
of treatment (Fig. 11). However, BSC cultures treated with
10 mM Met, 8 mM Orn, 2 mM Put, 1.5 mM Spd, or 0.5 mM
Spe resulted in no change (P � 0.05) in abundance of Mapk
when compared with control cultures (Fig. 11).

4. Discussion

Despite roughly 90% of beef on feed receiving some form
of anabolic implant during their lifetime [20], over 50% of

consumers are concerned with exogenous hormones being
used in beef production [34]. Implants cannot currently be
removed from the beef industry without negatively
impacting the economic and environmental sustainability
of the industry [21,34]. Determining the molecular mech-
anism through which TBA improves the efficiency of skel-
etal muscle growth of beef cattle is imperative to
developing improved, more efficient, consumer-accepted
strategies to improve beef production, as the molecular
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Fig. 8. Relative mRNA abundance of Amd1 from primary bovine satellite cells cultures after treatment with 10 nM trenbolone acetate (TBA), 10 mM methionine
(Met), 8 mM ornithine (Orn), 2 mM putrescine (Put), 1.5 mM spermidine (Spd), or 0.5 mM spermine (Spe). Cells were plated as described in the Materials and
Methods and after 72 h in culture, medium was removed, cultures were rinsed with DMEM and provided new growth media (DMEM þ10% fetal bovine serum
[FBS]). Cultures were grown to 75% confluency and treated with DMEM/1% FBS and/or 10 nM TBA, 10 mM Met, 8 mM Orn, 2 mM Put, 1.5 mM Spd, or 0.5 mM Spe.
Abundance was measured 1, 12, and 24 h after treatment as described in the Materials and Methods. Bars with different letter designations are significantly
different from each other (P < 0.05) within each time point. Data represent relative abundance compared with the 1% FBS control and are presented as LS mean �
SEM from 9 separate assays utilizing BSC isolated from at least 3 different animals.
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mechanism through which TBA operates is currently un-
known [22]. Previous research demonstrates that testos-
terone may influence the polyamine biosynthetic pathway
to augment growth [35–38]. A better understanding of the
relationship between TBA, polyamines, and the polyamines
biosynthetic pathway is necessary as polyamines are

naturally occurring amino acid derivatives that increase cell
proliferation [9,39,40]. If TBA increases cell proliferation by
augmenting the polyamine biosynthetic pathway, then
polyamines may be able to be used as an alternative means
to improve growth of feedlot cattle. The research presented
here investigates the interactions that TBA has with the
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polyamine biosynthesis pathway to improve skeletal
muscle growth through proliferation of BSC and charac-
terize abundance of mRNA related to the polyamine
biosynthesis pathway, activation of satellite cells, and
proliferation over time of BSC cultures which were treated
with TBA, polyamines, or selected amino acids known to
function as polyamine precursors.

Polyamines are small, positively charged ions [8,11], that
are produced from amino acid precursors by the amino acid
being decarboxylated [10,11]. Polyamines can come from
both the diet, as they are orally active [10–12], and from
endogenous production in tissues through the polyamine
biosynthesis pathway (Fig. 1) [8,10]. The polyamine
biosynthesis pathway has 2 rate-limiting steps associated
with the enzymes Odc and Amd1 (Fig. 1). The polyamine
biosynthesis pathway produces Put, Spd, and Spewhich are
important regulators of cellular growth and differentiation
[8–11]. In the present study, we observed that treatment of
primary BSC cultures with optimal concentrations of
polyamines or their amino acid precursors increased pro-
liferation rates when compared with control cultures. To
the knowledge of the authors, this is the first report of
polyamines increasing proliferation rates in primary BSC
cultures. The increase in proliferation suggests that poly-
amines do play a role in increasing skeletal muscle hyper-
trophy, which aligns with research showing that polyamine
requirements are higher during times of extensive growth
[9,12,14]. It has been well established that polyamines play
an important role in cell proliferation. In fact, one of the
first events that occur in proliferating cells is the induction
of polyamine biosynthesis, which precedes both nucleic
acid and protein synthesis [41]. However, it is important to
know that optimal concentrations of polyamines must be
used to have a positive impact on cell growth [42]. Research
conducted in mouse mammary carcinoma FM3A cells and
rat brain tumor cells demonstrates that decreasing the level
of polyamines significantly inhibits cell growth [43,44].
Furthermore, several studies have found that a common
feature of the effects of various growth factors and hor-
mones on muscle cell proliferation and differentiation ap-
pears to be activation of the polyamine biosynthesis
pathway [45,46].

Treatment of primary BSC cultures with TBA increases
proliferation and protein synthesis rates and decreases
protein degradation rates [22,24,27,28,47,48]. Similarly, in
the present study, it was demonstrated that treatment of
BSC with 10 nM TBA increased proliferation rate. Emerging
research demonstrates that testosterone is involved in the
polyamine biosynthetic pathway by modulating the enzy-
matic activities of Odc and Amd1 [46]. When mice are
castrated, they show a decrease in Odc activity, as well as a
decrease in plasma levels of Put, Spd, and Spe [19]. When
these mice are subsequently supplemented with testos-
terone, Odc activity in the skeletal muscle and concentra-
tion of polyamines in the blood increase; indicating that
testosterone alters polyamine concentrations and biosyn-
thesis [19]. Testosterone has also been shown to stimulate
Odc and Amd1 expression in the seminal vesicles of cas-
trated rats [37]. When the androgen receptor is knocked
out in mice, the resulting mice have decreased muscle
mass, and decreased expression of Odc and Amd1 [14],

suggesting androgens play a role in the polyamine
biosynthesis pathway. In addition, previous research
demonstrates that rates exposed to resistance or endurance
exercise increases endogenous testosterone production
and activity of Odc and Amd1 in the skeletal muscle [49].

In the present study, Orn and Met increased abundance
of Odc,whereas Spe and Spd increased abundance of Amd1.
This is significant as these are the 2 rate-limiting enzymes
in the polyamine biosynthesis pathway. To the best of our
knowledge, this is the first study in BSC to demonstrate the
impacts of Orn, Met, Spe, and Spe on abundance of Odc and
Amd1. However, TBA did not alter abundance of either rate-
limiting step of the polyamine biosynthesis pathway. The
results of this research suggest that TBA does not improve
growth of skeletal muscle by altering abundance of genes
that are known to be involved in the polyamine biosyn-
thesis pathway at the time points that were tested. In the
future, it could be beneficial to analyze abundance of genes
involved in the polyamine biosynthesis pathway at addi-
tional time points, especially as Odc is known to have a
rapid turnover rate, [10] which could perhaps explain some
of the differences. Future research also needs to analyze
activity of Odc and Amd1 in primary BSC cultures. In addi-
tion, this study utilized TBA, rather than testosterone.
Trenbolone acetate has a relative androgenic and anabolic
activity of 3–5 and 5–8 times higher, respectively, when
compared with testosterone and TBA does not get aroma-
tized into estrogen in the body the way that testosterone
can [50]. Previous research has demonstrated that estrogen
regulates ornithine decarboxylase activity in several
different estradiol responsive tissues/cells [51]. However,
other studies demonstrate that testosterone and the
androgen receptor are involved in regulation of Odc and
thus, the polyamine biosynthesis pathway [52,53]. As such,
additional research is needed to determine whether TBA is
involved in the regulation of Odc or Amd1 in BSC.

The present study also analyzed the effects of treating
cells with TBA, polyamine precursors or polyamines on
expression of genes involved in activation of satellite cells.
Activation of satellite cells is closely regulated, as there are
numerous states that satellite cells can be in ranging from
quiescence, proliferation, continuity of the cell cycle, to
differentiation [6]. Satellite cells also need to be able to
maintain a reserve pool to allow for self-renewal of the
satellite cell populations [5,6]. Expression of Pax7 is
involved in satellite cell activation [54–56], and Pax7-pos-
itive satellite cells divide in an asymmetric way for both
self-renewal and production of a Pax7þ/Myf5þ daughter
cell. TheMyf5 daughter cell then becomes aMyf5þ/MyoDþ
muscle progenitor cell that are capable of undergoing the
differentiation process and subsequently fusing with an
existing myotube to support hypertrophy of skeletal mus-
cle [5]. In the present study, Met was the only treatment
that increased expression of Pax7. In future studies, it would
be interesting to determine whether Myf5 expression is
also increased by Met, as proliferation rates of BSC were
increased when treated with polyamines, suggesting
polyamines do play a role in skeletal muscle hypertrophy.
Previous research in both C2C12 and L6 myoblast cells
demonstrates that depletion of polyamines inhibits for-
mation of myotubes and myofibers [57,58]. Recent research
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has found that there is a decreased ratio of Pax7:Myf5 in
older animals [5], and as an animal approaches maturity,
most of remaining satellite cells become quiescent and do
not proliferate or differentiate unless stimulated to do so by
injury or exercise [7]. The BSC used in this study were
isolated from mature steers, which possibly could result in
more satellite cells being in a quiescent state, resulting in
TBA not having as much of an effect on expression of Pax7.
In the future, it could be beneficial to repeat the study in
younger steers to see if there is an age interaction of the
dependent variables, which is a limitation of the present
study. Additional research needs to be conducted to
determine the role that polyamines have in activation of
muscle satellite cells.

Sprouty1 is responsible for the self-renewal of quiescent
Pax7 satellite cells [59], while a general marker of cell
proliferation, including satellite cells, isMapk [56]. Sprouty1
is required for the proliferating satellite cells to return to a
quiescent state, to allow for the Pax7þ satellite cells to
renew [60], thus an increase of Spry expression indicates a
decrease in proliferating satellite cells. Therefore, Spry
expression and Mapk expression should be inversely
related in a pure population of cells; however, satellite cells
are a heterogenic population of cells. This correlates to the
results of the present research, as TBA caused increased
expression ofMapk 1 h and 24 h after treatment, while Spry
expression was increased 12 h after treatment by TBA. This
suggests that the BSC were in a proliferative state 1 h after
treatment, but by 12 h after treatment, the satellite cells
entered a quiescent state to allow for the cells to renew. By
24 h after treatment, the cells were once again able to enter
a proliferative phase in response to TBA. A thorough search
of relevant research suggests that no previous research has
analyzed expression of Spry1 in satellite cells after treat-
ment with androgens or polyamines. Further research
needs to be completed to better understand how andro-
gens and polyamines impacts proliferation and self-
renewal of satellite cells.

To the best of our knowledge, this is the first study that
has analyzed the effects of TBA in the polyamine biosyn-
thetic pathway and the resulting effects on proliferation of
primary BSC. The overall findings of this research suggest
that polyamines increase proliferation rates of BSC, which
in turn helps increase skeletal muscle hypertrophy; and
that the involvement of TBA in the polyamine biosynthesis
pathway remains unclear, as mRNA abundance of enzymes
involved in the polyamine biosynthetic pathway were not
altered. This research also establishes the concentrations of
polyamines required to enhance proliferation in primary
BSC cultures. Additional work is still needed to determine
the mechanism by which polyamines impact proliferation
and whether TBA is involved in this process, in hopes of
understanding how implants increase skeletal muscle
growth to lead to the development of more efficient
and consumer accepted strategies to improve beef
production.
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