Histological Analysis of Biological Tissues using High-Frequency Ultrasound

Kristina M. Sorensen1
Brett D. Borget2, Monica Cervantes3, J. Andrew Chappell4, Bradley J. Curtis5, Matthew A. Grover1, Joseph E. Roring3, Janeese E. Stiles1, Laurel A. Thompson1

1Utah State University
2Utah Valley University

Abstract

- High-frequency (HF) ultrasound can differentiate between a range of breast pathologies in surgical specimens.
- Two parameters sensitive to histopathology.
- Real-time measurements may assist surgeons in obtaining negative or cancer-free margins during lumpectomy to eliminate invasive re-excision.

Objective

- Determine the mechanism linking HF ultrasound to histology.
- Review breast specimen results.
- Test range of bovine tissue from heart, kidney, and liver.
- Related study: Multivariate analysis of the parameters permitted differentiation of normal, adipose, liver, and lymph nodes.

Hypothesis

- Ultrasound sensitivity is a function of the microscopic heterogeneity (and thus histology) of the tissue.

Ultrasonic System

- High-resolution, b-scan images of normal breast tissue.
- Dynamic range of 20 MHz.

Waveform Analysis

- Through-transmission and pulse-echo images.
- First-and second-order spectra.

Surgical Margin Results

- Benign vs. malignant.
- Ductal carcinoma in situ (DCIS).
- Lobular carcinoma in situ (LCIS).
- Invasive ductal carcinoma
- Invasive lobular carcinoma

Multivariate Analysis

- Multivariate analysis of the parameters permitted differentiation of normal, adipose, liver, and lymph nodes.
- Bovine kidney: Vascular tissue.
- Bovine heart: Vascular tissue.
- Human breast: DC, LC.

Discussion

- Repeatability correlations between tissue heterogeneity, peak density of 1st-order spectra:
 - Human breast: DC, LC.
 - Bovine heart: Vascular tissue.
 - Bovine kidney: Ureter, stroma.

Conclusions

- HF ultrasound is sensitive to microscopic heterogeneity and (thus histology) in tissues.
- Tissues with greater peak densities in 1st-order spectra:
 - Exhibit complex, less uniform histology.
- Tissues with lower slopes in 2nd-order spectra:
 - Exhibit normal ductal structure.
 - Normal breast glands, renal medulla.

Applications

- Intraoperative evaluation of margins during breast cancer surgery.
- Real-time pathology for cancer procedures.

Acknowledgements

Leigh Neumayer, Rachel Factor, Huntsman Cancer Institute, Melissa Monk, Ken Slater, Utah Valley University, Bovine organ donation - Circle V Meats.

1WebPathology.com, University of Michigan, Yale Medical Histology.