Utah State University DigitalCommons@USU

Problems

Intermediate Modern Physics

1-8-2018

Physics 3710 - Problem Set #13

David Peak Utah State University, david.peak@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/

intermediate_modernphysics_problems

Part of the Physics Commons

Recommended Citation

Peak, David, "Physics 3710 – Problem Set #13" (2018). *Problems*. Paper 13. https://digitalcommons.usu.edu/intermediate_modernphysics_problems/13

This Course is brought to you for free and open access by the Intermediate Modern Physics at DigitalCommons@USU. It has been accepted for inclusion in Problems by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Physics 3710 – Problem Set #13

Some weak interaction stuff

Questions 1-4 refer to the diagram at the right. In it, a particle p_1 absorbs a particle X and transforms into a particle p_2 . Time increases vertically.

1. Suppose p_1 is a *charged lept*on and p_2 is a *neutrino* in the same lepton family. What must *X* be?

2. Suppose p_1 is a *charged anti-lepton* and p_2 is an *anti-neutrino* in the same lepton family. What must *X* be?

3. Suppose $p_1 = p_2$ is the same *neutrino*. What must *X* be?

4. Suppose $p_1 = p_2$ is the same *charged lepton*. What *might* X be? (Careful.)

Questions 5-8 refer to the diagram at the right, which shows the decay of a lepton l^- . Refer to the masses in the tables in notes SM1. Remember, a virtual particle does not have to have the same mass as the corresponding real particle.

5. Suppose l^- is an electron. What must p_1 and p_2 be? (Careful.)

6. Suppose l^{-} is an muon. What must p_1 and p_2 be?

7. Suppose l^{-} is an tau lepton. What *leptons* might p_1 and p_2 be?

8. The tau lepton can sometimes decay into *quarks*, the most likely ones being the lightest. What would p_1 and p_2 be in that case? (Note that the two quarks so produced are not free; they immediately exchange gluons forming a pion, which is much heavier than the two quarks. The muon doesn't decay into quarks because it isn't sufficiently heavy.)

