Utah State University DigitalCommons@USU

Fall Student Research Symposium 2021

Fall Student Research Symposium

12-9-2021

Determining the Nucleic Acid Binding Affinities of CRISPR-Associated DinG (CasDinG)

Matt Armbrust Utah State University, matt.armbrust5@gmail.com

Follow this and additional works at: https://digitalcommons.usu.edu/fsrs2021

Part of the Biochemistry Commons

Recommended Citation

Armbrust, Matt, "Determining the Nucleic Acid Binding Affinities of CRISPR-Associated DinG (CasDinG)" (2021). *Fall Student Research Symposium 2021*. 17. https://digitalcommons.usu.edu/fsrs2021/17

This Book is brought to you for free and open access by the Fall Student Research Symposium at DigitalCommons@USU. It has been accepted for inclusion in Fall Student Research Symposium 2021 by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Determining the nucleic acid binding affinities of CRISPR-associated DinG (CasDinG)

Matt Armbrust

Dr. Ryan Jackson Research

Science Photo Library

• Phage outnumber bacteria 10:1

- Phage outnumber bacteria 10:1
- Survival depends on innovation at the molecular level

- Phage outnumber bacteria 10:1
- Survival depends on innovation at the molecular level

Major question: how do bacteria protect themselves?

Science Photo Library

- Phage outnumber bacteria 10:1
- Survival depends on innovation at the molecular level

Major question: how do bacteria protect themselves?

CRISPR-Cas

Science Photo Library

CRISPR-Cas systems provide adaptive immunity

CRISPR-Cas systems provide adaptive immunity

CRISPR-Cas systems provide adaptive immunity

- Biochemical characterization of Cas genes is necessary for understanding mechanisms
 - How are spacers integrated?
 - How are crRNA libraries processed?
 - What is the molecular mechanism of immunization?

CRISPR-Cas systems are diverse

CRISPR-Cas systems are diverse

Type IV-A CRISPR-Cas systems are novel, functional immune systems in vivo

Type IV-A CRISPR-Cas systems are novel, functional immune systems in vivo

Primary Structure Alignment to P. aeruginosa CasDinG:

	E. coli DinG	S. aureus DinG
Amino Acid Identity	20.0 %	13.3 %
Amino Acid Similarity	32.0%	24.5 %

Questions to answer:

Primary Structure Alignment to P. aeruginosa CasDinG:

	E. coli DinG	S. aureus DinG
Amino Acid Identity	20.0 %	13.3 %
Amino Acid Similarity	32.0%	24.5 %

Questions to answer:

Does CasDinG bind nucleic acid substrates?

Primary Structure Alignment to P. aeruginosa CasDinG:

	E. coli DinG	S. aureus DinG
Amino Acid Identity	20.0 %	13.3 %
Amino Acid Similarity	32.0%	24.5 %

Questions to answer:

- Does CasDinG bind nucleic acid substrates?
- Does the presence of ATP alter binding affinities?

Primary Structure Alignment to P. aeruginosa CasDinG:

	E. coli DinG	S. aureus DinG
Amino Acid Identity	20.0 %	13.3 %
Amino Acid Similarity	32.0%	24.5 %

Questions to answer:

- Does CasDinG bind nucleic acid substrates?
- Does the presence of ATP alter binding affinities?
- Does CasDinG possess helicase activity?

Quantifying CasDinG binding to nucleic acid with fluorescence anisotropy

Quantifying CasDinG binding to nucleic acid with fluorescence anisotropy

Quantifying CasDinG binding to nucleic acid with fluorescence anisotropy

Titrate protein into ligand, calculate r:

CasDinG binds to ssDNA with high affinity

CasDinG binds to ssDNA with high affinity

What about ribonucleotides?

Presence of an ATP analogue does not alter CasDinG binding affinity for ssDNA

Presence of an ATP analogue does not alter CasDinG binding affinity for ssDNA

CasDinG does not appear to bind ssRNA

CasDinG does not appear to bind ssRNA

CasDinG unwinds DNA-RNA hybrids and may possess RNase activity

CasDinG unwinds DNA-RNA hybrids and may possess RNase activity

CasDinG unwinds DNA-RNA hybrids and may possess RNase activity

CasDinG binds to non-hydrolyzable ssRNA

Does CasDinG bind nucleic acid substrates?

Does the presence of ATP alter binding affinities?

Does CasDinG bind nucleic acid substrates? 🗸

Does the presence of ATP alter binding affinities?

Does CasDinG bind nucleic acid substrates? ✓

Does the presence of ATP alter binding affinities? \checkmark

Does CasDinG bind nucleic acid substrates?

Does the presence of ATP alter binding affinities? \checkmark

Does CasDinG bind nucleic acid substrates? ✓

Does the presence of ATP alter binding affinities? 🔨

Does CasDinG possess helicase activity?

More work to be done...

Does CasDinG interact with the other Type IV-A gene products? What is the atomic structure of CasDinG?

Insights from this research provide crucial groundwork for human therapeutics

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Science Photo Library, nobelprize.org

Insights from this research provide crucial groundwork for human therapeutics

• Understanding of bacterial immune systems and pathogenesis

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Insights from this research provide crucial groundwork for human therapeutics

- Understanding of bacterial immune systems and pathogenesis
- Novel biotechnology tools

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Insights from this research provide crucial groundwork for human therapeutics

- Understanding of bacterial immune systems and pathogenesis
- Novel biotechnology tools
- Cas proteins have been used to detect COVID-19

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Thank you! Any questions?

Poster Session: 1 PM