal Comparisons
- Summary
Multi-Instrument Measurements of the MLT Region

University of Illinois
- Na Lidar: for winds and temperature in the Mesosphere and Lower Thermosphere (MLT) region (80-100 km)
- All Sky Imager: for MLT gravity wave structure
- Multi Channel Photometer: Long-period Gravity Waves in different emissions
- Meteor Wind Radar: background wind measurements in MLT region

The Aerospace Corporation
- Aerospace Infrared Camera: small scale waves and wave breaking

Utah State University
- Mesospheric Temperature Mapper: Intensity and temperature maps of gravity waves and mesospheric temperature variability in OH and O2 emissions.

Andes Program (2009-to date): Same instrument suite employed to investigate mesospheric dynamics over Andes Mountains and effects of orography.
Mesospheric Temperature Mapper

- Sensitive bare CCD Imager developed to measure mesospheric temperature variability using airglow emissions.

- Field of view ~90°, (180 x 180 km at 90 km altitude).

- Sequential observations (60 sec. exposure) of:
 - NIR OH (6, 2) Band ~ 87 km
 - O₂(0,1) A Band ~ 94 km
 - Background (~857.5 nm)

- Cycle time: ~ 3 min per OH/O₂ temperature determination. (Precision~2K)
Example of MTM Measurements

- From Maui-MALT Program

Nocturnal Temp Variability

Gravity Wave Images

Seasonal Temperature Measurements
Andes LIDAR Observatory (ALO)

- 30.2°S, 70.7°W
- Cerro Pachon Telescopes
- Camera installed August 2009
- 14 months of data to date
- Data analysis focusing on OH temperatures and waves detection
Example OH and O$_2$ Zenith Data

ALO, Chile

UT Day 263 2009 (LT Sep 19 - 20 δt = -4 hrs)

- P12A
- 866A
- BG
- ActDark
- P14A
- 868A

Intensity (counts)

UT Time
Example OH Analysis

ALO, Chile
UT Day 263 2009 (LT Sep 19 - 20 δt = -3 hrs)

Band Intensity (counts)

UT Time (hr)

OH Band Int $\bar{v} = 96719.16 \pm 970.93$
Std.dev. = 9413.56

OH Temp Stab $\bar{v} = 195.5 \pm 0.54$
Std.dev. = 5.2

ALO, Chile
UT Day 263 2009 (LT Sep 19 - 20 δt = -4 hrs)

Temperature (K)

UT Time (hr)
Example of Short-period Wave Measurements

OH Temperature and Band intensity in phase

Period ~50 min
Example of Large Amplitude OH Temperature Perturbation

Jan 12-13, 2010

\[\Delta T \sim 40 \text{K (peak to trough)} \]

Phase shift: Temperature leading intensity by \(~2\text{hrs}\)
Seasonal OH Temperature and Intensity Results

OH Rotational Temperature

255 Nights of data

OH Intensity
TIMED-SABER Comparisons

Average difference between SABER and ALO < 1K

Cerro Pachon, Chile, Sep.25, 2009

Satellite Passover
Seasonal Comparison with El Leoncito

OH (6,2) Band at ~87 km.

Site separation ~220 km

Courtesy J. Sheer
Seasonal Comparison of Maui-MALT and Cerro Pachon

Maui MALT 2003
Mean = 200.4 ± 6.9 K

Cerro Pachon 2009-2010
Mean = 202.9 ± 9.4 K

More variability

Spring
Autumn
Summer
Investigating AO and SAO Signatures
Maui-MALT (2202-2004)

\[fit = A + B \cos\left(\frac{2\pi x}{182} + \phi_1\right) \]
\[+ C \cos\left(\frac{2\pi x}{365} + \phi_2\right) \]

Mean: 196.7 K
SAO: 3.6 K AO: 3.3 K

Zhao et al., JASTP, 2007
Seasonal Variability at Cerro Pachon

- August 2009 to August 2010

Mean: 204.0 K
SAO: 3.6 K
AO: 6.9 K
QAO: 5.3 K?

Period = 85 ± 2 days
Amplitude: 3.6 ± 0.3 K

Mean: 204.0 K
SAO: 3.6 K
AO: 6.9 K
QAO: 5.3 K?
Early Results

- AO signature (6.9 K), ~2 times amplitude of Maui
- SAO similar signature (3.6K) at both sites
- Persistent ~85-day oscillation in T and I (Amplitude 5.3 K) (QAO?) (similar variability observed at El Leoncito, Argentina, 220 km away)
- Coordinated analysis on prominent events continuing
Summary

• 255 Nights of OH temperature data acquired to date exhibit unexpected short-term oscillations that persist during the seasons.

• Similar variability appears to be present in OH spectrometer data from El Leoncito, Argentina.

• Nocturnal variations are highly variable and at times can exhibit large amplitudes, exceeding 40 K during the course of a night observations. Other nights show evidence for large amplitude gravity waves in intensity and temperature data with periods of ~1-2 hours.

• MTM image data also reveal a wealth of short-period (< 1 hour) gravity waves as well as an abundance of ripple instability structures indicating that the mesosphere over the Andes mountain region is very dynamic.
Future Work

- Compare MTM data with Na Lidar temperature measurements and El Leoncito, Argentina.
- Compare with SABER temperatures from the TIMED satellite as we conducted during the Maui-MALT program.
- Comparative study of OH and O2 temperature data to investigate phase relationships of wave events and to study wave growth and/or dissipation.
- Ongoing seasonal measurements will be used to build a clearer understanding of the temperature variability and its intra-annual variability.
- Mountain Waves
Thank You

- Mike Taylor
- Utah State University
- PASI/NSF

QUESTIONS??