Charge Transport and Electron Emission of Disordered Materials: Extensions of the Walden-Wintle Model for Charge Injection with Electron Beams

JR Dennison
Utah State University

Alec Sim
Utah State University & Irving Valley College

Gregory Wilson
Utah State University

Jodie C. Gillespie
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Physics Commons

Recommended Citation
https://digitalcommons.usu.edu/mp_presentations/12
Charge Transport and Electron Emission of Disordered Materials: Extensions of the Walden-Wintle Model for Charge Injection with Electron Beams

JR Dennison, ¹ Alec Sim, ² Greg Wilson, ¹, ³ and Jodie Corbridge Gillespie ¹

¹ Physics Department, Utah State University
² Physics Department, Irvine Valley College
³ Department of Physics, Montana State University

Abstract

We have extended the Walden-Wintle model for charge injection and transport through highly disordered insulating materials to include charge injection with a charged particle beam. The original model is applicable to charge injection in a dielectric material from a pair of electrodes in a parallel plate geometry. It provides a versatile approach to predict the time-dependent current at a rear grounded electrode, as the injection current density evolves over time with the development of a space charge barrier near the injection electrode. The Walden-Wintle model has been applied to many standard cases including Fowler-Nordheim injection, Schottky injection, space charge limited injection, and various tunneling mechanisms. Our new model modifies the approach to include electrode-less charge injection via a charged particle beam, along with concomitant effects for the injection current, surface voltage, and electron emission as a charge is built up in the insulator. The approach is equally valid for near-surface injection and for bulk injection of both non-penetrating and penetrating radiation. The results are based on our dynamic emission model for yields dependent on accumulating charge in both the positive and negative charging regimes.

Work supported through funds from NASA GSFC and a Senior Fellowship from the National Research Council and AFRL.