
R. A. Pickering
New Zealand Institute for Crop & Food Research Limited

A. M. Hill
New Zealand Institute for Crop & Food Research Limited

G. M. Timmerman-Vaughan
New Zealand Institute for Crop & Food Research Limited

E. M. Forbes
New Zealand Institute for Crop & Food Research Limited

M. G. Cromey
New Zealand Institute for Crop & Food Research Limited

M. J. Gilpin
New Zealand Institute for Crop & Food Research Limited

See next page for additional authors

Recommended Citation

https://digitalcommons.usu.edu/herbarium_pubs/13

This Conference Paper is brought to you for free and open access by the Intermountain Herbarium of Utah State University at DigitalCommons@USU. It has been accepted for inclusion in Herbarium Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

1New Zealand Institute for Crop & Food Research Limited, Private Bag 4704, Christchurch, New Zealand. 2Bundesanstalt für Züchtungsforschung an Kulturpflanzen, Institut für Züchtungsmethodik landwirtschaftlicher Kulturpflanzen, Institutsplatz 2, D-18190 Groß Zülowitz, Germany.

INTRODUCTION

Hybridizations between *Hordeum vulgare* L. (cultivated barley) and *H. bulbosum* L. have been performed over many years with two aims. First, the production of doubled haploid barley cultivars (Kasha and Kao 1970); second, the transfer of desirable traits such as resistance to fungal and viral pathogens from the wild species into barley. Apart from the report of an occasional recombinant (Xu and Kasha 1992; Pickering et al 1994), successful gene introgression has been hampered by several barriers. In this report we will describe recent progress in overcoming these barriers.

BREEDING

Incompatibility

Incompatibility that occurs in crosses between *H. vulgare* and *H. bulbosum* before fertilization (pollen tube inhibition, Pickering and Hayes 1976) or after fertilization (endosperm breakdown) has been resolved, respectively, by selecting particular parental genotypes in the crossing program (Pickering 1980) and using conventional embryo rescue techniques.

Chromosome instability

After fertilization, *H. bulbosum* chromosomes are usually eliminated from the immature embryo (Kasha and Kao 1970), especially when genome ratios of 1V : 1B occur (where V and B are the *H. vulgare* and *H. bulbosum* genomes, respectively). *H. bulbosum* chromosome retention can be promoted by manipulating the genotype and by allowing embryos to develop below 17.5°C (Pickering 1985). This has simplified diploid VB hybrid production, and even enabled triploid VVB (2V : 1B) hybrids to be obtained directly from crosses of *H. vulgare* (4x) x *H. bulbosum* (2x) (Pickering 1991a). Conversely, VBB (IV : 2B) hybrids from *H. vulgare* (2x) x *H. bulbosum* (4x) crosses can, as expected, frequently be regenerated.

Chromosome pairing

Pairing between *H. vulgare* and *H. bulbosum* homoeologues was inexplicably absent in VB hybrids described by Pickering (1991a), compared with those VVB hybrids reported by Pohler and Szagat (1982). In VB and VBB hybrids allosyndesis is variable and influenced by parental genotype (Thomas and Pickering 1985; Xu and Snape 1988; Pickering 1992) making it possible to identify high-pairing hybrids. Since environmental conditions affect seed development (Thorn 1992) and chromosome stability in *H. vulgare* x *H. bulbosum* crosses (Pickering 1985), the influence of temperature on chromosome pairing in VB and VBB hybrids was studied. To promote allosyndesis, a temperature of 21°C was more suitable than 15°C during meiosis (Pickering 1990) but, as temperatures greater than 17.5°C also induce *H. bulbosum* chromosome elimination (Pickering 1985), optimum temperatures should be determined for particular hybrid combinations to combine maximum chromosome retention and chromosome pairing.

Hybrid infertility

A pre-requisite for using *H. vulgare* x *H. bulbosum* hybrids in conventional breeding programs is fertility. VB hybrids possess indehiscent anthers and have not proved
useful even after obtaining rare backcross seed. Fertility can be induced by doubling the chromosome number to create tetraploid VWB hybrid. Selfed progeny from the VWB hybrid usually resemble their H. vulgare parents or maintain their hybridity, but occasional recombinants or 'modified' barley plants have been obtained (see final section). Although VVB hybrids are moderately fertile, their value for gene introgression is limited because of low allosyndetic pairing (Pickering 1991a). Until recently, only inductive anthers were found in VBB hybrids, but when H. vulgare (2x) was pollinated with H. bulbosum (4x) that had been derived from colchicine-treated diploid H. bulbosum genotypes, partially fertile VBB hybrids were obtained (Pickering 1988). It is possible that the colchicine treatment induced anther dehiscence in the VBB hybrid, since colchicine can cause heritable disturbances to plant development (Hague and Jones 1987) and gametogenesis (Hassan and Jones 1994). The VBB hybrids have been successfully backcrossed to barley and chromosomally engineered plants and recombinants identified (see final section).

Crossing over

Because of the relative scarcity of H. vulgare - H. bulbosum recombinants among progeny from fertile hybrids (Lange and Johansen 1976), crossing over between paired homoeologues may be very low. To investigate this possibility, a paracentric inversion in barley was crossed with a diploid H. bulbosum genotype and several VB hybrids were obtained. These hybrids were cytologically analysed and compared with a barley inversion heterozygote (Pickering 1991b). In the latter, an inversion loop is formed, and when crossing over occurs within the loop, several anomalies can be observed at meiotic anaphase I and II comprising bridges and/or fragments. The proportions of bridges and fragments vary according to the frequency of crossovers and the length and location of the inversion. Aberrations in the VB hybrids occurred less frequently (1.0%) than in the barley inversion heterozygote (12.3%), but their presence indicated that crossovers between the parental chromosomes occasionally took place. However, the rarity of this event constitutes a considerable barrier to obtaining recombinants, and no satisfactory method of inducing crossing over has yet been found in H. vulgare x H. bulbosum hybrids.

Certation (Pollen tube competition)

In backcrosses of hybrids to H. vulgare, competition between pollen grains of different chromosomal constitution derived from hybrids remains a problem. In VVB hybrids, gametes with seven H. bulbosum chromosomes should predominate but different combinations of H. vulgare and H. bulbosum chromosomes are also likely to arise, according to the observed meiotic configurations (Lange 1971; Xu and Snape 1988). Fertilization of H. vulgare eggs by gametes with seven H. bulbosum chromosomes would lead to haploid H. vulgare plant formation after H. bulbosum chromosome elimination. However, H. vulgare haploids were less commonly observed than diploid H. vulgar plants among progeny from H. vulgare x VBB crosses (Pickering 1992), and fertilization must have been effected preferentially by gametes containing seven H. vulgare chromosomes. To overcome this problem, reciprocal crosses (VBB x H. vulgare) were attempted, but success has been limited. To avoid conventional hybridizations altogether, androgenesis was carried out by culturing anthers from various hybrid combinations, but only those hybrids that possessed dehiscent anthers yielded positive results (Pickering and Fautrier 1993). Seven viable green plants were regenerated that included (i) an aneuploid comprising 14 H. vulgare chromosomes + 1 acrocentric H. vulgare chromosome 4(4I) and one H. bulbosum chromosome; (ii) a 14-chromosome plant similar to a VB morphologically but containing 6 H. vulgare + 8 H. bulbosum chromosomes. This plant was backcrossed to barley and two plants involving double and triple monosomic substitutions of H. vulgare chromosomes by their H. bulbosum homoeologues were obtained.

Progress and future prospects

Despite the obstacles preventing consistent gene introgression between H. vulgare and H. bulbosum, 40 plants from backcrosses of VBB hybrids to barley have been produced that involve the single, double and triple monosomic substitutions of barley chromosomes 1(7I), 2(2I), 3(3I), 4(4I), 6(6I) and 7(7I) by their H. bulbosum homoeologues (Pickering et al 1994). Retention of the H. bulbosum chromosome in the substitution plants can be promoted by growing plants in a suitable environment (15°C; Pickering 1994). The most fertile and frequent plants to arise are those having barley chromosomes 1(7I) or 6(6I) substituted, and recombinants have been identified among selfed progeny. Transfer of single genes from H. bulbosum has also been reported following backcrosses of VBB hybrids to barley (Xu and Kasha 1992; Timmerman et al 1993). The use of tetraploid hybrids has not been as fruitful. Szigat and Pohler (1982) selected 'modified' barley plants from BBV backcross progeny, and introgression of H. bulbosum DNA into a plant with pubescent leaf sheaths was confirmed using a repetitive sequence molecular probe - pSc119.2 (Pickering, Smart and Melz, unpubl). Michel et al (1994) described a plant with a single mildew resistance gene and a plant with barley mild mosaic virus (BaMMV) resistance, following screening of selfed progeny from a VVBB hybrid. Based on electrophoretic evidence, the transferred H. bulbosum DNA of the BaMMV resistant plant is located on barley chromosome 6(6I).
CONCLUSION
From the results presented above, we conclude that interspecific gene transfer from *H. bulbosum* into *H. vulgare* is possible, but difficult. The techniques are labour intensive and time consuming, but the introduction of novel traits and disease resistances into barley has made this program worthwhile.

LITERATURE CITED

SZIGAT, G. and POHLER, W. 1982. *Hordeum bulbosum* x *H. vulgare* hybrids and their backcrosses with cultivated barley. -
Cereal Res Comm 10:73-78.

