Non-destructive Determination of Leaf Expansion using a Digital Camera

D. R. Pinnock
Utah State University

S. P. Klassen
Utah State University

Bruce Bugbee
Utah State University, bruce.bugbee@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/cpl_techniquesinstruments

Part of the Plant Sciences Commons

Recommended Citation
https://digitalcommons.usu.edu/cpl_techniquesinstruments/14

This Factsheet is brought to you for free and open access by the Crop Physiology Lab at DigitalCommons@USU. It has been accepted for inclusion in Techniques and Instruments by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
Non-destructive Determination of Leaf Expansion using a Digital Camera
D. R. Pinnock, S. P. Klassen, and B. Bugbee
Crop Physiology Laboratory, Logan, UT
drpin@cc.usu.edu

Introduction
Leaf expansion is reduced in mild water stress (see graph below). Early detection of water stress can be accomplished with digital images taken at daily or hourly intervals.

Effect of water stress on leaf expansion and photosynthesis. Leaf expansion is highly sensitive to water stress.

Materials and Methods
Digital images of ‘Grand Rapids’ lettuce were analyzed using Adobe Photoshop software. Plant pixels were isolated (below right) from the total digital image (below left) using the ‘magic wand’ tool. Daily images were used to monitor water stress effects.

Relative growth rate (RGR) was calculated using change in plant area (pixels) instead of the typical change in plant mass using the equation below.

\[
RGR = \frac{\ln(\Delta \text{area})}{\Delta \text{time}}
\]

Results

Conclusions
• Digital cameras can be used to determine leaf expansion and relative growth rate.
• Digital cameras can be used to detect early symptoms of water stress.