Bioavailable Silicon: Release Rate from Additives & Substrates

Mackenzie G. Dey
Utah State University, mackenzie.jones@usu.edu

Jennifer Boldt
Utah State University

Bruce Bugbee
Utah State University, bruce.bugbee@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/cpl_hydroponics

Part of the Life Sciences Commons

Recommended Citation

This Article is brought to you for free and open access by the Research at DigitalCommons@USU. It has been accepted for inclusion in Hydroponics/Soilless Media by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
Introduction

Liquid fertilization is often used to supply silicon (Si) (Boldt & Altland, 2021), but Si is minimally soluble. Media components that provide a steady release of Si are valuable.

There are many options for Si media amendments, but Si release rate is not well characterized.

Our objective was to quantify Si release from media components to achieve a steady-state Si release as mono-silicic acid (H₄SiO₄) over time.

Methods

Release in water
- 50 mL media or additive added to 500 mL DI water.
- Sample filtered and diluted; DI water replaced weekly.
- Heteropoly blue method to measure mono-silicic acid in solution (Eaton et al., 2005). Comparison with ICP-OES was 96.5 +/- 3% STDEV.

Release in media
- Flushed twice weekly
- Leachate was filtered, and diluted for colorimetric measurement.
- Leachate pH measured.

Results

<table>
<thead>
<tr>
<th>Substrates or additives</th>
<th>Avg. mmol Si per liter</th>
<th>per kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vansil® W-10 wollastonite:</td>
<td>4.23</td>
<td>5.26</td>
</tr>
<tr>
<td>Levy Plant Tuff® rep 1:</td>
<td>1.48</td>
<td>0.75</td>
</tr>
<tr>
<td>Levy Plant Tuff® rep 2:</td>
<td>1.09</td>
<td>0.57</td>
</tr>
<tr>
<td>Rice hulls:</td>
<td>0.21</td>
<td>1.53</td>
</tr>
<tr>
<td>NaturalDE® diatomaceous earth:</td>
<td>0.31</td>
<td>0.86</td>
</tr>
<tr>
<td>Axis® diatomaceous earth:</td>
<td>0.26</td>
<td>0.59</td>
</tr>
<tr>
<td>Vermiculite:</td>
<td>0.06</td>
<td>0.41</td>
</tr>
<tr>
<td>Sandstix® play sand:</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>Ottawa sand:</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>BDH® sand (30-40 mesh):</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Coconut coir:</td>
<td>0.05</td>
<td>0.39</td>
</tr>
<tr>
<td>Perlite:</td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>Peat:</td>
<td>0.01</td>
<td>0.08</td>
</tr>
</tbody>
</table>

- Levy Plant Tuff® started releasing rapidly after 20 to 40 days, but caused an alkaline pH (~10.3; data not presented).

Release in media
- 1 g wollastonite per liter peat had a release rate 4x greater than 12% rice hulls, but decreased over time.
- Wollastonite (CaSiO₃) dissolution increases pH as it reacts with water:
 \[\text{CaSiO}_3 + 3\text{H}_2\text{O} \rightarrow \text{Ca}^{2+} + \text{H}_2\text{SiO}_4 + 2\text{OH}^- \]
- It is unknown why the pH of peat and coconut coir-based media with wollastonite did not increase over time.
- Analysis of basil and sunflower grown for 6 weeks with 1.17g wollastonite per liter of media indicated no biologically important increases in leaf concentration of nine heavy metals.

Conclusions

- Rice hulls steadily released Si in both water and media.
- Wollastonite had the highest release rate, and caused an increase in media pH in the first week.
- Peat, coconut coir, perlite, and vermiculite minimally released Si.
- Diatomaceous earth products are expensive and release similarly to rice hulls.
- Levy PlantTuff® had an inconsistent release rate.

Acknowledgements

This work was funded by NASA (grant number: NNX17AI31G) and Utah State University. We would like to thank the Crop Physiology Laboratory for the support. Please email mackenzie.jones@usu.edu with questions.