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Abstract: Accurately quantifying the threat of collapse due to the weight of settled snow on the
roof of a structure is crucial for ensuring structural safety. This quantification relies upon direct
measurements of the snow water equivalent (SWE) of settled snow, though most weather stations in
the United States only measure snow depth. The absence of direct load measurements necessitates
the use of modeled estimates of SWE, which often results in the underestimation of the scale/variance
parameter of the distribution of annual maximum SWE. This paper introduces a novel bias correction
method that employs a bootstrap technique with regression-based models to calibrate the variance
parameter of the distribution. The efficacy of this approach is demonstrated on real and simulated
datasets. The findings reveal varied levels of success, with the efficacy of the proposed approach
being inherently dependent on the quality of the selected regression-based model. These findings
demonstrate that integrating our approach with a suitable regression-based model can produce
unbiased or nearly unbiased annual maximum SWE distribution parameters in the absence of direct
SWE measurements.

Keywords: bias correction; extreme value analysis; snow water equivalent; snow depth

1. Introduction

Accurately predicting and understanding environmental hazards is essential for build-
ing resilient infrastructure, particularly in regions subject to extreme weather. One haz-
ard that demands significant attention in some parts of the Conterminous United States
(CONUS) is the weight of settled snow on the roof of a structure. Quantifying the threat
of settled snow to structural safety requires precise estimations of the probability dis-
tribution representing annual maximum snow load, or, equivalently, the snow water
equivalent (SWE) [1]. However, direct observations of the SWE are currently limited across
the CONUS.

One way to overcome the SWE data scarcity involves the use of climate reanalysis
products. Climate reanalysis products synthesize observed data and modeled output into
gridded maps of climate measurements across a region of interest. These products allow
researchers to retroactively examine weather patterns over extended periods, and are espe-
cially helpful in geographical areas where direct observations of environmental variables
are limited or non-existent. Despite their utility, climate reanalysis products come with
certain shortcomings. One issue is the difficulty in quantifying the uncertainty inherent
within reanalysis data, as pointed out by Dick et al. (2022) [2].

Another way to overcome data scarcity is to estimate the SWE from weather stations
measuring only snow depth. The use of weather stations measuring snow depth greatly
increases the number of available weather stations for use in future mapping procedures.
The SWE estimation models leverage covariate information, such as snow depth, tempera-
ture, elevation, and other climate factors, to estimate the SWE at locations only recording
snow depth (see [3-5] for examples). Despite their usefulness, one common limitation of
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these SWE estimation models is the underestimation of the variance of the estimated SWE.
This limitation is described and demonstrated in Figure 4 of Wheeler et al. (2022) [6].

The variance underestimation issue of modeled SWE is inevitable mathematically.
To demonstrate this, let Y be an n x 1 column vector that represents SWE and let X represent
an n x p covariate matrix of other climate and snow information that could be used to
estimate the SWE. We can formulate the regression model as follows:

Y =f(X)+e 1)

where € is an 1 x 1 column vector that is assumed to consist of independent and identically
distributed (iid) realizations from a normal distribution with zero mean and constant
variance (¢2). The function f(X) represents the deterministic part of the model, which
could be a linear or non-linear function of the covariates in X. A standard regression
analysis tries to estimate the conditional mean E(Y|X) by minimizing the residual sum of
squares for the available data. By the law of total expectation, as presented in [7], the mean
of Yis E(Y) = E(E(Y|X)). On the other hand, the variance of Y can be represented
as follows:

Var(Y) = Var(E(Y|X)) + E(Var(Y|X))
= Var(f(X)) + E(?)
= Var(f(AX)) + 02, ()
This formulation implies that the variance of the predicted SWE, i.e., Y = f(X), will be
Var(Y) = Var( f(x)) < Var(Y). 3)

In extreme value analysis, accurately capturing the scale and shape of the distribution
is crucial for characterizing rare events. Relying solely on the predictions of the regression
model, which systematically underestimates the variance of SWE, can lead to inadequate
characterizations of the weight of snow in design. To demonstrate this challenge, we
consider Table 1, which showcases the impact of varying the standard deviation (¢) of a
log-normal distribution on the 98th and 99th percentiles. The table reveals that even small
changes in the estimated variance of the distribution result in substantial differences in the
estimates of extreme percentiles. This emphasizes the sensitivity of extreme event estima-
tion to changes in estimated variance in the distribution of the annual maximum SWE.

Table 1. Examining the impact of standard deviation variations in a log-normal distribution on the
98th and 99th percentiles. The mean parameter (i) of the distribution is fixed at zero, while ¢ = 1 is
used as a reference point for comparison.

98th Percentile 99th Percentile
o Extreme Event Relative Increase (%) Extreme Event Relative Increase (%)
(from o =1) (from o =1)
1 7.8 10.24
1.1 9.57 21.1 12.9 26
1.2 11.8 51.2 16.3 59.1
1.3 14.4 84.6 20.6 100.1

This paper addresses the underestimation of variance in SWE estimation models by
introducing a residual bootstrap bias correction technique. We demonstrate in Section 3
that our approach is easier to generalize and scale as compared to existing approaches. This
paper also compares station-level distribution estimates with and without our bootstrap
correction. In addition to this, we compare the station-level distribution of climate reanal-
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ysis data with and without the use of the Empirical Cumulative Distribution Function
(ECDEF) correction method, as previously introduced by Cho and Jacobs (2020) [8].

In plain language terms, predictions of the SWE using snow depth have less variability
than true measurements of the SWE, which negatively impacts probability distribution
estimates of extreme snow accumulation. To solve this issue, we propose a new approach
that creates simulated alternatives of SWE predictions that re-introduce the variability of
the SWE model residuals back into the distribution fitting process. By simulating enough
of these alternatives, we are able to generate new estimates for the distribution parameters
that better account for the variability lost in the SWE prediction process as compared to the
original estimates.

This paper proceeds as follows: We first present the background literature on bias
correction and reliability-targeted loads in Sections 2.1 and 2.2. We then detail the process
of our proposed residual bootstrap technique for correcting bias in the distribution scale
in Section 3 and demonstrate its effectiveness through a set of simulations and real-world
data analysis in Sections 4 and 5. The paper concludes with a discussion of the implications
of our findings, limitations, and potential areas of future research in Sections 5.4 and 6.
Note that all analyses were performed in R 4.4.0 [9] with the help of the tidyverse suite
of packages [10], as well as the caret [11], distfixer [12], extRemes [13], fitdistrplus [14],
GOFKernel [15], maps [16], pacman [17], ranger [18], future [19], gbm [20], kernlab [21],
raster [22], and sf [23] R packages.

2. Literature Background
2.1. Bias Correction

Bias denotes systematic overestimations or underestimations by a model, and is often
the result of a model’s simplifying assumptions. This underscores the fact that bias is
often tied to the model itself rather than the data it utilizes. A prime example of such
model-centric bias is evident in ensemble tree machine learning models. These models
have an inherent tendency to overestimate smaller values and underestimate larger values,
a phenomenon independent of the data fed into the model [24].

Bias correction can be approached at either the point scale or the distribution scale.
The point-scale approach seeks to ensure that the expectation of individual estimates
matches the expectation of the observed values (e.g., Figure 1). Several research efforts
have been made to mitigate the effects of point-scale bias in machine learning models.
For example, Hooker and Mentch (2016) [25] incorporated an approach based on residual
bootstrap to reduce bias for ensemble methods. The proposed method led to both sub-
stantial reductions in bias and improvements in predictive accuracy. Similarly, Breiman
(1999) [26] proposed an adaptive bagging technique to reduce prediction bias in ensemble
models. Despite its strengths, this technique has the potential limitation of an increased
variance that can offset the decrease in bias pointed out by Breiman (1999) [26]. Addition-
ally, the method can be computationally expensive due to the iterative training of multiple
models, which may also result in a final model that is difficult to interpret. Ghosal and
Hooker (2020) [27] redefined the approach by using two random forest (RF) models in a
method called one-step boosted forests (OSBF). In OSBF, a second RF model is trained on
the residuals of the initial forest. The second model is then used to correct the bias in the
original model. Several studies [24,27,28] have shown that OSBF outperforms traditional
RF models. Nonetheless, when the ultimate objective is to mitigate bias in estimates of the
second-order moments (i.e., variance or scale) of a distribution, these techniques may not
yield satisfactory results, as pointed out by Belitz and Stackelberg (2021) [29].

On the other hand, the distribution-scale bias correction approach, also known as
the CDF matching method (CDFMM), aims to ensure that the distribution of estimated
values (model distribution) matches the distribution of observed values (observational
distribution). The approach is accomplished using a transfer function (¢(x)), where an
estimated value (x,s) is first transformed into probabilities (p = Fest (Xest)) using the CDF of
model distribution. Next, the probabilities are back-transformed to a corrected observation
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(xcor = F 07751 (p)) using the inverse CDF of the observational distribution, where p € [0, 1].

Mathematically, the approach is expressed as follows:
Xeor = t(Xest) = F();g (Fest (xest))- 4)

An example of this approach is demonstrated in Cho and Jacobs (2020) [8], where
a 4 km SWE reanalysis product developed by the University of Arizona [30], hereafter
referred to as UA SWE, is bias corrected using the 1 km Snow Data Assimilation System
(SNODAS) project [31] developed by the National Weather Service’s (NWS) National
Operational Hydrologic Remote Sensing Center (NOHRSC). The UA SWE data were created
through the assimilation of numerous ground-based measurements of the SWE from the
Snowpack Telemetry (SNOTEL) and the NWS Cooperative Observer Program (COOP)
network sites and 4 km gridded PRISM precipitation and temperature data. The SNODAS
product (hereafter, SNODAS SWE), on the other hand, aims to integrate snow data from
satellites, airborne platforms, and ground stations with model estimates of snow cover [32].
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Figure 1. A scatter plot showcasing the systematic bias associated with the random forest model
at the Grassy Lake weather station in Wyoming. The estimated load (in millimeters) represents the
estimated snow load predicted using a random forest model, and the actual load (in millimeters)
represents the observed ground snow load.

In the Cho and Jacobs (2020) [8] study, the bias correction process considers the
annual maximum SNODAS SWE data (1 km x 1 km aggregated to 4 km x 4 km spatial
grid) from October 2003 to May 2017 (14 snow years) and the annual maximum UA SWE
data (4 km x 4 km spatial grid) from October 1981 to September 2017 (36 snow years).
Although SNODAS provides reliable SWE data, its limited period of record restricts its
use in extreme value analysis. On the other hand, UA SWE covers 36 years but is often
regarded as less accurate. Therefore, the CDFMM is employed to bias correct UA SWE
using SNODAS SWE data. At the grid cell level, the bias correction process involves
transforming the UA SWE values using the UA and SNODAS SWE distributions developed
for the 14 years where both datasets overlap. The transformation is applied as follows:

UA] = CDF 1o+ (CDFyu+ (UA))), if UA; < max(UAT) (5)
where UA} and UA, represent the bias-corrected and original UA SWE, respectively, at
year i, CDFg o AS+ and CDFyy ;. represent the inverse CDF of SNODAS SWE and CDF
of UA SWE for the overlapping years, and max(UA+) is the maximum UA SWE in the
overlapping years.

If UA; at year i exceeds max(UA+ ), the transformation is applied as follows:
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7(SNODAS:)

UA} = max(SNODASz) + [UA; — max(UAz)] x —— 72—

(6)
where max(SNODAS- ) is the maximum SNODAS SWE in the overlapping years, and
0(SNODAS-) and 0(UA+) represent the standard deviation of SNODAS and UA SWE,
respectively, in the overlapping years.

Although the mapping approach described in the above equations utilizes an empirical
process to construct the transfer function, it is important to note that transfer functions can
also be constructed using a parametric approach. In the empirical approach, the Cumulative
Distribution Function (CDF) is defined by creating a quantile—quantile (Q-Q) plot which
compares observed and modeled data. A transfer function is then generated through
linear interpolation between the points on the plot. This approach, commonly known as
Empirical CDF (ECDF) mapping, has been widely employed in hydrological studies to
correct bias in climate model outputs [8,33,34]. Alternatively, the quantile mapping (QM)
method has been used to define the CDF by estimating a set of quantiles for the observed
and modeled data. A transfer function can then be created by interpolating between the
corresponding quantile values [35]. Furthermore, the probability mapping method has
been extensively used in climate modeling studies to correct bias [36-38]. This method
involves fitting a parametric distribution to the observed and modeled data. The resulting
transfer function is then formed by combining the estimated analytic CDF and the quantile
function derived from the parametric distribution. See Lakshmanan et al. (2015) [39] for a
comprehensive summary of distribution mapping techniques, including both empirical
and parametric approaches.

However, all these mapping techniques require access to both the estimated and
observed data. This means that weather stations that do not have co-located records of
snow depth and SWE cannot be bias corrected for use in extreme value analysis using
the ECDF approach. For this reason, we propose a distribution-scale bias correction
approach based on empirical models using residual bootstrap. Our approach allows bias
correction for cases where observed data are not available, as will be demonstrated in the
following sections.

2.2. Reliability-Targeted Loads

Before the introduction of ASCE 7-22 (2022) [40] by the American Society of Civil
Engineers (ASCE), ground snow loads used for designing buildings were based on a uni-
form probability of exceedance, i.e., a 50-year mean recurrence interval (MRI). Traditionally,
the 50-year MRI snow load has been linked to structural reliability targets with calibrated
safety factors. The pioneering calibration effort was carried out by Ellingwood et al.
(1980) [41], with more details given by Ellingwood et al. (1982) [42] and Galambos et al.
(1982) [43]. Although the initial calibration was correct, research by DeBock et al. (2017) [44]
and Liel et al. (2017) [45] reveals how variations in regional snow accumulation patterns
can result in site-specific snow loads either surpassing or falling short of reliability targets.
This has led to a shift in recent engineering codes, moving from the MRI-based (uniform
hazard) method towards “reliability-targeted” design snow loads, which target a uniform
risk of structure failure.

The objective of the reliability-targeted load is to simultaneously consider the uncer-
tainty of the environmental hazard and the uncertainty of the structural resistance to the
hazard. This is accomplished via Monte Carlo simulation, where failure is defined as any
instance where the simulated demand exceeds the simulated structural capacity. The design
snow load is the value that ensures that the simulated risk of failure is at or below the
failure thresholds defined in Chapter 1 of ASCE 7-22 (2022) [40]. The simulation process is
iterated for various design ground snow loads to determine the achieved reliability index
for a specific location of interest. Figure 2.10 of Bean et al. (2021) [46] shows a workflow of
the reliability-targeted load simulation process.

The model for the reliability-targeted snow loading is derived from the design equation
as follows:
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12D + 1.0 = ¢R 7)

where D represents dead load, S represents roof snow load, and ¢R represents structural
resistance. These three variables are each characterized as random variables with associated
probability distributions. Of interest in this paper is the distribution of roof snow load,
which is modeled as a product of two random variables:

S=G;-G, (8)

Here, G; is the random variable describing the ground snow load, and G, describes the
ground-to-roof conversion factor. The distribution of G, is described in detail in Bean et al.
(2021) [46]. In ASCE 7-22 (2022) [40], the generalized extreme value (GEV) distribution is
employed to model G, at each location. Apart from the GEV distribution, other distributions
such as the log-normal [44,47-50] and gamma distribution [51] have been employed to fit G;.
The ultimate objective is to select a distribution that effectively describes the entire history
of the annual maximum SWE, with a special focus on the upper tail of the distribution.
The major issue in estimating the probability distribution associated with G; is the fact that
the observations of G; are often estimated from observations of annual maximum snow
depth. These estimates are known to contain less variability than direct measurements of
the annual maximum SWE. Section 3 demonstrates our attempt to mitigate the bias in the
scale parameter estimates of the site-specific probability distributions associated with G;.

3. Methods

The appeal of the bootstrap method, originally introduced by Efron (1979) [52], is in
its wide applicability to complex data structures in both parametric and non-parametric
problems, as pointed out by Diciccio and Romano (1988) [53]. Both Davison and Hinkley
(1997) [54] and Hall (1992) [55] demonstrate the use of the bootstrap method to calculate
confidence intervals and conduct hypothesis testing when the theoretical distribution is
unknown. They also discuss the utilization of the bootstrap method for bias correction
in parameters, as well as for parametric and non-parametric regression when asymptotic
assumptions are unfulfilled. See Hall (1992) [55] for a review of the asymptotic properties
and theory underpinning the bootstrap method. There exist many examples across several
domains of the use of the bootstrap method to correct for bias. For instance, the boot-
strap technique has been employed in time series [56-59], dynamic panel models [60,61],
and regression models [62] to rectify bias in various estimators. It has also been used in
machine learning models to minimize bias in the predicted response variable [25] and in the
maximum likelihood estimation (MLE) [63]. These applications, among others, illustrate
the efficacy of the bootstrap method in mitigating bias. There are potential risks associated
with using bias correction techniques, such as increased variability in the estimate that
could outweigh the reduction in bias, leading to an increase in the prediction error [61].
Despite this, the bootstrap method can prove valuable in instances where an analytical bias
correction is either unavailable or deemed inappropriate.

In Section 1, we demonstrated that the use of a regression model for predictions inher-
ently underestimates the variance of the true response variable. This underestimation of
variance subsequently influences distribution parameter estimation when the distribution
is estimated using predicted values [6]. In this paper, both standard deviation and scale
will be represented using the symbol o. This section utilizes residual bootstrapping as a
method to rectify the underestimated second-order (scale) parameter in the distribution
of interest. The use of the residual bootstrapping is beneficial for rectifying this bias as it
allows us to account for the neglected term in Equation (2).

We first make use of the regression model described in Equation (1). The function
f can be a parametric or non-parametric function of the predictor variable matrix X.
In order to correct for the bias in the distribution parameter () of Y, we construct multiple
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distribution parameters over B bootstrap replicates using a residual bootstrap according to
the following algorithm:

1.

2.
3.

Train/fit f(X) using available data.

Obtain residualse =Y — f (3(), which are assumed to follow a normal distribution.
Fit the true Y; to a specified distribution and obtain the initial scale parameter of the
distribution ¢?.

Letting b represent one of B bootstrap samples, perform the following:

*  Obtain new responses by bootstrapping the residuals and adding to the pre-
dicted responses:

Yo = f(X) + € 9)

where Y? represents a simulated alternative to ¥ based on a bootstrap sample of
residual terms.

e  Estimate the scale parameter of the specified distribution (¢?) and other related
parameters (i.e., ]/lb, &by for each boostrap set (YP).

Find the percentile (p*) of the estimates of ¢!, ..., c® that is closest to ¢*. The closest
spread parameter is denoted as .

e  Sort the boostrap estimates ol .., o8

in ascending order.
e For each estimate ¢ (where i = 1,2,...,,B), calculate the absolute difference
from o¥:

A= o' =0 (10)

e  Find the estimate c* that has the smallest absolute difference from . Mathemat-
ically, this is equivalent to finding the index j such that j = argmin; |A;|. Then,
0* = ¢/, and ¢* is accompanied by its corresponding parameters (i.e., y/, &).

*  Calculate the percentile position of c* within the sorted list of estimates. The per-
centile p* is given by the following formula:

« _ position of ¢* in the sorted list
B B

x 100% (11)

In essence, the primary objective of the algorithm outlined above is to learn a specific

percentile (p*) from the training dataset. Subsequently, when presented with a bootstrap
sampling distribution of sigma (¢, ..., c®) from a test dataset, we calculate the adjusted o*
by applying the learned percentile (p*) obtained from the training data. Obtaining the ¢*
can be achieved by the following using test data when the response variable is predicted:

1.
2.

Predict Y using the regression-based model in the above algorithm.

Letting b represent one of B bootstrap samples, perform the following:

e Fit Y to a specified distribution and obtain o¥ and other corresponding parame-
ters (i.e., yb, &by,

Calculate the percentile position of sigma (¢}, ..., c?) within the sorted list of estimates.

The percentile p? is given by the following formula:

» _ position of ¥ in the sorted list
B B

x 100% (12)

Given a specific statistic value p* from the above algorithm, find the c* in the bootstrap
distribution that is associated with p*. Conceptually, this can be expressed as ¢* = ¢*
for the b where |p? — p*| is minimized. The computed ¢* is accompanied by its

corresponding parameters (i.e., u’, &).

In the context of spatial analysis, the given algorithm primarily corrects the bias of the

o parameter for single-location data but can be extended to unobserved locations using
the p* percentile from nearby sites. This is vital where the response variable Y; is entirely
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unavailable for a particular area. Utilizing data from available locations enables bias adjust-
ment in the o parameters of unobserved sites. The algorithm adapts to multiple locations
through a unified regression model and bootstrap correction at each site. An aggregated p*
value, either a global average or a regional one, can be derived from multiple locations for
bias correction in unobserved areas.

4. Simulations

In this section, we conduct simulation experiments to assess the efficacy of our
distribution-scale bias correction process. Our proposed method is evaluated on two
different data-generating models, each with sample sizes of 10,000 and 1000 with the
following form:

r
Yi=Bo+ ) BiXij+ei (13)
=

Here, Y; represents the response variable for the i-th observation, wherei =1,...,n or
the sample size (n = 10,000 or 1000). The term X;; represents the j-th predictor variable for
the i-th observation, where j = 1, ..., 7. B; is the coefficients for the predictor variables, B is
the intercept term, and €; represents the error term for the i-th observation.

For each model, the simulation is run 200 times. In each run, the observations are
partitioned into a 70/30 training/test split. The first model is a Gaussian model where the
following apply:

o Xij NN(]lj,l.S), with Hj NN(S,S) forj =1,...,10;

e (0< Cov(Xij,Xik) <05fori=1,...,nand j,k=1,...,10 where j # k;
* po=0andB;=1forj=1,...,10;

e ¢ ~N(0,2)fori=1,...,n.

The above conditions define the structure of the simulated data for the Gaussian
model where each predictor variable X;; follows a normal distribution with mean ; and a
variance of 1.8. The mean y; for each predictor is itself drawn from a normal distribution.
This setup ensures that each predictor variable Xij has some inherent variability, and this
variability differs independently between predictors.

The second model is a uniform model with a linear structure similar to the form
described by Equation (13) where the following apply:

e X;j~U(-1L1)forj=1,...,5

° ﬁo:—5,ﬁ1:4,,82:2.5,ﬂ3:5,ﬁ4:2,andﬁ5:1;
e ¢ ~N(0,2)fori=1,...,n.

The uniform model specifies that each predictor variable X;; for the i-th observation
and the j-th observation predictor is drawn from a uniform distribution over the interval
[—1,1]. The inclusion of a uniform model alongside the Gaussian model in the simulation
serves the purpose of investigating the performance and scale/variance parameter behavior
of different models when data follow varying distribution assumptions.

4.1. Experimental Setup

To set up our experiment, we begin by training separate linear regression models for
the two simulated training datasets. We estimate the response variable from the respective
regression models and fit the response variable estimates to a normal distribution. Next, we
apply our proposed method to correct for the bias in o. Note that we adjust o here because
it is the parameter that is systematically underestimated in our application of interest. This
is achieved by the following:

*  Selecting the best percentile (p*) from the sampling distribution of the ¢ parameter
that corrects for the bias in ¢ for the training data.

*  Generating the sampling distribution of 4 and ¢ using the test dataset with a bootstrap
sample size of 200.
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e Using p*, selecting the least biased o parameter along with its y parameter from the
sampling distribution for the test data.

The above process describes the bias correction for a set of data observations. This
process is applied to the 200 data simulations for the Gaussian and uniform models.

4.2. Results

The results of applying our bias correction method for estimating distribution pa-
rameters are presented in Figure 2. The degree of bias is assessed through the ratio of
estimated to true parameters. A ratio of one implies no bias, whereas a ratio below one
signifies an underestimation, and a ratio above one signifies an overestimation. The second
quadrant (set of boxplots) of the figure reveals that “unadjusted” parameters consistently
underestimate the value of o when the data generation sample size is 10,000. Conversely,
the first quadrant shows that our bias correction method effectively mitigates this bias in o
(at n = 10,000), albeit at the expense of a minor increase in the variance of the ratios for y.
This pattern—bias elimination in ¢ and a slight increase in variance for y—is also evident
in the third and fourth quadrants, which are associated with a data generation sample
size of 1000. These results demonstrate that our technique can achieve some form of bias
correction, regardless of the sample size.

Unadjusted Adjusted
1.05 -

1,00 = = 4 = === oo ++__++___ﬁ

—
0.95 - $ o
o
0.90 - — =

/? L[]
g V8-
§ ) .
1.00 = = —m it R e e — -- ---3
1
0.95 - ! =
o
0.90 - : o
0.85 -

n c n c

Model E2 Gaussian B3 Uniform

Figure 2. Boxplots comparing the ratio of the normal distribution parameters (mean and scale) of the
actual response variable versus the predicted response variable. The data generation models, i.e.,
the uniform and Gaussian models, are generated at different sample sizes. Ratios are shown both
before (unadjusted) and after (adjusted) the bias correction technique is employed. A ratio closer to
one means that the parameter is less biased, while ratios below one indicate an underestimate and
vice versa.

Table 2 quantifies the bias and coefficient of variation (COV) for the unadjusted and
adjusted parameters at different sample sizes. The quantities’ bias and COV are computed
by comparing the estimated parameter with the true parameter, utilizing a relative ratio
approach for each parameter as shown in Figure 2. On the other hand, the COV quantifies
the relative variability or dispersion of the ratio of the parameter compared to its mean.
A higher COV value indicates a larger amount of variability relative to the mean and
vice versa. Table 2 demonstrates results that align with the visual findings presented in
Figure 2. Specifically for bias across different sample sizes, both the uniform and Gaussian
models show that y is estimated without bias—evidenced by a ratio value of 1—regardless
of whether bias correction is applied. Conversely, ¢ is systematically underestimated in
the absence of bias correction, registering ratio values of 0.9 and 0.94 for the uniform
and Gaussian models, respectively. Importantly, the application of our bias correction
technique rectifies this underestimation, bringing the average bias value for o up to 1 across
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different sample sizes. Regarding the COV, the table reveals that a reduction in sample
size is associated with increased variability. In both the uniform and Gaussian models,
decreasing the sample size leads to an increase in the COV for both i and o, regardless of
whether the parameters are adjusted. In summary, the results in Table 2 demonstrate that
the bias correction method effectively resolves the underestimation issue observed in the
unadjusted parameters.

Table 2. Comparison of the bias and coefficient of variation (COV) of unadjusted and adjusted
parameters for the uniform and Gaussian models generated at different sample sizes. The quantities
are computed based on the relative ratio with respect to the true parameter values.

Uniform Model Gaussian Model
cov Bias Ccov Bias
u o u o y g H s
n = 10.000 Unadjusted  0.01 0.01 1.00 0.90 0.00 0.01 1.00 0.94
B Adjusted 0.01 0.01 1.00 1.00 0.00 0.01 1.00 1.00
Unadjusted 0.04 0.04 1.00 0.90 0.00 0.04 1.00 0.94
n = 1000

Adjusted 0.03 0.03 1.00 1.00 0.00 0.02 1.00 1.00

5. Applications

Section 1 describes the inevitable underestimation of true SWE variance that comes
when using estimates of the SWE derived from snow depth measurements. In this section,
we demonstrate how our bootstrap bias correction approach can be used to mitigate this
issue. The data used in this demonstration come from Wheeler et al. (2022) [6], who pro-
posed an RF model to estimate the annual maximum snow load (or, equivalently, the SWE)
from the annual maximum snow depth. The dataset includes annual maximum pairs of
SWE/snow depth from the Global Historical Climatology Network—Daily (GHCND) [64].
Note that the maximum snow depth and maximum SWE need not occur on the same day
of the snow season. The sources of these measurements include both National Weather
Service First-Order Stations (FOS) and Natural Resource Conservation Service Snowpack
Telemetry (SNOTEL) stations [64]. FOS are typically situated at airports and are one of the
few sources of direct measurements of the SWE in the GHCND outside of SNOTEL stations.
Additionally, SNOTEL stations are automated sites located in remote, high-elevation moun-
tain watersheds in the western U.S. The consolidated dataset also includes Snow Course
(SC) observations from the Natural Resources Conservation Service [65]. SC stations typi-
cally consist of manual measurements of the SWE taken on a monthly basis. Additionally,
the dataset also includes region-specific snow measurements from Maine (ME) [66] and
New York (NY) [67]. Figure 3 shows a map of these data sources, which are available for
download from Wheeler (2021) [68].

Table 3 describes all the variables used in the model development phase, including
the ancillary variables (such as temperature and distance to the coast) used in the RF
model building phase. The data span the period 1915-2020, with 45,879 observations
from 2473 stations over a period of 105 years, though not all stations were active for all
105 seasons. Of the 45,879 observations, a total of 25,523 are used to train the model,
with 22,356 observations used for validation.
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Figure 3. Geographic locations of the snow measurement stations described in Wheeler et al. (2022) [6].
Station types include First-Order Stations (FOS), Snow Course (5C), and Snowpack Telemetry (SNO-
TEL) stations, as well as measurements from two state-specific data sources (STATE) from New York
and Maine.

Table 3. Description of variables used in the model development phase as originally presented in
Wheeler (2021) [6]. The data range is from 1915 to 2020.

Climate Variables

Name Description Units Variable
SD Snow Depth mm hy
SWE Snow Water Equivalent mm S
MCMT Mean Coldest Month Temperature °C T;
MWMT Mean Warmest Month Temperature °C Tw
D MWMT-MCMT °C Ty
PPTWT Sum of Winter Precipitation (December-February) P
Non-Climate Variables

D2C Distance to Coast m D,
ELEV Elevation m E
SMONTH Month of Max Depth (1 October, 9 June) M

5.1. Depth-to-Load Conversion Model

Using these data, we build an RF depth-to-load conversion model similar to the model
built by Wheeler et al. (2022) [6]. In addition, we build gradient boosting machine (GBM)
and support vector regression (SVR) depth-to-load conversion models. The depth-to-load
models are represented by Equation (14), where a prediction of snow water content ratio
(Mmoder) is multiplied by snow depth (h;) to estimate the SWE.

SWE; = hy * yoger (ht, Te, Tw, Ty, Pr, D¢, E, Ms) + € (14)

The response variable for the snow density model is a ratio of the SWE to snow depth
(7,), which is referred to hereafter as the specific gravity of snow. In the context of SWE
modeling, estimating the specific gravity of snow is favored over direct estimates of the
SWE, as described by Sturm et al. (2010) [4]. To evaluate the impact of the conversion
models on the design snow load, we assume that all measurement locations have annual
maximum SWE values that follow a log-normal distribution, though other extreme value
distributions could replace the log-normal distribution without loss of generality.

We estimate the parameters of the log-normal distribution using both direct measure-
ments of the SWE and the estimated measurements of the SWE from the three previously
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described machine learning models. For each location, we estimate the distribution param-
eters using maximum likelihood estimation. Figure 4 displays a boxplot of the estimated
parameter ratios, specifically, %* and ‘77* Table 4 shows the count of weather stations per
weather station network. Note that we take the exponent of the log-normal parameter
in order to make comparisons on the original scale of the data. This makes the final
results easier to interpret and emphasizes the practical differences between approaches.
For computing the parameter ratios, u* and ¢* correspond to the distribution parameters
for the observed loads, while y and o denote those for the estimated loads according to
the depth-to-load conversion method utilized in the RF model. The spread parameter, our
parameter of interest, tends to be consistently undervalued for the FOS, ME, NY, and SNO-
TEL weather station networks, as illustrated in Figure 4. The pattern is replicated in the
distribution of estimated loads when we employ the SVR and GBM algorithms, as shown
in Figure 5. Considering that ¢ plays a significant role in estimating design ground snow
loads, an underestimation of the log-normal distribution variance will ultimately result in
underestimations of the true design loads.
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Figure 4. Boxplots comparing the ratio of the log-normal distribution parameters (mean and scale)
of the actual snow load to the predicted snow load from the RF model before any bias correction.
A ratio closer to one means that the parameter is less biased, while ratios below one indicate an
underestimate and vice versa. Distributions are fitted to each weather station with the sample size of
each network provided in Table 4.

Table 4. Number of qualified (n > 20) weather stations within each weather station network.

Network Name Number of Weather Stations
FOS First-Order Stations 46
ME Maine State Network 23
NY New York State Network 122
SC Snow Course 144

SNOTEL Snowpack Telemetry 74
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Figure 5. Boxplots comparing the ratio of the log-normal distribution parameters (mean and scale)
of the actual snow load versus the predicted snow load, before and after bias correction. Ratios
are shown both before (unadjusted) and after (adjusted) the bias correction technique is employed.
A ratio closer to one means that the parameter is less biased, while ratios below one indicate an
underestimate and vice versa. Distributions are fitted to each weather station with the sample size
of each station cohort provided in Table 4. Predicted snow loads are estimated using the gradient
boosting machine (GBM), random forest (RF), and support vector regression (SVR).

5.2. Bias Correction in Snow Load Distribution

Figure 5 shows the results of our proposed bias correction method, described in
Section 3, when applied to the different machine learning models. To achieve this, we
first train conversion models to predict the SWE and obtain the error distribution of the
respective conversion models. Subsequently, we apply the bootstrap process to each
weather station, defining p* at the station level as the optimal percentile for a sampling
distribution of parameters that minimizes bias in the variance parameter. Only weather
stations with 20 or more joint annual observations of snow depth and the SWE are used
to obtain estimates of p*. We recognize that, even with 20 observations, the parameter
estimates may be highly uncertain. Despite this limitation, there is still value in conducting
comparisons across different station cohorts (FOS, ME, NY, SC, SNOTEL) to identify
potential systematic biases, a task that becomes unfeasible if the minimum observation
threshold increases. Our training data comprise 211 distinct weather stations that are
separate from the 211 stations used in the test data. For each weather station in the training
data, we use 500 bootstrap samples to estimate several sets of distribution parameter
estimates, from which we select the p* for our estimates o that most closely correspond
with the ¢ estimates obtained from direct measurements of the SWE.

Next, SWE distribution parameter predictions are made for the test data. Along
with the error distribution from the conversion model, Step 3 of the algorithm described in
Section 3 is applied using 500 bootstraps to obtain a sampling distribution of the log-normal
distribution parameters. Given that p* is a station-specific calculation, we compute the
global selection parameter (p;), which is 0.67, an average of the p* values. The parameters
of the log-normal distribution displayed in Figure 5 are the parameters before and after
the bias correction of the parameters across various machine learning models. Bias is
assessed by comparing the ratio of the estimated parameter (converted load) to the true
parameter (direct load). Prior to the correction of bias, a majority of the o values across the
different station cohorts for each machine learning model are found to be underestimated.
In contrast, the mean parameter values (u) typically exhibit less bias. However, there is a
notable exception for the mean values (y) in the case of the GBM and RF models in the
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First-Order Station cohort. The “adjusted” portion of Figure 5 depicts the parameters’
post-bias correction. The plot reveals that the scale parameters across the various station
networks align more closely with the reference line, indicative of a successful bias correction.
In particular, the SVR model exhibits significant improvement, effectively mitigating the
bias in ¢ for various station cohorts after adjustment. Conversely, while the GBM and RF
models demonstrate some degree of bias correction following the adjustment, they fall
short of fully correcting the bias either for ¢ or y at some station networks. This shortfall is
especially noticeable in the First-Order Station (FOS) cohort. In conclusion, the efficacy of
our bias correction strategy is contingent upon the type of model employed. As observed,
a better model like the SVR facilitates full bias correction, in contrast to relatively less
effective models such as the GBM and RF models (tree-based models), which do not fully
achieve the desired bias correction. This discrepancy can be attributed to the inability of
tree-based models to extrapolate predictions beyond the range of observed data. This leads
to a tendency for the predictions to overestimate lower extremes and underestimate higher
extremes, and our results show that bias in predictions for the extremes cannot be overcome
with our bias correction method alone. This highlights the important role of model choice
in the successful implementation of our bias correction approach.

We also evaluate our bootstrap bias correction methodology using the GEV distribu-
tion across diverse station cohorts for each machine learning model. The process for bias
correction remains identical, the only difference being the utilization of the GEV distribu-
tion for distribution estimation instead of the log-normal distribution. In the context of the
GEV distribution, fi and & are used to denote the location and scale parameters, respectively.
Figure 6 shows the “unadjusted” and “adjusted” parameters when the different machine
learning models are used. Just like in Figure 5, bias is measured as a ratio of the estimated
parameter (converted load) to the true parameter (direct load). Before bias correction,
the unadjusted scale parameter for the GEV is less biased compared to its counterpart in the
log-normal distribution in Figure 5. Nevertheless, following the bias correction, we see that
the bias in the scale parameter () aligns more closely with the reference line, demonstrating
a successful adjustment for all station types except SNOTEL stations. Fortunately, SNOTEL
stations are the lone station group with complete SWE measurements, which means our
adjustment approach would not be required for that station type.
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Figure 6. Boxplots comparing the ratio of the GEV distribution parameters (location and scale) of the
actual snow load versus the predicted snow load, before and after bias correction. Ratios are shown
both before (unadjusted) and after (adjusted) the bias correction technique is employed. A ratio closer
to one means that the parameter is less biased, while ratios below one indicate an underestimate and
vice versa. The distribution is fitted on the test dataset per weather station. Distributions are fit to each
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weather station with the sample size of each station cohort provided in Table 4. Predicted snow loads
are estimated using the gradient boosting machine (GBM), random forest (RF), and support vector
regression (SVR).

On the other hand, Figure 7 shows the change in the shape parameter across the
different station type groups. Comparing the “adjusted” to the “unadjusted”, we observe
slight increases in the shape parameter when the bootstrap method is applied. The slight
increase suggests that the proposed bootstrap approach, which primarily focuses on the
scale parameter, makes no appreciable difference to the ¢ parameter estimates. This
outcome aligns with our expectations since the approach specifically targets the scale
parameter rather than the ¢ parameter.
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Figure 7. Boxplots comparing the raw change in the shape parameter of the GEV distribution for
the actual snow load versus the predicted snow load, before and after bias correction. Ratios are
shown both before (unadjusted) and after (adjusted) the bias correction technique is employed.
A change closer to zero means that the parameter is less biased, while a change below zero indicates
an underestimate and vice versa. Distributions are fit to each weather station with the sample size
of each station cohort provided in Table 4. Predicted snow loads are estimated using the gradient
boosting machine (GBM), random forest (RF), and support vector regression (SVR).

5.3. Reliability-Targeted Load (RTL) Results after Bias Correction

In this section, we assess the impact of our bias correction on the reliability-targeted
loads (RTLs) calculated in [46]. RTLs, as explained in Section 2.2, account for both the
variability in environmental hazard (e.g., snow) and the variability in structural resistance
to the hazard via Monte Carlo simulation. The computation of RTLs is based on the
same assumptions presented by Bean et al. (2021) [46], with the only difference being
in the manner in which the ground snow load probability distribution parameters are
calculated. We employ our distribution-scale bias correction method to calculate the
probability distribution parameters with the objective of mitigating any bias in the scale
parameter when estimating missing snow load values. In this process, we depend on
the global estimate of p* = 0.67, whose value was derived in the previous subsection,
for bias correction of the scale parameter. Bootstrap samples of B = 500 are repeated for the
6727 Tier 1 and 510 Tier 2 stations described by Bean et al. (2021) [46]. Tier 3 stations from
that report are excluded from this analysis due to their insufficient number of non-zero
observations, which renders them unsuitable for our bias correction approach. Note that
some stations had years with direct (observed SWE) and years with indirect (i.e., estimated
SWE) measurements of snow load. In such cases, bootstrap sampling is only applied
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to indirect measurements of snow load, and direct measurements of snow load remain
identical in each iteration of the bootstrap sampling.

Figure 8 visually represents the percentage change in RTLs that results when using
the bias-corrected probability distribution parameters. When examining the number of
stations with a positive increase in RTL out of 7237 stations, we observe 81%, 82%, 82%,
and 82% positive changes in RTL for RT_I, RT_II, RT_III, and RT_IV, respectively. Focusing
on the interquartile, we observe an approximate 10% to 13% median percent change in
RTL values across the risk categories. It is important to highlight that, while we typically
observe a 10% to 13% median increase in RTLs, there is a very large range of RTL relative
changes evident within the boxplots. Among these outliers, some stations experience
substantial reductions in RTLs. These stations seem to be primarily located in the southern
parts of the CONUS, and the precise cause of these anomalous observations will require
explorations beyond the scope of this paper. Conversely, there are also substantial increases
in RTLs observed at some locations. These large differences highlight the sensitivity of
the distribution fitting process for RTLs at measurement locations with small sample
sizes. These findings also shed light on one of the limitations inherent in utilizing a global
percentile estimate for the scale parameter adjustment. One alternative approach would be
to use a local or regional adjustment percentile, though this would require a more spatially
comprehensive network of co-located measurements of the snow depth and SWE in order to
estimate the bias correction percentile precisely. This would be challenging as most weather
stations with co-located depth and SWE measurements are predominantly situated in
mountainous regions.
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Figure 8. Boxplot comparing changes in reliability-targeted loads (RTL) after bias correction for each
risk category. RT I, RT II, RT III, and RT IV are associated with a risk index of 2.5, 3, 3.25, and 3.5,
respectively. The RTLs are computed using the same data and assumptions as used by Bean et al. [46].

5.4. Limitations

There are limitations to our bias correction method worth considering before applying
it to other problems. Firstly, the success of our method in reducing bias hinges on the
quality of the regression model used to generate the indirect observations. In this context,
a good regression model is one that produces unbiased predictions of the mean response.
If, however, a model has biased predictions of the mean response, the bootstrap approach
to correcting the variance in the distribution of estimates will fail. Thus, it is crucial to opt
for a model that, at a minimum, provides unbiased predictions of the mean response, even
if the variance of collections of those predictions is biased, to ensure the effectiveness of our
bias correction method.
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To demonstrate the effect of an inadequate model on bias correction, we apply an RF
model to the Gaussian simulation problem in Section 4. Zhang et al. (2019) [69] highlights
the fact that RF models may struggle to represent highly linear relationships. This can
result in challenges in representing the true linear relationship with the RF model. Figure 9
illustrates a single fit of the RF model applied to the linear problem formulated in the
Gaussian version of Equation (13). The model struggles to fit the observations on the
edges of the explanatory variable space, resulting in inconsistent errors across different
levels of the response variable. Figure 10 shows that, despite the attempt to correct the
bias in the scale parameter (¢), the RF model’s inefficiency limits our proposed approach’s
effectiveness. In other words, we are unable to achieve a complete correction because our
bootstrap technique cannot overcome the bias introduced by the structural deficiencies in
the RF prediction on the edges of the predictor variable space.

Train Test

Estimated Response (mm)

30 40 50 60 70 80 30 40 50 60 70 80

Actual Response (mm)

Figure 9. Scatter plot comparing the actual versus estimated response variable for a linear problem
using a random forest model.
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Figure 10. Boxplot comparing the ratio of the normal distribution parameters of the actual vs.
estimated response variable when bias is corrected or not for a linear problem. The response variable
is estimated using a random forest model. Ratios are shown both before (unadjusted) and after
(adjusted) the bias correction technique is employed. A ratio closer to one means that the parameter
is less biased, while ratios below one indicate an underestimate, and ratios above one indicate
an overestimate.
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Additionally, Figure 5 highlights another limitation of the bootstrap method. When
the variance/scale parameter (¢) is already unbiased, such as is the case with the Snow
Course (SC) weather station network, the application of our approach tends to introduce
an overestimation bias in parameter estimation. While overestimated parameters are
generally preferable to underestimated parameters for the purposes of engineering design,
caution must be exercised when interpreting the results and applying them in practical
design scenarios.

Note that the alternative CDF matching described by Cho and Jacobs (2020) [8] has
its own limitations. As detailed in Section 2.1, this alternative bias corrects UA SWE
using SNODAS SWE through CDF matching. The impact of this alternative correction
is depicted in Figure 11. For this result, we obtain the estimated parameter from the log-
normal distribution of the corrected UA SWE, while the true parameter is derived from
the log-normal distribution of the observed SWE. The bias is quantified by calculating
the ratio between the estimated parameter and the true parameter. If we do not correct
for bias, the first set of boxplots in Figure 11 illustrates that the unadjusted parameters
result in some systematic underestimation of ¢ for the FOS, ME, and NY weather station
types. However, when applying the proposed bias correction method, the bias in o for
the adjusted parameters becomes worse for the FOS, ME, and NY weather station types.
An important future task is to explore to what degree the limitations in both approaches
are being exaggerated by misreported observations of snow depth/SWE within each
station network.
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Figure 11. Boxplot comparing the estimated log-normal distribution parameters (4 and o) using the

UA SWE versus ground SWE before and after bias correction. A ratio closer to one means that the

parameter is less biased, while ratios below one indicate an underestimate and vice versa.

6. Conclusions

Although regression-based SWE estimation models significantly expand the number
of weather stations available for future mapping efforts, they come with the drawback of
consistently underestimating the variances in the resulting distributions. This underesti-
mation has significant implications for the design and safety of structures, particularly in
the Conterminous United States (CONUS), where extreme snow events can pose a risk.
To address this, our study introduced a distribution-scale bias correction technique to
rectify the variance and/or scale parameter biases in SWE distribution. This approach
is based on residual bootstrapping and effectively reincorporates the scale/variance bias
back into the distribution fitting process. We evaluated the performance of our method
using both synthetic and actual datasets. In synthetic data, the method effectively cor-
rected the underestimated scale parameter arising from regression model estimates. In the
case of snow data, the technique rectified the scale parameter bias without affecting other
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non-scale distribution parameters across multiple types of network stations (FOS, ME,
NY, SC, and SNOTEL). This suggests that stations not directly measuring the SWE can
still yield unbiased scale parameters when the SWE is estimated through a regression-
based approach.

Although our proposed technique successfully addresses the problem of underesti-
mating variance, it comes with its own set of challenges. One issue is that the efficacy of our
method is contingent upon choosing the correct type of regression model. Moreover, we
observed that applying our bias correction method to situations where the scale parameter
is already unbiased can lead to its overestimation. This implies that our technique should
only be used when there is clear evidence of bias in the scale parameter. Presently, our
approach employs a global selection parameter for identifying unbiased scale parameters,
but future work could explore the use of local-level selection criteria. We expect that adopt-
ing a local-level parameter could refine the identification of unbiased scale parameters.
Despite these limitations, our bias correction approach offers a valuable tool for rectifying
scale parameter bias in weather station data, thus enhancing the accuracy of reliability
analyses that depend on SWE distribution.
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Abbreviations

The following abbreviations are used in this manuscript:

ASCE American Society of Civil Engineers
BM Block Maxima

coor Cooperative Observer Network
CONUS  Conterminous United States

CDF Cumulative Distribution Function

ECDF Empirical Cumulative Distribution Function
FOS First-Order Stations

GEV Generalized extreme value

GP Generalized Pareto

GHCND  Global Historical Climatology Network—Daily
GBM Gradient boosting machine

LRFD Load And Resistance Factor Design

MAE Mean Absolute Error

ME Maine

MLE Maximum likelihood estimation

MAD Mean Absolute Deviation

MRI Mean recurrence interval

ML Maximum likelihood

NY New York

NWS National Weather Service

OSBF One-step boosted forests
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PDF Probability Density Function
RF Random forests

RMSE Root Mean Square Error
RTL Reliability-targeted load
SWE Snow water equivalent

SNODAS  Snow Data Assimilation System
SNOTEL  Snowpack Telemetry

SVR Support vector regression
SC Snow Course
SNWD Snow depth
UA University Of Arizona
WESD Water Equivalent of Snow on the Ground
u.s. United States
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