Winter 2-28-2014

Methods to Decrease Error in Conductivity Measurements of Highly Disordered Materials

Phil Lundgreen
Utah State University

Justin Dekany

JR Dennison
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Physics Commons

Recommended Citation
https://digitalcommons.usu.edu/mp_presentations/19

This Presentation is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Presentations by an authorized administrator of DigitalCommons@USU. For more information, please contact rebecca.nelson@usu.edu.
Methods to Decrease Error in Conductivity Measurements of Highly Disordered Materials

Phil Lundgreen, Justin Dekany and JR Dennison

Physics Department, Utah State University

Abstract

By developing a low-noise, high-voltage battery power supply, system noise has been reduced, increasing accuracy of conductivity measurements of highly disordered insulating materials. The method involves a simple parallel plate capacitor setup with the sample sandwiched between electrodes, a voltage potential applied to one electrode, and a measurement device applied to the back electrode measuring current. Previous methods involved use of a commercial power supply with a claimed low noise and high linearity, but with a low AC output ripple. At high voltages (1000 V), however, the noise became apparent in the readings and an unacceptable uncertainty was introduced in our precision conductivity measurements. Through the use of a stable dc battery high-voltage power supply, we were able to reduce noise in current measurements and achieve a more accurate measurement of conductivity for various samples.