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Minimizing Induced Drag with Weight Distribution, Lift
Distribution, Wingspan, and Wing-Structure Weight

W. F. Phillips,” D. F. Hunsaker,” and J. D. Taylor!
Utah State University, Logan, Utah 84322-4130

Because the wing-structure weight required to support the critical wing section bending
moments is a function of wingspan, net weight, weight distribution, and lift distribution,
there exists an optimum wingspan and wing-structure weight for any fixed net weight,
weight distribution, and lift distribution, which minimizes the induced drag in steady level
flight. Analytic solutions for the optimum wingspan and wing-structure weight are presented
for rectangular wings with four different sets of design constraints. These design constraints
are fixed lift distribution and net weight combined with 1) fixed maximum stress and wing
loading, 2) fixed maximum deflection and wing loading, 3) fixed maximum stress and stall
speed, and 4) fixed maximum deflection and stall speed. For each of these analytic solutions,
the optimum wing-structure weight is found to depend only on the net weight, independent
of the arbitrary fixed lift distribution. Analytic solutions for optimum weight and lift
distributions are also presented for the same four sets of design constraints. Depending on
the design constraints, the optimum lift distribution can differ significantly from the elliptic
lift distribution. Solutions for two example wing designs are presented, which demonstrate
how the induced drag varies with lift distribution, wingspan, and wing-structure weight in
the design space near the optimum solution. Although the analytic solutions presented here
are restricted to rectangular wings, these solutions provide excellent test cases for verifying
numerical algorithms used for more general multidisciplinary analysis and optimization.

I. Nomenclature

A = beam cross-sectional area

B, = Fourier coefficients in the lifting-line solution for the dimensionless section-lift distribution, Eq. (1)
b = wingspan

bs = characteristic length associated with the deflection-limited design, Eq. (55)
bs = characteristic length associated with the stress-limited design, Eq. (38)

Cy = wing lift coefficient

CL o = wing lift coefficient at the onset of flow separation

Cra = wing lift slope

Cs = shape coefficient for the deflection-limited design, Eq. (16)

Co = shape coefficient for the stress-limited design, Eq. (9)

5L = airfoil section lift coefficient

NLW = airfoil section lift coefficient at the onset of flow separation

@,a = airfoil section lift slope

c = local wing section chord length

Croot = wing section chord length at the wing root

D, = wing induced drag

E = modulus of elasticity of the beam material

h = height of the beam cross-section

* Emeritus Professor, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Senior Member.
T Assistant Professor, Mechanical and Aerospace Engineering, 4130 Old Main Hill, ATAA Senior Member.
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1 = beam section moment of inertia

L = total wing lift

L = local wing section lift

M, = local wing section bending moment

Nng = load factor, g

ng = limiting load factor at the hard-landing design limit

Ny = limiting load factor at the maneuvering-flight design limit

S = wing planform area

S» = proportionality coefficient between VIZ(Z) and M, (z) having units of length squared
tmax = maximum thickness of the local airfoil section

Voo = freestream airspeed

Vstall = freestream airspeed at the onset of flow separation

w = aircraft gross weight

W, = aircraft net weight (i.e., W—W;)

W, = that portion of W, carried at the wing root

Wy = total weight of the wing structure required to support the wing bending moment distribution
W, = net weight of the wing per unit span (i.e., total wing weight per unit span less VI7S)
W, = weight of the wing structure per unit span required to support the wing bending moment distribution
z = spanwise coordinate relative to the midspan

4 = specific weight of the beam material

O max = maximum wing deflection

0 = change of variables for the spanwise coordinate, Eq. (1)

Kw = weight distribution coefficient, Eq. (8)

Jo, = air density

O max = maximum longitudinal stress

II. Introduction

For a wing with no sweep or dihedral immersed in a uniform flow, Prandtl’s classical lifting-line theory [1,2]
relates the section-lift distribution to the chord-length and aerodynamic-angle-of-attack distributions. Additionally,
for any given wing planform, Prandtl’s lifting-line theory can be used to obtain the geometric- and/or aerodynamic-
twist distribution required to produce any desired section-lift distribution [3—8]. With Prandtl’s lifting-line theory,
an arbitrary spanwise section-lift distribution is typically written as a Fourier sine series. Although this Fourier series
has been written in different forms, here we shall use the form [9]

bLL(e) ﬂ{sm(@)+23 sm(n@)} 0 = cos ! (~2z/b) )
n=2
The classical lifting-line solution for induced drag can be written in terms of the Fourier coefficients in Eq. (1).
In steady level flight, the total wing lift L must equal the gross weight W. Thus, the lifting-line solution for the
induced drag in steady level flight can be written as [9]

207 /b
D; = ;p{ﬂ) (1+ > nB; J )

For a fixed ratio of gross weight to wingspan, this induced drag is minimized with the section-lift distribution having
B,=0 for all n>2, which yields the well-known elliptic lift distribution introduced by Prandtl [2]. However, as
pointed out by Prandtl [10], when designing a wing to minimize the induced drag in steady level flight, imposing the
constraints of fixed gross weight and wingspan does not yield an absolute minimum in the induced drag.
For any given lift distribution, weight distribution, and wing structural design, there is an optimum wingspan
for minimizing the induced drag, which is based on the tradeoff between wingspan and wing-structure weight.
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Furthermore, any section-lift distribution that produces lower wing section bending moments than those produced by
the elliptic lift distribution will allow the implementation of a larger wingspan for a given wing-structure weight.
Because the wing-structure weight required to support the critical wing section bending moments is a function of
wingspan, net weight, weight distribution, and lift distribution, designing a wing to minimize the induced drag in
steady level flight requires solving a variational problem in which the weight distribution, lift distribution, wingspan,
and wing-structure weight are all allowed to vary.

The variational problem associated with designing a wing that yields an absolute minimum in induced drag was
first considered by Prandtl in 1933 [10]. In this paper, Prandtl obtained an analytic solution for the fixed lift
distribution that minimizes the induced drag under the constraints of fixed gross lift and fixed moment of inertia of
gross lift, but with no constraint placed on the wingspan. Prandtl’s 1933 solution [10] for minimizing induced drag
under these constraints yields the dimensionless section-lift distribution [9]

bL(6)

7= —[ in(6) — 3sin(36)] 3)

By comparison with Eq. (1), Eq. (3) requires B3=—1/3 and B, =0 for all n# 3. Using these Fourier coefficients in
Eq. (2) yields the induced drag in steady level flight for Prandtl’s 1933 lift distribution, i.e.,

_ 807/b)?

4
3npVi @

It should be emphasized that Prandtl made no claim that the lift distribution in Eq. (3) yields an absolute minimum in
induced drag for any specific case of a physical wing [10]. He claimed only that this lift distribution minimizes
induced drag under the particular constraints of fixed gross lift and fixed moment of inertia of gross lift.

Phillips, Hunsaker, and Joo [9] have shown that Prandtl’s 1933 lift distribution also yields a minimum in
induced drag for the stress-limited design of a rectangular wing with fixed weight and chord-length constraints
combined with the weight distribution constraint given by

L(z)

Wa(z) = (W=W,)="2~W(2) Q)

Equation (5) alone does not completely specify the weight distribution W (z). It simply provides one relation
between the five design parameters, W, (z), W, W,, W, (z),and L(z) / L. Equation (5) could be applied in the early stages
of preliminary design, if no conflicting constraint is placed on the weight distribution. However, W, (z) cannot be
evaluated from Eq. (5) until the other four parameters in Eq. (5) have been determined from other means.

The wing structure at each section of a wing must be sufficient to support the wing bending-moment distribution
at the design limits for both maneuvering flight and a hard landing. Because the wing bending-moment distribution
depends on the weight distribution, the variational problem associated with minimizing induced drag for an
arbitrarily specified weight distribution, with no constraint placed on the wingspan, will most likely need to be
solved numerically. However, the application of Eq. (5) substantially reduces the constraining wing bending-
moment distribution and simplifies the integration of the governing equations. It has also been shown that applying
the additional weight distribution constraint given by

-1
L (6)
Ny +Ng

gives the optimum weight distribution, which minimizes the bending moment required for the constraining design
limit [9]. Using both Egs. (5) and (6) yields a bending-moment distribution for the hard-landing design limit that is
exactly the negative of that required for the maneuvering-flight design limit.

If W, is larger than the value given by Eq. (6), then maneuvering flight provides the structural design limit; and
if W, is less than the value given by Eq. (6), the hard landing provides the structural design limit. In any case, if the
weight distribution in Eq. (5) is used and the lift is positive over the entire semispan, the structural design limit for
the wing bending moment can be written as [9]
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- " L)
‘Mb(z)‘ = KW, [ S22, for 220 (7)
where
[/ W, > ng -1
Ny +1
Ky = W n _lg (®)
(l’lg _1) W, — g, W, < nmg+ ng

If the wing section bending moment is supported by any vertically symmetric beam, for a fixed maximum-stress
constraint with spanwise-symmetric wing loading, the total weight of the wing structure required to support the
bending-moment distribution at the design limit can be expressed as [9]

b/2

W, =2 I Co (tmax /C)C(Z)Gmax 2[(h/tmax)

|My(2)] . _ _
. Ss(2) dz; Sp(z) = y o= 2

Equations for computing values of Co for some common beam cross-sections are presented in Ref. [9].

We see from Eq. (9) that, for any spanwise-symmetric wing loading, the weight of the wing structure required to
support a maximums-stress constraint is proportional to the integral of the bending-moment distribution divided by
the chord-length distribution. Because, in the development of his 1933 lift distribution, Prandtl assumed a
proportionality coefficient between M, and W; that is independent of z [10], the resulting minimum-drag analysis
may not apply to the stress-limited design of a wing with a chord length and thickness that vary with the spanwise
coordinate. However, Prandtl’s 1933 minimum-drag analysis could be applied to the stress-limited design of a
rectangular wing with the weight distribution specified by Eq. (5).

Combining Egs. (1), (7), and (9), it has been shown that, for the stress-limited design of a rectangular wing with
any all-positive spanwise-symmetric lift distribution and the weight distribution specified by Eq. (5), the required
weight of the wing structure is given by [9]

Kerbz

s = 325,

(1+B3) (10)
Notice from Eq. (2) that all Fourier coefficients B, make a positive contribution to the induced drag. However, we
see from Eq. (10) that only B3 contributes to the required structure weight of a rectangular wing with any all-positive
spanwise-symmetric lift distribution and the weight distribution specified by Eq. (5).

Approaches similar to that of Prandtl have been taken by others to find analytic solutions to this complex,
variational, optimization problem. For example, Jones [11] looked at minimizing the induced drag for a given lift
and root bending moment. Klein and Viswanathan have also considered the problem of a given total lift and root
bending moment [12] and have extended the theory to include a given wing-structure weight [13]. More recently,
Phillips, Hunsaker, and Joo [9] have presented both stress-limited and deflection-limited solutions for minimizing
induced drag on a rectangular wing with fixed weight and wing-loading constraints. Other relevant publications
include [14-25].

For the stress-limited design of a rectangular wing with the weight distribution specified by Eq. (5) and any all-
positive spanwise-symmetric lift distribution, the total weight of the wing structure required to support the bending-
moment distribution at the design limit is given by [9]

oo 2OVIS) Kyl

= 330, (o JO)ome W 0TS (11)

Under the constraints of a fixed lift distribution, fixed gross weight, fixed maximum stress, and fixed wing loading,
the induced drag is minimized using a lift distribution having

By=—3/8+,/9/64—1/12; B,=0,forn#3 (12)
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which yields the optimum results

@ = %[sin(&)—0.13564322 sin(30)] (13)
_ 32Ccr (tmax /C)O-max VV3W
b= i/ 0.86435678 7 W/ S) Ky W, (14)
D, = 2.11039450| 0.86435678y (W/S) Ky, 1 ” (15)
: IZ'pVgg 32Ca (tmax/c)amax Ws

For the deflection-limited design of a rectangular wing with the weight distribution specified by Eq. (5) and any
all-positive spanwise-symmetric lift distribution, the total weight of the wing structure required to support the
bending-moment distribution at the design limit is given by [9]

_ y(w/s)? Ky W, b°
’ 32C6E(tmax/c)2§max Wz

_ 8I(h/twax )’

1+B;3); C
(1+B3); Cs pTE

(16)

Under the constraints of a fixed lift distribution, fixed gross weight, fixed maximum deflection, and fixed wing
loading, the induced drag is minimized using a lift distribution having

By=-3/7+49/49-1/21; B,=0,forn#3 (17)

which yields the optimum results

@ - %[sin(&)—0.05971587 sin(36)] (18)
— 6 32C5E(tmax/c)26max WYWZ (19)
0.94028413y (W /S)? KW,
/3
D _ 2.02139591| 0.94028413y (W/S)? sy W, 1" (20)
’ 7pV2 | 32C$E(tmax /C)* Omax Vs

The optimum lift distributions given in Egs. (3), (13), and (18) were all obtained under the constraint that a
single lift distribution is used during all flight phases. However, the designer is not always so constrained. Variable
geometric and/or aerodynamic twist can be used to implement different lift distributions during different flight
phases [4,5,7,8,26—31]. For example, the lift distribution given by Eq. (13) could be implemented during high-load-
factor maneuvers; other lift distributions could be implemented during takeoff and landing; and the elliptic lift
distribution could be implemented during steady level flight. This would allow an increase in the wingspan over that
allowed by a fixed elliptic lift distribution, without increasing the gross weight or imposing any induced-drag penalty
during steady level flight.

Although the approximations associated with lifting-line theory were used to obtain the solutions presented here,
for unswept wings of aspect ratio greater than 4, lifting-line theory has been shown to be in excellent agreement with
experimental data and grid-resolved CFD solutions, and lifting-line solutions are widely accepted [3—7,32—67].

III. Minimizing Induced Drag with Wingspan and Wing-Structure Weight

Minimizing induced drag by varying the wingspan and lift distribution while holding gross weight constant is
not the only variational problem suggested by Eq. (2). Because wing-structure weight increases with increasing
wingspan for any fixed lift and weight distributions, Eq. (2) also suggests that the induced drag could be minimized
by varying the wingspan b and wing-structure weight W while holding the net weight W, and lift distribution
bL(z)/L fixed. Because the required wing-structure weight depends on both the wingspan and the lift distribution, in
general, W, depends on b and all of the Fourier coefficients B,. Because gross weight is simply the sum of W, and
W;, for an arbitrary wing design, Eq. (2) can be written
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2
2 (w, Ws(b,Bn)] 2 2
D; = —L 1+ > nB, 21

ﬂpVi( b b g& @b

For any fixed W,, the term W, /b always decreases with increasing wingspan; and for typical design constraints, the
term W (b, B,)/b increases with increasing wingspan. For example, the design constraints that led to Prandtl’s 1933
lift distribution yield W, proportional to b2 as given in Eq. (10); the design constraints that led to the lift distribution
given in Eq. (13) yield W proportional to b3 as given in Eq. (11); and the design constraints that led to the lift
distribution given in Eq. (18) yield W proportional to »° as given in Eq. (16). For any fixed lift and weight
distributions, there is an optimum wingspan for minimizing the induced drag, which is based on the tradeoff between
the wingspan b and the wing-structure weight .

For example, for the stress-limited design of a rectangular wing with the weight distribution specified by
Eq. (5) and any all-positive spanwise-symmetric lift distribution, the total weight of the wing structure required to
support the bending-moment distribution at the design limit is given by Eq. (11). The gross weight is the sum
W=W, +W,. Hence, using Eq. (11) in Eq. (21), the induced drag can be written as

2
2 | Wy (+B)y(W/S) Kwh,b’ S
D = 1 B 22

l 7Z',0V£ [ b ’ 32C, (tmax /C)O-max w +,§n ! ( )

For any given value of the ratio AW, /W, the function in the square brackets of Eq. (22) can be minimized with
respect to b, based on the tradeoff between wingspan and wing-structure weight.

To minimize the ratio Ky W,/W for any given wingspan, the weight distribution given by Eq. (6) can be used.
Hence, using Eq. (6) in Egs. (8) and (11) yields Ky = n,, and

W, = (1+B3)y(W/S) nm(ng—l)b3

_ 23
32Co-(tmax/c)amax Ny +Ng 2

From Egs. (6), (8), and (22) the induced drag is

2
2 (W eBYYO7IS) matng =D LT[ & o
D; = — 1 B 24

‘ ﬂpVg{ N ToR T | R Y @4)

The wingspan that minimizes this induced drag for a fixed lift distribution and fixed wing loading is

b = 3\/16C0'(tmax/C)O-maXI/Vn i + g (25)

(1+B3)y(W[S)  ny(ng —1)
Using Eq. (25) in Eq. (23), the wing-structure weight that minimizes this induced drag for any fixed value of B3 is

1

Wy = =W, 26
; 26)
Using Eq. (25) in Eq. (24), the associated minimum induced drag is
Lt By ([ SYW2 n(ng~D) |, &
Di: 9 - (+ 3)7/( / ) n Mm(Ng 1+anr% (27)
2rpVs 16Cs (¢max /C)O-max Ny +Ng =2

Equation (27) gives the minimum possible induced drag for the stress-limited design of a rectangular wing
with fixed wing loading, the weight distribution specified by Eq. (5), and any fixed all-positive spanwise-symmetric
lift distribution. However, even though Eq. (6) was used to minimize the ratio K W,/W in Eq. (22), Eq. (27) does
not provide an absolute minimum in induced drag for the specified design constraints and weight distribution,
unless the optimum lift distribution is also used. From Eq. (27), we see that the variation of this drag with the
Fourier coefficients B, is proportional to (1+Y nB,%)(1+B3)2/3. Minimizing this function yields the Fourier
coefficients given in Eq. (12) and the optimum lift distribution given in Eq. (13).
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Similarly, for the deflection-limited design of this same rectangular wing with any fixed all-positive spanwise-
symmetric lift distribution and the weight distribution specified by Eqgs. (5) and (6), the total weight of the wing
structure required to support the bending-moment distribution at the design limit is given by Eq. (16). Hence, using
Eqgs. (6), (8), and (16) with the relation W=W, + W yields

W W+ (1+B)y(W/S)>  nu(ng =1) pS (28)

32C5E(tmax /€)* Omax M tHg W

Equation (28) is easily solved for the gross weight, and using the relation Wy=W—-W,, yields

2 2 -1
o= Wy (Wi, (e B)yO/SY mming D) 9
2 4 32C5E(tmax /C) 6max N + ng

Using this wing-structure weight with the relation W= W, + W in Eq. (2) gives

2

2 2 -1 ©

D, = —2 5 L —W"2 ,xBs )7(W/f) (e D) o | [ > nB; (30)
ﬂ'pVoo 2b 4b 32C5E(tmax /C) é‘maX i + ng n=2

The wingspan that minimizes this induced drag for any fixed lift distribution and fixed wing loading is

2 2
b = 6\/locﬁE(tnﬂax/C) Oma Wi _1m + Mg 1)

(+B)y(W/S)>  nm(ng—1)
Using Eq. (31) in Eq. (29), the wing-structure weight that minimizes this induced drag for any fixed value of B3 is
W, = =W, (32)

Using Eq. (31) in Eq. (30), the associated minimum induced drag is

1/3

2174 m -1 )

D= 25 | W BV ISY Wy mn(ns “D [ {1y, S~ g2 (33)
87pVss | 10CSE(tmax /€)” Omax  1tm T Hg n=2

Here again, even though Eq. (6) was used to minimize W for any given wingspan, Eq. (33) does not provide an
absolute minimum in induced drag for the specified design constraints and weight distribution, unless the optimum
lift distribution is also used. From Eq. (33), we see that the variation of this drag with the Fourier coefficients B is
proportional to (l+2nB,%)(1+B3)”3. Minimizing this function yields the Fourier coefficients given in Eq. (17) and
the optimum lift distribution given in Eq. (18).

The results shown in Egs. (23)—(27) and (29)—(33) are for a rectangular wing with the weight distribution given
in Egs. (5) and (6), which minimizes the bending moment required for any given wingspan at the constraining design
limit. However, the reader is reminded that this weight distribution is not always practical due to other design
constraints. Numerical methods can be used to evaluate the optimum wingspan and wing-structure weight required
to minimize induced drag for other weight distributions and/or wing planforms.

IV. Minimum Induced Drag for Fixed Net Weight, Maximum Stress, and Stall Speed

Minimizing induced drag for a rectangular wing with spanwise-symmetric lift and the weight distribution
specified by Eq. (5) requires a lift distribution having B, =0 for all n# 3 with —1/3 <B3<0. Using these constraints
in Eq. (1) yields

Cu(0) = %CL[sin(6)+B3 sin(36)] (34)

For a rectangular wing with —1/3 < B3 <0, the maximum section lift coefficient always occurs at the wing root, i.e.,
0 =r/2. From Eq. (34), the maximum wing lift coefficient is related to the maximum section lift coefficient by
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T -~ T ~
_ Y 35
e 4[sin(7/2)+ B3 sin(37/2)] Ly 4(1- Bs) s (35)

At the stall speed, Eq. (35) requires

na(Wn +WS) — T ~L or S = 8(1_33)na(KVn+Ws)
LovZ.s 4(1-B3) ™™ zpV2i Cp

stall stall

(36)

max

For the stress-limited design of a rectangular wing with any fixed all-positive spanwise-symmetric lift
distribution and the weight distribution specified by Eq. (5), the total weight of the wing structure required to support
the bending-moment distribution at the design limit is given by Eq. (11). To minimize the ratio Ky W, /W for any
given wingspan, the optimum weight distribution given in Eq. (6) can be used as well. Thus, using Egs. (6) and (8)
in Eq. (11) and rearranging yields

Y (ng =D(W, +Ws) (14 By)b°>

" 32C, (fmax /C)Omas (i +11g) S @7

s

At this point it is convenient to define an important characteristic length associated with this stress-limited design

13
Cg (tmax /C)Umaxna (l/lm + ng )Wn

b = = (38)
7PV gt CL ¥ i (ng —1)
Using Egs. (36) and (38) to eliminate the planform area from Eq. (37) yields
3
w, = A+ B)Wub” (39)

256(1— B3 )b

Using this wing-structure weight with the relation W=W, + W, in Eq. (2) gives

2 2 el
D= —2 | Mo QB 1, 5052 (40)
”pVoo b 256(1_33)170' n=2

The wingspan that minimizes this induced drag for any fixed lift distribution and net weight is

1/3
128(1- By)
| 2= B3) 41
b ( 1+ Bs ) by “0

Using Eq. (41) to eliminate b from Eq. (39), the wing-structure weight that minimizes the induced drag for fixed
W,, fixed Omax, fixed Van, and any fixed value of Bs is

Ws = %Wn (42)

Using Eq. (41) to eliminate b from Eq. (40) with B,=0 for all n# 3, the minimum induced drag for a fixed lift
distribution, fixed W,, fixed Omax, and fixed Van can be written as

D,:( 1+ B, T“ 9(1+3B2 )W
t\128(1-B3) 27pV.ib2

The variation of this drag with Bj is proportional to [(1+3B3)*(1+B3)*/(1-B5)*]". Thus, for fixed W,, fixed
Omax, and fixed Vi, the value of B3 that minimizes the induced drag predicted from Eq. (43) is obtained from

(43)

9B; —6B; ~9B3-2 = 0 (44)

The roots of this cubic equation are
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1 1 11
By =—-=, B3y = —+,— 45
3 3 3 2+ 12 (45)

Using the only root in the range —1/3 < B3 <0, Egs. (1), (41), (36), and (43) result in

bL(O) _ i[sin(t9)—%Sin(3i9)] o
L T
b = '\3) 256170' (47)
5 = 162%1”:7! (48)
7PV gait CL s
6W,2

e 49
(2567 ) mpV2b2 "

For a fixed elliptic lift distribution, Eqgs. (41), (36), and (43) result in

b = 3128b, (50)

12n,W,

S = T
ﬂ.p Vstall CLmax

(51

o ow,2
Y 2012873 zpV 2b2

(52)

In summary, under the constraints of a fixed lift distribution, fixed net weight, fixed maximum stress, and
fixed stall speed, minimizing induced drag for a rectangular wing with spanwise-symmetric lift and the optimum
weight distribution specified by Eqgs. (5) and (6) requires a lift distribution having B,=0 for all n#3 with
~1/3<B3<0. With these constraints and any fixed value of B3, the induced drag is minimized using a wing-
structure weight equal to one half the net weight as given in Eq. (42). This induced drag is further minimized by
using the lift distribution given in Eq. (46), which is exactly Prandtl’s 1933 lift distribution as given in Eq. (3).
Comparing Eqgs. (47)—(49) with Egs. (50)—(52), we see that, for this wing geometry, weight distribution, and design
constraints, the fixed lift distribution given in Eq. (46) results in a 25.99% increase in the wingspan, a 33.33%
increase in the planform area, and a 16.01% decrease in the induced drag over those obtained for a fixed elliptic lift
distribution with the same net weight, maximum stress, and stall speed.

V. Minimum Induced Drag for Fixed Net Weight, Maximum Deflection, and Stall Speed

For the deflection-limited design of a rectangular wing with any fixed all-positive spanwise-symmetric lift
distribution and the weight distribution specified by Eq. (5), the total weight of the wing structure required to support
the bending-moment distribution at the design limit is given by Eq. (16), which can be rearranged as

W - yKwW, (1+B;)b° (53)
32C5E(tmax /C)zé‘max Sz

Using Eq. (36) to eliminate the planform area from Eq. (53) and applying Eq. (6) to minimize W, for any given
wingspan yields

B (1+ B3)b°W,;?
o 2048(1—Bs)2 b (W, + W)

(54)

where bs is an important characteristic length associated with this deflection-limited design,
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1/6
, [65E<mmxﬂozégmn3(nm-+ngﬂvf}/
5 =

c (55)
7PV g Cras)* 7 1 (g =1)
Equation (54) can be rearranged as a quadratic equation in W to give
1+ B3)bW,?
m2+an_ ( + 3) n =0 (56)

2048(1-B3)*bS

The only positive root of Eq. (56) is given by

6
VVS = _&+& 1+&)bzé (57)
2 2\ 512(1-B;)?bS

Using this wing-structure weight with the relation W= W, + W in Eq. (2) gives

2

4 00
py=—2 (Wl |1, U*BIb || [, 5 ,p (58)

apVe| 2| b \b* 512(1-B3)*hS o

The wingspan that minimizes this induced drag for any fixed lift distribution and net weight is
6401 53) |"°
— 53

- 59
b { (1+Bs) } bo 9

Using Eq. (59) to eliminate b from Eq. (57), the wing-structure weight that minimizes the induced drag for fixed W,
fixed Omax, fixed Vian, and any fixed value of Bs is

1
W, = =W, 60
=4 (60)

Using Eq. (59) to eliminate » from Eq. (58) with B,=0 for all n#3, the minimum induced drag for a fixed lift
distribution, fixed W,, fixed Omax, and fixed Vyan can be written as

(61)

1/3 2 2
o 1+ B; 25(1+3B;)W,
Col10(1-By)? 327pV.2h}

The variation of this drag with B3 is proportional to [(1+3B;)*(1+B3)/(1-B5)*]". Thus, for fixed W,, fixed
Omax, and fixed Van, the value of B3 that minimizes the induced drag predicted from Eq. (61) is obtained from

15B] -9B; —19B3-3 = 0 (62)
The roots of this cubic equation are
B; = —0.74279033, B3 = —0.17714856, B3 = 1.5199389 (63)

Using the only root in the range —1/3 < B3 <0, Egs. (1), (59), (36), and (61) result in

bL(6)

= A [sin(0) - 0.17714856 sin(36)] (64)
L V4

b = 3.2019916 bs (65)

S = 11.771486 —an__

L (66)
ﬂ.p Vstall CL max

10
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w2
D; = 0.33349127 —*— (67)

wpVaby

For a fixed elliptic lift distribution, Egs. (59), (36), and (61) result in
b = (6407%)bs (68)
s = 0y (69)

7PV gatt CL s
250,
= b (70)
32(10"3) zpV 2b3

In summary, under the constraints of a fixed lift distribution, fixed net weight, fixed maximum deflection, and
fixed stall speed, minimizing induced drag for a rectangular wing with spanwise-symmetric lift and the optimum
weight distribution specified by Eqs. (5) and (6) requires a lift distribution having B,=0 for all n#3 and
—-1/3<B3;<0. With these constraints and any fixed value of B3, induced drag is minimized using a wing-structure
weight equal to one fourth the net weight as given in Eq. (60). This induced drag is further minimized by using the
lift distribution given in Eq. (64). Comparing Eqs. (65)—(67) with Egs. (68)—(70), we see that, for this wing
geometry, weight distribution, and design constraints, the fixed lift distribution given in Eq. (64) results in a 9.07%
increase in the wingspan, a 17.71% increase in the planform area, and an 8.03% decrease in the induced drag over
those obtained for a fixed elliptic lift distribution with the same net weight, maximum deflection, and stall speed.

V1. Results

The optimum wingspans given in Egs. (25), (31), (41), and (59) all minimize induced drag for a rectangular
wing with fixed net weight and any fixed all-positive spanwise-symmetric lift distribution combined with other
design constraints. Equation (25) is for a stress-limited design with fixed wing loading; Eq. (31) is for a deflection-
limited design with fixed wing loading; Eq. (41) is for a stress-limited design with fixed stall speed; and Eq. (59) is
for a deflection-limited design with fixed stall speed. The optimum wing-structure weights corresponding to the
optimum wingspans given in Egs. (25), (31), (41), and (59) are respectively given in Egs. (26), (32), (42), and (60).
Although induced drag depends on all of the Fourier coefficients B, in Eq. (1), for an arbitrary lift distribution, the
optimum wingspans computed from Egs. (25), (31), (41), and (59) depend only on the single Fourier coefficient Bs.

Although the wingspans from Egs. (25), (31), (41), and (59) give the minimum possible induced drag for the
specified design constraints and any fixed all-positive spanwise-symmetric lift distribution, these optimum wingspans
do not provide an absolute minimum in induced drag for the specified design constraints unless the optimum lift
distribution is also used. The optimum lift distributions corresponding to the optimum wingspans given in
Egs. (25), (31), (41), and (59) are respectively given in Egs. (13), (18), (46), and (64). Figure 1 shows each of these
four lift distributions compared with the elliptic lift distribution and the lift distribution produced by an untwisted
rectangular wing. The distribution labeled (a) is the elliptic lift distribution, and that labeled (b) is Prandtl’s 1933 lift
distribution, which is also the lift distribution given in Eq. (46) that minimizes induced drag for a stress-limited
design with fixed stall speed. The lift distribution labeled (c) is that produced by an untwisted rectangular wing of
aspect ratio 8. Lift distribution (d) is that from Eq. (13), which minimizes induced drag for a stress-limited design
with fixed wing loading, (e) is the lift distribution from Eq. (18) that minimizes induced drag for a deflection-limited
design with fixed wing loading, and (f) is the lift distribution from Eq. (64) that minimizes induced drag for a
deflection-limited design with fixed stall speed.

For any acceptable design, both the stress and deflection constraints must be satisfied. For the stress-limited
design with fixed wing loading, combining Egs. (23) and (2) yields the following relations for the wingspan and
induced drag expressed as a function of the wing-structure weight

= {32C0(fmax/c)amax “n "% :|1/3 7

W+ B)y(W]S) mm(ng 1) "
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0 0.1 0.2 0.3 0.4 0.5
z/b

Fig. 1 Lift distributions from Eqs. (13), (18), (46), and (64) compared with the elliptic distribution and that
for an untwisted rectangular wing of aspect ratio 8.

2/3
2 A+ B)y(W/S) nu(ng —1) (W, +W,)* SR
- 72
D ﬁpVof |:32C0(tmax/c)o-max ny +ng Wi 1+,,Z::2an ( )

Similarly, for the deflection-limited design with fixed wing loading, combining Eqs. (29) and (2) results in

‘ ) 1/6
b= |2CE ) Omax _Mn Ls_yy gy (73)
(1+B3)y(W/S)>  nm(ng—1)
2 _ 5 13 )
D= —2 | LBy (VISY (g =D Wa i )" | fy, $5 52 (74)
7oV 32C§E(l‘max/0) Omax  m THg /8 =

For the stress-limited design with fixed stall speed, combining Eqs. (39) and (2) yields

1/3
_ [256(1- B3,
b= [—(HB;,)W,, } by 75)
3 2/3 0
Di _ 2 (1+BB)Wn(Wn +Wv) 1+Zan2 (76)
apVi | 256(1-B3)Wib; e

and for the deflection-limited design with fixed stall speed, combining Egs. (57) and (2) gives

~ ) 1/6
b - 2048(1-Bs) Ws(szWs) bs 77)
(1+B3)Wn
1+ B)W,2 (W, +W,)> v 2
D; = 2 . 1+ B3)W, ( n2+ 56) 1+Z”B'% (78)
zpVi| 2048(1—B3)*Wbs =

The allowable wingspans obtained from Eqgs. (71), (73), (75), and (77) always increase with increasing wing-
structure weight. However, the increase in wingspan with respect to wing-structure weight is greater for the stress-
limited solutions than for the deflection-limited solutions. If the wing-structure weight is low enough, the stress-
limited wingspan is less than the deflection-limited wingspan, and the wing design will be stress limited. On the
other hand, if the wing-structure weight is high enough, the deflection-limited wingspan will be less than the stress-
limited wingspan, and the design becomes deflection limited. For the case of fixed wing loading, combining
Egs. (71) and (73), the wing-structure weight that yields the same wingspan for both the stress-limited and
deflection-limited designs is obtained from the relation

12
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~ 32(CoOmax )’ (nm +1g)
Ws = W”/ {(1+B3)C5E5mx7/nm (ng —1) 1} (79)

Similarly, for the case of fixed stall speed, combining Eqgs. (75) and (77), the wing-structure weight that gives the
same wingspan for both the stress-limited and deflection-limited designs is obtained from

32b8
=, | 32 80
W W/L1+B3)b§ } (80)

and after applying the definitions of b and bs from Egs. (38) and (55), we obtain

— / { 32(CoOmax) (i + 1) _1}
(14 B3)CsEOmax Y i (ng —1)
which is identical to Eq. (79) obtained for fixed wing loading. Because all acceptable designs must satisfy both the
stress-limited and deflection-limited constraints, the wing-structure weight given by Eq. (79) is an important
parameter in this design space. Optimal designs having a wing-structure weight less than that given by Eq. (79) will
be stress limited and those having a greater wing-structure weight will be deflection limited.

As an example of minimizing induced drag with fixed net weight and wing loading, consider an airplane with a
rectangular wing. The net weight is fixed at W,=2600 Ibf and the wing loading is fixed at W/S=15 Ibf/ft>. To
minimize the critical wing bending moment distribution, the weight distributions given by Egs. (5) and (6) are used.
For this design, we will use the values C;=0.165, C5=0.653, n,, =ng,=3.75, tmax/c =0.12, Opax = 15.0x10° psi,
Omax =4.5 ft, ¥ =0.10 Ibf/in®, E =10.0x10° psi, V,,=200 ft/s, and p =0.0023769 slug/ft>.

From this example, solutions for the wingspan and induced drag obtained from Eqgs. (71)—(74) are shown in Fig.
2, plotted as a function of wing-structure weight for several different lift distributions. The lift distributions used to
generate this figure are five of those shown in Fig. 1. The solution labels, a—e, used in Fig. 2 correspond to the lift-
distribution labels used in Fig. 1. The solid curves in Fig. 2 correspond to the stress-limited solutions and the dashed
curves are for the deflection-limited solutions. The black portion of each curve in Fig. 2 indicates the region where
that solution provides the constraining limit. Each curve is shaded gray in the region where that solution does not
provide the constraining limit. The solid vertical line shows the wing-structure weight W,=W, / 2, which
corresponds to the minimum induced drag for the stress-limited solutions as given in Eq. (26). The dashed vertical
line marks the wing-structure weight W,=W, /4, which gives minimum induced drag for the deflection-limited
solutions as given in Eq. (32).

= -

===
=z2722-"
=z5222
2=2%22
=z2222
=z2722
—=2522-
==
pts

= =
- - ot
- - -
- Pt SeC iy
——————

-
="
-

-
- =z
,,,,,,,,
- ooy
- -

-
- -
Lezlen

-

— Stress-Limited
== Deflection-Limited

Wingspan (ft) Induced Drag (1bf)

400 600 800 1000 1200 1400
W, (Ibf)

Fig. 2 Wingspan and induced-drag solutions for the fixed-wing-loading example.
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Notice from Fig. 2 that Prandtl’s 1933 lift distribution (b) gives minimum induced drag at W,= W, /4, which is
the minimum-drag point on the deflection-limited curve. Also note that, for this example, even an untwisted
rectangular wing (c) has a lower minimum-drag point than that produced by Prandtl’s 1933 lift distribution.
However, the minimum-drag point for this lift distribution is not found at the minimum-drag point for either the
stress-limited or deflection-limited curve. This lift distribution yields minimum induced drag at the wing-structure
weight given by Eq. (79), which is the point where the stress-limited curve crosses the deflection-limited curve. In
fact, all lift distributions used to generate Fig. 2, except Prandtl’s 1933 lift distribution, have minimum-drag points at
the wing-structure weight given by Eq. (79). If the wing-structure weight computed from Eq. (79) is less than or
equal to W,=W, /4, then minimum induced drag is always obtained at W,=W, /4. If the wing-structure weight
computed from Eq. (79) is greater than W,=W, / 4 and less than W,=W, / 2, then minimum induced drag is always
obtained at the wing-structure weight computed from Eq. (79). If the wing-structure weight computed from
Eq. (79) is greater than or equal to W= W, / 2, then minimum induced drag is always obtained at W,=W, / 2.

Notice that the lowest minimum-drag point shown in Fig. 2 is for the lift distribution (e) given in Eq. (18), which
minimizes induced drag for the deflection-limited solution. However, the lift distribution given in Eq. (18) does not
provide an absolute minimum in the induced drag for this example, because this minimum-drag point occurs at the
wing-structure weight given by Eq. (79). Using the wing-structure weight from Eq. (79) in either
Eq. (72) or (74), together with the other parameters specified for this example, allows us to obtain the induced drag
with B, =0 for all n#3 as a function of the single design parameter B;. The minimum in this function gives us the
lift distribution and wing-structure weight that yield the absolute minimum induced drag for this example, i.e.,
D;=16.53413 1bf at B3=-0.07245516 and W,=774.1117 Ibf. The wingspan for this optimal solution is
b=68.43317 ft. Constant induced-drag contours for the design space near this optimal solution are shown in Fig. 3.
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Fig. 3 Constant induced-drag contours for the fixed-wing-loading example.
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As an example of minimizing induced drag with fixed net weight and stall speed, consider an airplane with a
rectangular wing. The net weight is fixed at W,=2600 Ibf and the stall speed is fixed at V=110 ft/s. Again
we shall use the weight distributions given by Eqs. (5) and (6) and the values C5=0.165, C5=0.653, n,, = ny, = 3.75,
foax /€= 0.12,  Opax=15.0x10°psi, Omax=4.5ft, y=0.101bf/in>, E=10.0x10°psi, ¥, =200ft/s, and
£ =0.0023769 slug/ft>.

Solutions for the wingspan and induced drag obtained from Egs. (75)—(78) are shown in Fig. 4. The lift
distributions used to generate this figure are four of those shown in Fig. 1. The labels, a—c and f, correspond to the
lift-distribution labels used in Fig. 1. The solid curves correspond to the stress-limited solutions and the dashed
curves are for the deflection-limited solutions. The black portion of each curve indicates the region where that
solution provides the constraining limit. Each curve is shaded gray in the region where that solution does not
provide the constraining limit. The solid vertical line is the wing-structure weight W= W, /2, which gives minimum
induced drag for the stress-limited solutions as given in Eq. (42). The dashed vertical line is the wing-structure
weight W= W, / 4, which gives minimum induced drag for the deflection-limited solutions as given in Eq. (60).

From Fig. 4 we see that for Prandtl's 1933 lift distribution (b), minimum induced drag is obtained at the
minimum-drag point on the deflection-limited curve. All other lift distributions used in Fig. 4 have minimum-drag
points at the wing-structure weight given by Eq. (79), which is the point where the stress-limited curve crosses the
deflection-limited curve. The lowest minimum-drag point shown in Fig. 4 is for the lift distribution (f) given in
Eq. (64), which minimizes induced drag for the deflection-limited solution. However, the lift distribution given in
Eq. (64) does not provide an absolute minimum in the induced drag for this example, because this minimum-drag
point occurs at the wing-structure weight given by Eq. (79). Using the wing-structure weight from Eq. (79) in either
Eq. (76) or (78), together with the other parameters specified for this example, we obtain the induced drag with
B,=0 for all n#3 as a function of the single design parameter B3;. The minimum in this function gives the lift
distribution and wing-structure weight that yield the absolute minimum induced drag for this example, i.e.,
D;=15.83315 Ibf at B3=-0.17889675 and W;=662.6372 Ibf. The wingspan for this optimal solution is
b=70.24208 ft. Constant induced-drag contours for the design space near this optimal solution are shown in Fig. 5.
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Fig. 4 Wingspan and induced-drag solutions for the fixed-stall-speed example.
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Fig. 5 Constant induced-drag contours for the fixed-stall-speed example.

VII. Conclusions

As shown in Eq. (2), Prandtl’s classical lifting-line theory predicts that the induced drag acting on the wing
of an airplane in steady level flight is directly proportional to the square of the ratio of gross weight to wingspan.
For any fixed weight distribution and lift distribution, the critical wing section bending moments increase with
increasing wingspan and the wing-structure weight required to support these bending moments also increases with
wingspan. Hence, there exists an optimum wingspan and wing-structure weight that minimizes the induced drag in
steady level flight for any fixed net weight, weight distribution, and lift distribution. However, this optimum
wingspan and wing-structure weight do not provide an absolute minimum in induced drag unless the optimum weight
distribution and lift distribution are also used. The optimum weight distribution is obtained by enforcing both Egs.
(5) and (6). The optimum lift distribution depends on both the wing planform and the weight distribution. For the
special case of a rectangular wing with spanwise-symmetric lift and the weight distribution specified by
Eq. (5), the optimum lift distribution is given by Eq. (34) with —1/3 <B3<0. The precise value of B that provides
the absolute minimum in induced drag depends on the design constraints.

For any wing planform and wing structural design the wing-structure weight can be determined as a function of
the wingspan, maximum allowable stress, maximum allowable deflection, and other design constraints. Because
gross weight is the sum of the net weight and the wing-structure weight, for any wing design, the ratio of gross
weight to wingspan can be written as W/b=W,/b+W/b. For any fixed net weight, the term W, /b always
decreases with increasing wingspan; and for typical design constraints, the term W, /b increases with increasing
wingspan. Thus, for typical design constraints, there is an optimum wingspan that minimizes the ratio of gross weight
to wingspan based on the tradeoff between wingspan and wing-structure weight. Example analytic solutions that
demonstrate this tradeoff are presented in the previous sections. It is shown that under certain constraints, induced-
drag reductions in excess of 16% relative to a fixed elliptic lift distribution are possible.
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Optimum solutions for two example wing designs are presented in the Results section. Figures 3 and 5 show
how the induced drag varies with lift distribution, wingspan, and wing-structure weight near the optimum solution for
each example. In each case, the optimum design produces a decrease in induced drag relative to the case of a fixed
elliptic lift distribution.

For the analytic examples presented here, we have considered only rectangular wings with the optimum weight
distribution specified by Eq. (5). This provided the great simplification of allowing us to carry out the integration in
Eq. (9) for the arbitrary lift distribution given in Eq. (1) to produce the analytic results for the wing-structure weights
given in Egs. (11) and (16). When the airfoil chord length and thickness vary with the spanwise coordinate, we can
no longer use Egs. (11) and (16) to compute the wing-structure weights for the stress-limited and deflection-limited
solutions. Instead, we must return to the more general relation given in Eq. (9). For arbitrary wing planforms and
weight distributions, Eq. (9) could be integrated numerically. Hence, for many practical applications, numerical
methods may be required to obtain optimum lift distributions, wingspans, and wing-structure weights that minimize
induced drag. Nevertheless, the analytic solutions presented in this work provide significant insight into the
aerodynamic and structural coupling associated with designing wings for minimum induced drag.
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