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Shades of grey: a critical review of grey-number optimization 

David  E .  Rosenberg * 

Department of Civil & Environmental Engineering and Utah Water Research Laboratory, 
Utah State University, Logan, Utah, USA 

Abstract -- A grey number is an uncertain number with fixed lower and upper bounds 
but unknown distribution. Grey numbers find use in optimization to systematically and 
proactively incorporate uncertainties expressed as intervals plus communicate resulting 
stable, feasible ranges for the objective function and decision variables. This paper 
critically reviews their use in linear and stochastic programs with recourse. It summarizes 
grey model formulation and solution algorithms. It advances multiple counter-examples 
that yield risk-prone grey solutions that perform worse than a worst-case analysis and do 
not span the stable feasible range of the decision space. The paper suggests reasons for 
the poor performance and identifies conditions for which it typically occurs. It also 
identifies a fundamental shortcoming of grey stochastic programming with recourse and 
suggests new solution algorithms that give more risk-adverse solutions. The review helps 
clarify the important advantages, disadvantages, and distinctions between risk-prone and 
risk-adverse grey-programming and best/worst case analysis. 

Keywords: interval number; linear program; stochastic program with recourse; optimization with 
uncertainty. 

Introduction 

Over the last three decades, a variety of techniques have surfaced to optimize in the face 
of uncertainty. Techniques such as chance constraints, grey numbers, fuzzy numbers, 
probabilistic, possibilistic, flexible, and stochastic programs with recourse have been 
presented to systematically and proactively incorporate numerical uncertainties in 
optimization models (Sahinidis, 2004). Here, I review the proactive systems analysis 
technique of grey number optimization and suggest some modifications. 

A grey number (also called an interval number) takes an unknown distribution between 
fixed lower and upper bounds, i.e., [ ] +±−+−± ≤≤∈ wwwwww or, , where w- and w+, are, 
respectively, the lower and upper bounds for w. In optimization, grey numbers find use to 
systematically and proactively incorporate uncertainties expressed as intervals plus 
communicate resulting stable, feasible ranges for the objective function and all decision 
variables. Grey number programs are decomposed into two computationally-efficient, 
interacting deterministic sub-models that are then solved sequentially. Decision makers 
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use the resulting grey intervals for decision variables to select alternatives within 
proscribed bounds. 

Grey numbers have been applied to a variety of linear (Ishibuchi and Tanaka, 1990, 
Huang, Baetz and Patry, 1992, Huang and Moore, 1993), mixed integer (Huang, Baetz 
and Patry, 1995, Huang, 1998), quadratic (Huang and Baetz, 1995, Li and Huang, 2007), 
and stochastic (Huang and Loucks, 2000, Maqsood and Huang, 2003, Maqsood, Huang 
and Zeng, 2004, Maqsood, Huang and Yeomans, 2005, Maqsood, Huang, Huang and 
Chen, 2005, Li, Huang and Nie, 2006, Li and Huang, 2006, Li, Huang and Baetz, 2006, 
Li, Huang, Nie and Huang, 2006, Li, Huang and Nie, 2007, Rosenberg and Lund, 2008) 
programs with applications including hypothetical numerical examples for solid waste 
management (Huang, Baetz and Patry, 1992, Huang, Baetz and Patry, 1995, Maqsood 
and Huang, 2003, Maqsood, Huang and Zeng, 2004, Li and Huang, 2006, Li, Huang, Nie, 
Nie and Maqsood, 2006), water resources allocation (Huang and Loucks, 2000, Maqsood, 
Huang and Yeomans, 2005, Maqsood, Huang, Huang and Chen, 2005, Li, Huang and 
Nie, 2006), and flood diversion planning (Li, Huang and Nie, 2007). Limited practical 
examples include for water quality management in China (Huang, 1998), solid waste 
management for the city of Regina (Li and Huang, 2006), and water system planning in 
Amman, Jordan (Rosenberg and Lund, 2008). 

Apart from the practical examples, most grey optimization work has focused on model 
formulations and solution techniques for hypothetical examples. There has been little 
interpretation of solution results nor comparison to results from other solution approaches 
such as sensitivity or best/worst case analysis.  

Sensitivity analysis (also called range-of-basis) is a reactive approach that—after 
solution—examines how or whether the optimal solution changes with changes in input 
parameter values. Sensitivity can be examined manually (changing an individual input, 
resolving, and noting solution changes) or by analyzing the range-of-basis output 
produced by most optimization solvers. Unfortunately, range-of-basis results apply only 
to individual changes in input parameters and not combinations of parameter changes as 
accommodated by grey-number approaches. 

The long-standing approach of best/worst-case analysis simply solves a program twice 
for the combinations of parameter values that represent the most favourable (best case) 
and least favourable (worst case) conditions. Rosenberg and Lund (2008) compared a 
grey stochastic program with recourse to deterministic-equivalent, robust, and best/worst 
case formulations and found that the grey model performed worse than the worst-case 
analysis. This paper  further explores reasons for the risk-prone performance, 
characterizes conditions under which the problem is likely to arise, and suggests 
alternative solution approaches that are more risk adverse.  

The paper is organized as follows. Sections 2 and 3 review problem formulation and 
solution techniques for grey linear programs and grey stochastic programs with recourse. 
Each section identifies problems with existing solution techniques and characterizes 
situations in which these problems arise. Section 4 presents two alternative grey solution 
techniques that are more risk adverse. Section 5 discusses and highlights the important 
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advantages, disadvantages, and distinctions between risk-prone and risk-adverse grey-
programming and best/worst case analysis. Section 6 concludes. 

Grey linear programming 

Model formulation and solution 

Early applications of grey linear programming incorporated grey numbers into the 
objective function (Ishibuchi and Tanaka, 1990), constraint matrix (Huang and Moore, 
1993, Tong, 1994), right-hand sides of constraints, and all of the above (Huang, Baetz 
and Patry, 1992, Huang, Baetz and Patry, 1995, Huang, 1996). The process works as 
follows. A linear program with objective function f, decision variables Xi, objective 
function coefficients ci, constraint matrix coefficients aij, and right-hand-side constraint 
coefficients bj 

∑=
i

ii XcfMax  (1a) 

s.t. ∑ ∀≤
i

jiij jbXa ,  (1b) 

iX i ∀≥ ,0  (1c) 

is turned into a grey linear program by substituting grey numbers for each of the input 
coefficients a±, b±, and c±. These substitutions turn the objective function (f±) and 
decision variables (Xi

±) grey and yield the grey linear program (2):  

∑ ±±± =
i

ii XcfMax  (2a) 

s.t. ∑ ∀≤ ±±±

i
jiij jbXa , , and (2b) 

iX i ∀≥± ,0  (2c) 

where f± is the uncertain grey objective function with lower- and upper bounds, 
respectively, f - and f +; similarly for the other decision variables and input coefficients. 

We solve grey linear program (2) by decomposing it into two deterministic sub-models 
(Huang, 1996). The two sub-models correspond to the upper and lower bounds of the 
grey objective-function and interact.  

For a maximization problem, solve the upper bound sub-model first. The upper bound 
sub-model corresponds to f+ and uses input coefficients (c+, a-, and b+) that maximize the 
objective function and allow Xi to reach their upper limits. 

∑ +++ =
i

ii XcfMax  (3a) 
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s.t. ∑ ∀≤ ++−

i
jiij jbXa , , and 

iX i ∀≥+ ,0 . 

(3b) 
 

(3c) 

Model (3) is also the best-case formulation. 

The lower bound sub-model corresponds to f - and uses the input coefficients (c-, a+, and 
b-) that minimize the objective function and force Xi towards their lower limits. 

∑ −−− =
i

ii XcfMax  (4a) 

s.t. ∑ ∀≤ −−+

i
jiij jbXa , , and (4b) 

iX i ∀≥− ,0 . (4c) 

iXX optii ∀≤ +− ,  (4d) 

Further, lower bound sub-model (4) also contains an interaction constraint (4d) that 
requires the lower bound solution (Xi

-) to be in the solution basis of the upper-bound sub-
model (Xi

+
 opt). The interaction constraint forces solution consistency across the upper- 

and lower-bound sub-models. 

Model discussion and comparisons 

Solutions to sub-models (3) and (4) span maximal, stable, feasible ranges for the 
objective function and decision variables. These ranges are f±

opt = [f -, f+] and X±
i opt = [Xi

-, 
Xi

+] where f+ and X+
i are solutions to upper-bound sub-model (3) and f - and X-

i are 
solutions to lower-bound sub-model (4). The interaction constraints allow decision 
makers to choose Xi between their ranges Xi

- and Xi
+ and be guaranteed an objective 

function value between f - and f+. 

For a minimization problem, the solution order discussed above is reversed. First solve 
the lower bound sub-model (without interaction constraint (4d)). Second, solve the upper 
bound sub-model (with an interaction constraint iXX optii ∀≥ −+ , ). 

Further note that for a maximization problem the best case formulation is identical to the 
upper bound sub-model (3) while the worst case formulation is simply the lower bound 
sub-model (4) without the interaction constraint (4d). Because the Best/Worst case 
solutions do not limit the basis, solutions can help judge the system’s capability to realize 
a desired goal but do not necessarily construct a set of stable solutions for generating 
decision alternatives. 

Problems 

For a simple optimization problem 
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[ ] [ ]

0;0
1
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+

XX
XX

XX
 (5) 

the grey linear program formulation and solution algorithm gives the grey solution f±
opt = 

[5, 6]; X1 opt = [0]; and X2 opt = [1]. Here the grey solution is identical to the best/worst 
case solution and the solution basis for the two cases both contain X2. However, when the 
lower bound of the objective function coefficient for X2 changes from 5 to 2, the solutions 
diverge (Table 1). In this case the grey linear program identifies X2 as part of the solution 
basis in the upper bound sub-model while seeking a maximum value for the objective 
function, but the interaction constraint excludes X1 from the solution basis for the lower-
bound sub-model. Consequently, the objective function value falls to 2. Absent the 
interaction constraint, the worst-case analysis switches the solution basis to X1 with an 
improvement in the objective function value to 3. The grey linear program identifies the 
maximal, stable feasible range for the objective function but performs worse than the 
worst case. The lower-bound sub-model is more constrained than the worst-case sub-
model. 

Moreover, because the interaction constraint forces X1 to stay at zero, the grey linear 
program fails to report the full stable, feasible range for decision variable X1 (i.e., for 
unfavourable coefficient values it is preferable to implement X1). Similar performance 
worse than the worse case and failure to report the full stable feasible range for the 
decision variables is also seen when the constraint matrix coefficient for X2 changes from 
[1, 1] to [1, 4] (Table 1). 

Solution mischaracterization and performance worse than the worse case identify the 
grey solution algorithm as risk prone. When unfavourable conditions arise, a decision 
maker implementing the grey-number solution could do better by adopting a worst-case 
or possibly other solution. 

Conditions under which the problems arise 

A retrospective analysis of grey linear program examples (Huang, Baetz and Patry, 1992, 
Huang and Moore, 1993, Huang, Baetz and Patry, 1995, Tong, 1994, Huang, 1996) 
shows that several of grey-number solutions perform worse than the worst case (Table 2). 
The range of the grey objective function is wider than objective function range for the 
best/worst cases. However, this analysis was complicated by the facts that several of the 
works are (i) infeasible as published (Huang, Baetz and Patry, 1992, Huang, Baetz and 
Patry, 1995, Tong, 1994), (ii) instead use a best/worst case solution algorithm (without 
interaction constraints) but call it a grey solution technique (Huang, Baetz and Patry, 
1992, Huang and Moore, 1993, Tong, 1994), or (iii) do not present enough input data to 
verify the published solution (Huang and Moore, 1993, Huang, 1998, Huang, 1996, Yeh, 
1996).  

Reworking with feasible data and the grey solution algorithm shows that several of the 
examples perform no different that best/worst case analysis (Huang, Baetz and Patry, 
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1992, Huang and Moore, 1993, Huang, 1996) while others perform worse that the worst-
case analysis (Huang, Baetz and Patry, 1995, Tong, 1994). In the former examples, the 
interaction constraints do not bind, whereas in the later cases they do bind and force a 
solution that would not otherwise be desirable.  

More generally, we note that performance worse than the worst case and solution 
mischaracterization are seen whenever the grey-number interaction constraints bind. The 
grey linear program imposes risks and costs to maintain maximal stable feasible ranges 
for the decision variables. The cost is the shadow value (Lagrange multiplier) associated 
with the binding grey linear program interaction constraint and the risk is, under 
conditions of unfavourable parameter values, the objective function performs worse than 
the worst case. 

Grey Stochastic Programming with Recourse 

Grey number optimization has also been applied to stochastic programs with recourse, 
including two-stage linear programs (Huang and Loucks, 2000, Maqsood and Huang, 
2003), two-stage mixed integer programs (Maqsood, Huang and Zeng, 2004, Li and 
Huang, 2006, Rosenberg and Lund, 2008), fuzzy two-stage programs (Maqsood, Huang 
and Yeomans, 2005, Li, Huang and Nie, 2007), and multi-stage programs (Li, Huang and 
Nie, 2006), among others. Grey number stochastic programs with recourse incorporate 
uncertainties expressed as probability distributions and as intervals and work as follows.  

Decisions are partitioned into two types. Primary-stage decisions are taken before 
stochastic information is realized. After the stochastic information is realized, second-
stage (recourse) decisions are then implemented to cover the shortfalls not met by 
primary-stage decision levels. Since shortfalls differ for different stochastic realizations, 
recourse decisions apply only to a particular realization. Stochastic realizations are 
described by a probability distribution, which, for a stochastic linear program, is 
approximated by a set of discrete levels and likelihoods (probabilities). Together, primary 
stage decisions plus sets of recourse decisions for each stochastic realization constitute 
the decision portfolio—mix of actions—to respond to the stochastic events.  

Model formulation and solution 

A two-stage stochastic program that has primary decisions of water allocation targets Xi 
and recourse decisions that are shortage allocations Die to each sector i for unmet targets 
given water availability levels qe in events e, can be expressed as follows (Huang and 
Loucks, 2000): 

∑∑ −=
ei

ieiee
i

ii DcpXbf
,

Max  (6a) 

s.t. ( )∑ ∀−≥
i

ieie eDXq ,  (6b) 
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eiDiX iei ,,0;,0 ∀≥∀≥ . (6c) 

Here, f is the objective function, bi are benefits from water allocation to water use sector 
i, cie are costs or penalties in water availability event e for delivering a volume below the 
target, Xi – Die are actual water deliveries to sector i in event e, and qe and pe are, 
respectively, the water availabilities levels and their associated probabilities. Together, pe 
and qe describe a set of discrete water availability levels and probabilities that 
approximate the stochastic distribution of water availability.  

Substituting grey numbers for each of the input coefficients (b±
i, c±

ie, and q±
e) and 

decision variables (Xi
± and Die

±) turns two-stage linear program (6) into a grey two-stage 
linear program (7): 

∑∑ ±±±±± −=
ei

ieiee
i

ii DcpXbf
,

Max  (7a) 

s.t. ( )∑ ∀−≥ ±±±

i
ieie eDXq ,  (7b) 

eiDiX iei ,,0;,0 ∀≥∀≥ ±±  (7c) 

According to Huang and Loucks (2000), we solve grey two-stage linear program (7) by 
decomposing it into two deterministic sub-models. The two sub-models correspond to the 
upper and lower bounds of the grey objective-function f± and interact. With 
maximization, uncertain primary-stage decisions (Xi

+) are identified by first solving the 
upper-bound sub-model. Then, the determined primary-stage water allocation targets 
(now called Xi

*
 opt) are used to solve the lower-bound sub-model for upper limits on 

recourse decisions (Die
+). This ordering identifies the maximal and widest range of 

system benefits. Decomposition and solution requires three steps. 

Step 1. Set up and solve the sub-model to identify the objective function upper bound, f+. 
Use parameter values that maximize benefits and minimize the need for recourse-stage 
shortages (Xi

± and Die
-) [i.e., large benefits (bi

+), small penalties (cie
-), and large water 

availability levels (qe
+)]. The program solves for long-term decision levels (Xi

±) since 
these values influence the objective function positively or negatively depending on 
recourse (short-term) decisions. The upper-bound sub-model is: 

∑∑ −−+++ −=
ei

ieiee
i

ii DcpXbf
,

Max  (8a) 

s.t. ( )∑ ∀−≥ −++

i
ieie eDXq ,  (8b) 

eiDiX iei ,,0;,0 ∀≥∀≥ −+  (8c) 

The solution identifies optimal primary-stage water allocation targets (X*
i opt) and 

recourse-decision shortage levels (Die
-) that maximize net benefits under favourable 

economic conditions. Water allocation target levels (X*
i opt) that maximize system benefits 

become inputs to the lower-bound sub-model. 
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Step 2. Set up and solve the lower bound sub-model to identify f -. Use objective function 
coefficients and constraint values that minimize net benefits and increase the need for 
shortages (Die

+) [i.e., small benefits (bi
-), large penalties (cie

+), and small water 
availability levels (qe

-)]. The sole decisions are recourse-decision shortage levels (Die
+) 

that minimize benefits with unfavourable economic conditions. The lower-bound sub-
model is: 

∑∑ ++−− −=
ei

ieiee
i

optii DcpXbf
,

*Max  (9a) 

s.t. ( )∑ ∀−≥ +−

i
ieoptie eDXq ,*  (9b) 

eiDie ,,0 ∀≥+  (9c) 

eiDD optieie ,, ∀≥ −+  (9d) 

Here, interaction constraint (9d) enforces a stable feasible range for the recourse 
decisions and the model omits non-negativity constraints for the primary-stage decisions 
since the upper-bound sub-model fixes the water allocation targets (X*

i opt).  

Step 3. Solutions to sub-models (8) and (9) span maximal, stable, feasible ranges for the 
objective function and recourse-stage decision variables. These ranges are f±

opt = [f -, f+], 
Xi

*, and D±
ie opt = [Die

-, Die
+] where f+, Xi

*, and Die
- are solutions to upper-bound sub-

model (8) and f - and Die
+ are solutions to lower-bound sub-model (9). 

Model discussion and comparisons 

As with the grey linear program, the best-case formulation for a stochastic maximization 
problem is the same as the upper bound sub-model (8). The worst-case formulation 
allows primary-stage decisions, does not have an interaction constraint, and is: 

∑∑ ++−−− −=
ei

ieiee
i

ii DcpXbf
,

Max  (10a) 

s.t. ( )∑ ∀−≥ +−−

i
ieie eDXq ,  (10b) 

eiDiX iei ,,0;,0 ∀≥∀≥ +−  (10c) 

Here Xi
- are primary-stage water allocation targets identified under pessimistic economic 

conditions. The primary difference between the two-stage best/worst case and grey 
number formulations is that the primary-stage decision variable values are fixed across 
the grey-number sub-models (interaction) whereas they can change between the best and 
worst case models. Also, solutions to the best/worst case sub-models do not necessarily 
construct a set of stable, feasible ranges for selecting decision alternatives. 

For a grey two-stage minimization problem, the solution algorithm is essentially 
reversed. First, solve the lower-bound sub-model allowing primary-stage decisions and 
without interaction constraint (i.e., sub-model [10]). Second, solve the upper-bound sub-
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model using the primary-stage decision values fixed from the lower-bound sub-model 
solution and with an interaction constraint on recourse-stage decisions 
( eiDD optieie ,,∀≤ +− ). 

Problems and conditions under which they arise 

Retrospective analyses comparing grey stochastic program example solutions (Huang and 
Loucks, 2000, Maqsood and Huang, 2003, Maqsood, Huang and Zeng, 2004, Maqsood, 
Huang and Yeomans, 2005, Li, Huang and Nie, 2006, Li and Huang, 2006, Li, Huang 
and Nie, 2007, Rosenberg and Lund, 2008) to their best/worst case counterparts show 
that grey solutions always perform worse than their worst case counterparts (Table 3). 
Here, the grey widths for the grey objective functions (f+— f -) are much wider than the 
widths associated with the best/worst case sub-models. These results identify grey 
stochastic solutions as very risk prone—subject to large, undesirable consequences under 
unfavourable conditions that decision makers could improve upon with a different 
solution approach such as solutions recommended by a worst-case analysis. 

Performance is significantly worse than the worst case because the grey-solution method 
chooses optimistic primary-stage decision values to maximize system benefits under best-
case conditions. Further, the grey-solution method fixes these optimistic primary-stage 
decisions across the upper- and lower-bound sub-models. For unfavourable conditions, 
the grey-number approach must implement the same program of optimistic decision 
values to maintain feasible ranges for decisions across sub-models. This sub-model 
interaction then requires the grey-number approach to counteract the fixed and optimistic 
program of primary-stage decisions with many additional and more costly recourse 
decisions. The worst-case analysis is not similarly constrained. Under unfavourable 
conditions, the worst-case basis for primary-stage decisions can exclude, scale back, or 
identify more appropriate primary-stage decision targets.  

Moreover, fixing primary-stage decisions across grey-number sub-models undermines 
one of the tenants of grey number programming: to identify the stable, feasible range for 
the decision variables. Existing grey-solution techniques (Huang and Loucks, 2000) do 
not identify a range for the most important primary-stage planning decisions; they only 
identify a grey range for the less important recourse-stage operational decisions. I now 
propose some promising grey-solution techniques that (i) narrow the grey width of the 
objective function, and (ii) also identify a stable, feasible range for primary-stage 
decisions. 

Alternative grey-solution techniques 

Herein, I develop two alternative grey-solution techniques for stochastic linear programs, 
provide ratiocinations for each technique, and present and discuss solution results for 
numerous examples. The first technique is termed risk adverse and seeks to reduce the 
grey-width of the objective function by identifying a single set of primary-stage decisions 
and stable, feasible ranges for recourse decisions. The second technique imposes 
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interaction constraints on both the primary- and recourse-stage decisions and identifies 
stable, feasible ranges for both sets of decisions. This approach is termed an interacting 
primary-stage grey solution technique. Both solution approaches guarantee objective 
function values equal or better than the worst-case value and work as follows. 

Risk adverse technique 

The existing risk-prone grey-solution technique (Huang and Loucks, 2000) identifies 
primary-stage solutions by solving the best-case (upper-bound for a maximization 
problem) sub-model first. This approach gives a wide-ranging objective function value 
because significant (and costly) recourse decisions are required should unfavourable 
conditions (represented by worst-case parameter values) arise. Reversing the solution 
process to first solve the worst-case (lower-bound for a maximization problem) sub-
model can identify a more appropriate set of primary-stage allocation targets and reduce 
the need for costly recourse decisions. 

Solution process 

For a maximization problem, the risk adverse solution process works as follows. 

Step 1. Set up and solve worst-case sub-model (10) to identify the objective 
function lower bound (f -), primary-stage allocation targets under unfavourable 
parameter values (Xi

-), and upper bounds on recourse decisions (Die
+). Primary-

stage water allocation target levels identified for pessimistic parameter values (Xi
-
 

opt) become inputs to the upper-bound sub-model. 

Step 2. Set up and solve an upper-bound sub-model to identify f+. Here, the sole 
decisions are recourse-decision shortage levels (Die

-) that maximize benefits under 
optimistic parameter values. This upper-bound sub-model is: 

∑∑ −−−++ −=
ei

ieiee
i

optii DcpXbf
,

Max  (11a) 

s.t. ( )∑ ∀−≥ −−+

i
ieoptie eDXq ,  (11b) 

eiDie ,,0 ∀≥−  (11c) 

eiDD optieie ,, ∀≤ +−  (11d) 

Interaction constraint (11d) enforces a stable feasible range for the recourse 
decisions and the model omits a non-negativity constraint for the primary-stage 
decisions since water allocation targets (Xi

-
 opt) are fixed in the lower-bound sub-

model. 

Die
- are the sole decision variables in linear sub-model (11), so we can formulate 

an analytical solution rule for Die
-. This rule is: for each event e, minimize 

shortages (i.e., maximize delivery increases Die
+ – Die

-) to sector i with the highest 
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water shortage cost (cie
-) subject to increased water availability (qe

+ – qe
-) and Die

- 
within the non-negativity (11c) and interaction (11d) constraints. For sectors with 
lower shortage costs, maximize delivery increases subject to increased water 
availability minus delivery increases to sectors with higher-shortage costs. 
Mathematically, this recursive solution rule is: 

( ) ( ) ejDDDqqDD je

j

k
kekeeejeje ,,,Minimum

1

1
∀









−−−=− +
−

=

−+−+−+ ∑ . (11e) 

Here, j and k are the water use sectors ranked by shortage costs, cje
-, so that c1e

- ≥ 
c2e

- ≥ … ≥ cIe
-. This rule is obtained by subtracting (10b) from (11c), eliminating 

the common X-
i opt terms, separating shortage decisions Dje

+ and Dje
- for the jth 

water use sector from shortage decisions for the other water use sectors, bringing 
these terms to one side, and combining with constraint (11d). Further, since the 
solution to a constrained linear optimization problem falls on the boundary of the 
feasible solution space, the binding inequality constraint becomes an equality. 
Rearranging (11e) gives the analytical decision rule for upper-bound shortage 
decisions Die

- as: 

( ) ( ) ejDDDqqDD je

j

k
kekeeejeje ,,,Minimum-

1

1
∀









−−−= +
−

=

−+−++− ∑ . (11f) 

Step 3. Solutions to sub-models (10) and (11) span stable, feasible ranges for the 
objective function and decision variables. These ranges are f±

opt = [f -, f+], Xi
-, and 

D±
ie opt = [Die

-, Die
+] where f -, Xi

-, and Die
+ are solutions to worst-case sub-model 

(10) and f + and Die
- are solutions to the upper-bound sub-model (11). 

Ratiocination 

The proof that the risk-adverse technique gives a narrower objective function width with 
a feasible solution and objective function value equal or better than the worst-case value 
is straightforward. The proof involves reinterpreting a prior theorem and proof made by 
Huang et al. (1995) and then showing solution feasibility and ranges. 

In their Theorem 2, Huang et al. (1995, p. 599-602) show that solving the upper-bound 
sub-model first (for a maximization problem) is necessary to identify “the two extreme 
bounds for given system condition variations” (p. 601). This ordering generates grey 
solutions of good quality. Here, “quality” refers to the grey degree or width of the grey 
decision variables and objective function values (differences between their upper and 
lower bounds)(Huang, Baetz and Patry, 1995, Definition 13, p. 597) while “good” means 
these widths are maximal and large. Huang et al. (1995, p. 598) also show the converse—
solving the lower-bound sub-model first (for a maximization problem) is unable to 
generate grey solutions with good quality. 
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First, we note that large-ranging grey widths that comprise the extreme bounds and force 
the objective function to perform worse than the worse-case solution when interaction 
constraints bind are neither “good” nor desirable outcomes. Under unfavorable parameter 
conditions, decision makers may regret that they could have done better had they adopted 
a worst-case or possibly other solution. We therefore reinterpret Huang et al.’s (1995) 
definitions of “good” and desirable to allow as acceptable first solving the lower-bound 
sub-model to generate grey solutions of indeterminate quality. 

Second, we show that feasible solutions exist for the upper-bound sub-model (11). This 
proof is straightforward. By definition of the grey-number parameter, qe

+ ≥ qe
-, Ve and 

examining solution expression (11f), we note 0 ≤ Die
- ≤ Die

+, Vi,e, which is compatible 
with constraints (11c) and (11d) and gives feasible solutions for Die

-. Initially, large 
increased water availabilities (qe

+ — qe
-> Die

+) force the second argument of the 
Minimum function in (11f) to dominate and set shortages to zero for sectors with high 
shortage costs. Subsequently, increased allocations to sectors with higher shortage costs 
will balance the increased water availability so that the first argument of the Minimum 
function will fall to a minimum of zero. This minimum only allows Die

- to reach an 
upper-limit of Die

+ and maintains the feasible range of solution values. 

Third, we show the objective function value (f+) for the upper-bound sub-model (11) will 
always be greater than or equal to the objective function value (f-) for the lower-bound 
(and worst-case) sub-model (10). By definitions of the grey-number parameters bi

+ ≥ bi
-, 

Vi; cie
- ≤ cie

+, Vi,e; and from interaction constraint (11d) where Die
- ≤ Die

+, Vi,e; we have 
the objective function value ordering: 

+−−−+++−−− =−≤−= ∑∑∑∑ fDcpXbDcpXbf ie
ei

iee
i

iiie
ei

iee
i

ii
,,

. The width of the risk adverse 

objective function range is ( ) ( )∑∑ −−++−−+−+ −+−=−
ei

ieieieiee
i

iii DcDcpXbbff
,

. Substituting 

in Equation (11f) gives 

( ) ( ) ( ) ( )∑ ∑∑∑








−−−+−+−=−
−

=

+−+−+−+−+−−+−+

je

j

k
kekekeeejee

ei
ieieiee

i
iii DDDqqcpDccpXbbff

1

1,
,Min

which shows the risk adverse objective function width depends only on increased benefits 
(bi

+ — bi
-), decreased costs (cie

+ — cie
-), and increased water availability (qe

+ — qe
-) 

multiplied by lower-bound costs for sectors with the most costly shortages. 

Fourth, we note (as do Huang et al. (1995, p. 601)) that solving the lower-bound (worst-
case) sub-model first will generate the worst-case solution but that the associated upper-
bound solution will likely not reach the best-case objective function value. However, this 
behavior is not required for the risk-adverse solution approach. (Such behavior will occur 
only when solutions to the best- and worst-case sub-models comprise the same solution 
basis and the upper-bound sub-model interaction constraint does not bind). 

Finally, combining results from Points #3 (feasible objective function value ≥ worst-case 
objective function value) and #4 (upper-bound objective function value ≤ best-case 
objective function value) gives a risk-adverse grey objective function range (f+ — f-) that 
is narrower than range obtained by the existing risk-prone solution method. 
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Example results 

Resolving each stochastic program example with the risk-adverse grey-solution technique 
shows that the technique gives an objective function value range that is narrower than 
both the risk-prone grey-number and best/worst case methods (Table 3). One bound of 
the objective function corresponds to the worst-case (lower-bound for a maximization 
problem; upper-bound for a minimization problem) while the other bound falls “inside” 
the best-case solution (upper-bound less than the best-case for a maximization problem; 
lower-bound greater than the best-case for a minimization problem). 

The risk-adverse technique identifies primary-stage decisions and stable, feasible range 
of recourse-stage decisions that minimize deviations of the objective function value. 
Further, the objective function avoids risk-prone performance worse than the worst-case 
solution. However, the risk adverse solution approach (like the risk-prone approach) fixes 
primary-stage decision values across the sub-models; we correct this failing with an 
interacting primary-stage grey solution approach. 

Interacting primary-stage technique 

The risk-prone and risk-adverse grey solution techniques fix primary-stage decision 
values across the upper- and lower-bound sub-models and fail to identify a stable, 
feasible range for all decision variables. Here, we introduce interaction constraints for 
primary-stage decisions to identify the stable, feasible ranges for these variables.  

Solution process 

For a maximization problem, first solve the worst-case sub-model (10) to identify the 
objective function lower bound (f -), lower bound on primary-stage allocation targets 
under unfavourable parameter values (Xi

-), and upper bounds on recourse decisions 
(Die

+). Second, solve an upper-bound sub-model to identify the objective function upper 
bound (f+), upper bound on primary-stage allocation targets under favourable parameter 
values (Xi

+), and lower bounds on recourse decisions (Die
-). 

∑∑ −−+++ −=
ei

ieiee
i

ii DcpXbf
,

Max  (12a) 

s.t. ( )∑ ∀−≥ −++

i
ieie eDXq ,  (12b) 

eiDiX iei ,,0;,0 ∀≥∀≥ −+  (12c) 

eiDD optieie ,, ∀≤ +−  (12d) 

iXX optii ∀≥ −+ ,  (12e) 

Here, decision variables include both primary- and recourse-stages (Xi
+ and Die

-) with an 
interaction constraint (12e) requiring primary-stage decisions under favorable conditions 
to be above the levels identified in the worst-case sub-model (Xi

-
opt). We can derive an 
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analytical solution for the recourse-stage shortage decisions Die
- as was done for the risk-

adverse approach. Except, here, primary-stage decisions from the two sub-models are not 
necessarily identical and may not cancel. Thus, 

( ) ( ) ( ) ejDDDXXqqDD je

j

k
keke

i
iieejeje ,,,Minimum-

1

1
∀









−−−−−= +
−

=

−+−+−++− ∑∑ . (12f) 

Together, solutions to sub-models (10) and (12) span stable, feasible ranges for the 
objective function and both primary- and recourse-stage decision variables. These ranges 
are f±

opt = [f -, f+], X±
i opt = [Xi

-, Xi
+], and D±

ie opt = [Die
-, Die

+] where f -, Xi
-, and Die

+ are 
solutions to worst-case sub-model (10) and f +, Xi

+, and Die
- are solutions to the upper-

bound sub-model (12). 

Ratiocination 

The mathematical proof that the interacting primary stage solution technique gives a 
feasible solution, objective function value equal or better than the worst-case value, and 
objective function width that is equal or wider than the risk-adverse technique follows the 
ratiocination provided for the risk-adverse technique. Here, we simply add and account 
for interaction constraints on the primary-stage variables. 

First, we again reinterpret the Theorem 2 and proof made by Huang et al. (1995) to allow 
that first solving the lower-bound sub-model will generate grey solutions of 
indeterminate but acceptable quality. Second, we show that feasible solutions exist for 
upper-bound sub-model (12). This proof is straightforward. Subtracting (10b) from (12b), 
combining and separating terms, gives ( ) ( ) eDDXXqq

i
ieie

i
iiee ∀≥−+−≥− ∑∑ −+−+−+ ,0 . 

This expression is compatible with the prior grey-number parameter definition for qe and 
interaction constraints (12d) and (12e), and gives feasible solutions for upper-bound 
allocation targets (Xi

+) and lower-bound shortages (Die
-). Together, increases in Xi

+ and 
decreases in Die

- cannot exceed increased water availabilities seen when moving from 
unfavorable to favorable parameter conditions. But the expression still allows for a wide 
range of Xi

+ and Die
-. At worst, Xi

+ = Xi
- and (12f) reduces to (11f). In this case feasibility 

conditions shown in the ratiocination for the risk-averse technique similarly apply. 

Third, we show f+ ≥ f- from upper-bound sub-model (12) and lower-bound (and worst-
case) sub-model (10). This proof is also straightforward. By prior definitions of the grey-
number parameters and interaction constraints on recourse decisions (Die

- ≤ Die
+, Vi,e, 

[Eq. 12d]) and on primary-stage decisions (Xi
+ ≥ Xi

-, Vi, [Eq. 12e]), we simply have: 
+−−++++−−− =−≤−= ∑∑∑∑ fDcpXbDcpXbf ie

ei
iee

i
iiie

ei
iee

i
ii

,,

. 

Fourth, we show that the objective function width for the interacting primary stage 
solution technique (f+

ips – f-
ips) is greater than or equal to the width for the risk-adverse 

technique (f+
ra – f-

ra). Since both solution techniques use the same lower-bound (worst 
case) sub-model (10), we need only examine the upper-bound objective function values 



#GENO-2008-0122, p. 15 

and show f+
ips ≥ f+

ra. Here, note that the upper-bound risk-adverse sub-model solution 
(11) is part of the solution space to the upper-bound interacting primary-stage sub-model 
(12) ([X*

i opt, Die
-]ra є [X+

i, Die
-]ips) by virtue of interaction constraint (12e). Further, the 

upper-bound risk-adverse sub-model is more constrained than the interacting primary-
stage model (the later has Xi

+ ≥ Xi
-, Vi, [Eq. 12e] and the former has Xi

+ = X*i opt, Vi). 
Therefore, f+

ips ≥ f+
ra. The increase is ( ) ( )∑∑ −−−−++++ −−−=−

ei
raieipsieiee

i
optiiiraips DDcpXXbff

,

. 

Substituting in (11f) and (12f) and noting that the sole difference between D-
ie ips and D-

ie 

ra is the term ( )∑ −+ −−
i

optii XX  (which represents decreased water availability from 

increased primary-stage water allocation targets), gives 

( )∑ ∑ −+−+++ −







−≤−

i
optii

e
ieeiraips XXcpbff .  

We can also obtain the same expression by formulating the Lagrangian for sub-model 
(12), specifying the Kuhn-Tucker conditions, and substituting to eliminate the Lagrange 
multiplier associated with constraint (12b). This expression says that the interacting 
primary-stage objective function value will increase above the risk adverse value 
whenever upper-bound benefits exceed expected lower-bound shortage costs.. Should 
benefits not exceed expected shortage costs, constraint (12e) will bind so that Xi

+ — X-
i 

opt = 0 with no increase. 

Finally, we note again that the associated upper-bound objective function value f+
ips will 

likely not reach the best-case objective function value. However, this behavior is not 
required of the interacting primary-stage solution approach. 

Example results 

Resolving each of the stochastic program examples using the interacting primary-stage 
grey-solution method shows that the approach generates solutions whose objective 
function widths are wider than the risk-adverse solutions but narrower than the risk-prone 
or best/worst case solutions (Table 3). Figure 1 illustrates and compares these objective 
function widths for the water resources allocation problem posed by Huang and Loucks 
(2000). The primary-stage interaction solution performs no worse than the risk-adverse 
approach (both methods use worst-case sub-model (10) to solve for the lower bound of 
the objective function), but shows an improvement over the risk-adverse approach for 
favourable parameter values. This improvement nearly approaches the large, optimistic 
upper-bound objective function value seen for the best-case and risk-prone solution 
methods. The interacting primary-stage method avoids the pitfall of the risk-prone 
approach (performance worse than the worst-case), allows flexibility to choose primary-
stage decision values within the identified range, and improves objective function 
performance for favourable parameter values compared to the risk-adverse solution 
approach. 
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Discussion 

The Best/Worst-case formulations solve a linear program twice using the most favourable 
(best case) and least-favourable (worst case) parameter values. Solutions from the two 
sub-models can help judge the system’s capability to realize a desired goal but do not 
necessarily construct a set of stable ranges for generating decision alternatives. When the 
solution basis for the best case differs from the solution basis for the worst case, there can 
be confusion about how to operate the system in the face of uncertain parameter inputs. 

Grey linear programs identify maximal, stable, feasible ranges for decision variables by 
first solving the best-case (upper-bound for a maximization problem) sub-model. They 
then solve the lower-bound sub-model and introduce interaction constraints to require 
lower-bound solutions be less than or equal to upper-bound solutions. This interaction 
identifies stable, feasible ranges for decision variables and simultaneously communicates 
that decision variables can be chosen within the proscribed ranges while assuring that the 
objective function value will vary only within the associated specified range.  

When the range of uncertainty for input parameters is small and the interaction 
constraints do not bind, the grey linear program and best/worst-case formulation solutions 
are identical. In this case, the solution bases for the best and worst cases are also the 
same. However, when the range of uncertainty for input parameters is significant and the 
interaction constraints bind, the grey linear program objective function value will be 
worse than the worst case. The grey linear program will also fail to identify part of the 
solution basis that is preferable under unfavourable parameter values. There are risks and 
costs to impose a maximal, stable, feasible range of solutions. The cost is the shadow 
value (Lagrange multiplier) associated with the binding interaction constraint and the risk 
is, under unfavourable parameter values, performance worse than the worse case. In these 
situations, decision makers will likely prefer to adopt a worst-case or other more risk-
adverse solution. Two simple numerical problems and retrospective analysis of grey 
linear program examples from the literature demonstrate these problems. 

These problems are magnified for grey stochastic programs that have primary- and 
recourse-stage decisions and incorporate uncertainties expressed as probability 
distributions and as intervals. Existing grey-solution methods which we term risk-prone 
identify maximal, stable, feasible ranges for the objective function and recourse-stage 
decision variables by solving the best-case sub-model first. They then use identified 
primary-stage decision values as inputs to the lower-bound sub-model. Fixing the 
primary-stage decision values across the sub-models, risk-prone grey-solution methods 
fail to identify stable, feasible ranges for primary-stage decisions and often require 
significant and costly recourse-stage decisions for unfavourable parameter values. This 
requirement results in wide-ranging and risk-prone objective function values that perform 
worse than the worst case. Again, under unfavorable parameter conditions, decision 
makers could do better by adopting a worst-case or other more risk-adverse solution. 

To narrow the width of objective function deviations and guarantee performance at or 
better than the worst case, a risk-adverse grey-solution method solves the worst-case sub-
model first, then uses the identified primary-stage decision values to solve the upper-
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bound sub-model. Identifying primary-stage decision levels first for unfavourable 
parameter values minimizes the cost of and need for recourse-stage decisions, but also 
reduces potential benefits under favourable parameter conditions. Like the risk-prone 
approach, the risk-adverse method also fixes primary-stage decision variable values 
across sub-models and fails to identify a stable, feasible range for these decision 
variables. 

A third solution approach uses interaction to identify stable, feasible ranges for the 
objective function, primary-stage, and recourse-stage decision variables. The interacting 
primary-stage grey solution method solves the worst-case sub-model first to identify 
lower-bounds on the objective function and primary-stage decision variables. Then it 
solves the upper-bound sub-model and uses an interaction constraint on primary-stage 
decisions to identify the upper bounds on the objective function and primary-stage 
decision variables. Together, solutions form stable, feasible ranges for selecting decision 
alternatives. Because interaction identifies a range for primary-stage decision values, the 
interacting primary-stage grey solution method is better able to adapt to favourable 
parameter conditions and typically gives an objective function range that is wider than 
the risk-adverse approach and nearly approaches the best-case solution value. 

Table 4 summarizes and compares the four methods to solve stochastic programs with 
recourse that incorporate uncertainties expressed as intervals. The choice of solution 
method depends on the modeler’s aims, particularly his/her tolerance for objective 
function deviations. If large deviations and performance worse than the worse case are 
acceptable should unfavourable conditions arise, then use the existing risk-prone grey 
solution approach. First solve the best-case (upper-bound for a maximization problem) 
sub-model and use primary-stage decision values identified for optimistic conditions. 
However, if objective function value deviations are to be reduced and a solution 
guaranteed to be at or better than the worst-case, instead use the risk-adverse or 
interacting primary-stage grey solution approaches. In this case, first solve the worst-case 
(lower-bound for a maximization problem) sub-model and use the primary-stage decision 
values identified for pessimistic conditions. Algorithmically, risk tolerance boils down to 
a choice of first solving the best- or worst-case sub-model. 

Conclusions 

A grey number expresses uncertainty as an interval between fixed lower and upper 
bounds. Grey numbers find use in optimization to proactively incorporate uncertainties 
expressed as intervals and identify maximal, stable, feasible ranges for the objective 
function and decision variables. These ranges are identified by introducing interaction 
constraints to limit decision variable values for unfavourable conditions based on 
decision variable levels first identified for favourable conditions. Ranges for decision 
variables can then be used to select decision alternatives within proscribed bounds.  

Grey number programs represent an improvement over best/worst case analysis because 
the latter approach, lacking interaction constraints, often offers solutions with different 
bases for favourable and unfavourable parameter values. However, the interaction 
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constraints also limit grey solutions and grey programs often fail to identify part of the 
feasible solution space, particularly in the face of unfavourable parameter values. 
Moreover, interaction constraints often lead the grey-number objective function value to 
perform worse than the worst-case analysis. This solution mischaracterization and risk-
prone performance worse that the worse case occurs whenever the interaction constraints 
bind. The paper shows this mischaracterization and risk-prone performance for numerous 
linear and stochastic programming examples. Further, the existing grey-solution approach 
for stochastic programs with recourse fixes primary-stage decision variable values across 
sub-models and fails to identify a stable, feasible range for these important planning 
decision variables. 

Two alternative grey-solution algorithms are presented to overcome these problems. A 
risk-adverse grey-solution technique solves the worst-case sub-model first, reduces 
deviations in the objective function value, and guarantees an objective function value no 
worse than the worst case. An interacting primary-stage technique introduces interaction 
constraints on primary-stage decisions, identifies a stable, feasible range for these 
decision variables, guarantees an objective function value no worse than the worst case, 
yet offers a range that is wider and an improvement over the risk-adverse technique. 
These solution behaviors are ratiocinated, demonstrated, and verified for numerous 
stochastic programming examples. 

Ultimately, a modeler’s or decision maker’s choice of solution method to include 
uncertainties expressed as intervals depends on their risk preferences—particularly their 
tolerance for objective function deviations. If wide deviations are acceptable with 
performance worse than the worst case possible under unfavourable parameter values, 
then use existing grey-solution techniques. However, if wide deviations are to be avoided 
such as in risk-adverse decision-making, then the alternative solution approaches may be 
preferable. Should the goal be only to characterize system performance across favourable 
and unfavourable conditions without need to enforce solution stability across these 
different environments, then Best/Worst case analysis may be used. These tradeoffs and 
distinctions highlight the important advantages, disadvantages, and differences between 
risk-prone and risk-adverse grey-number programming and best/worst case analysis.  
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Table 1. Comparison of grey linear program and best/worst case solutions for simple optimization 
programs 

 

Grey 
Linear 

Program

Best/Worst 
Case

Grey 
Linear 

Program

Best/Worst 
Case

Grey 
Linear 

Program

Best/Worst 
Case

f [5, 6] <5, 6> [2, 6] <3, 6> [1.25, 6] <3, 6>
X1 [0] <0, 0> [0] <1, 0> [0] <1, 0>
X2 [1] <1, 1> [1] <0, 1> [0.25, 1] <0, 1>

Max [3, 4]X1 + [5, 6]X2

X1 + [1, 4]X2 <= 1
Max [3, 4]X1 + [2, 6]X2Max [3, 4]X1 + [5, 6]X2

Solution 
Element

X1 + X2 <= 1 X1 + X2 <= 1
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Table 2. Comparison of grey number and worst-case solutions for linear program examples 

 

 

 

Grey 
Solution

Worst 
Case

Huang, 
Baetz, and 
Patry

1992 Grey linear 
program

Best/Worst case Numerical example 
SWM example

Max         
Min

[765, 1931] 
[238, 517]*

765    
517

Infeasible as published. Landfill capacity too 
small for optimal solution published. Instead, 
use [2.36, 3.24]106 tons.

Huang and 
Moore

1993 Grey linear 
program

Best/Worst case Numerical example 
WR example

Max         
Min

[764, 1930]*    
[8.13, 27.6]

764 Infeasible as published for upper bound of 
numerical example. Correct as published in 
Huang et al (1992). Not enough input data 
published to verify WR solution. 

Tong 1994 Interval linear 
program

Best/Worst case Chicken feed 
numerical example

Min [242.2, 420]* 415 Infeasible as published. Total forage 
constraint misinterpreted. Should be X1+X2 

<= 1000; X1+X2 <= 1130. Upper bound 
submodel performs worse than worst case. 

Huang, 
Baetz, and 
Patry

1995 Grey integer 
program

Interacting 
Best/Worst case

SWM example Min [385, 708]* 702 Error in specification of waste generation 
rates for cities 2 & 3. Upper bound submodel 
performs worse than worst case.

Yeh 1996 Grey linear 
program

Interacting 
Best/Worst case; 
Full and partial 
greylization

Reservoir capacity 
example

Min [4, 12] NA Not enough input data published to verify 
solution or calculate worst case.

Huang 1996 Grey linear 
program

Interacting 
Best/Worst case

Numerical example 
WQ example

Max    
Max

[8.2, 15.4] 
[15.4, 20.0]

8.2 Lower bound is same as worst case. Not 
enough input data to verify WQ example.

Huang 1998 Grey linear 
chance 
constraint 
program

Interacting 
Best/Worst case

WQ ex., p=0.10     
WQ ex., p=0.05   
WQ ex., p=0.01

Max [20.1, 22.8]  
[17.9, 21.2]  
[15.4, 20.0]

NA Not enough input data published to verify 
solution or calculate worst case.

* denotes author's calculation does not verify against published grey-number solution for reasons described in verification column

Objective Function
Author Year Programming 

Approach Solution Method Application Direction Verification / Problems
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Table 3. Comparison of grey number and best/worst case solutions for stochastic linear program examples 
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Huang and 
Loucks

2000 Two-stage 
stochastic 
program

WR 
numerical 
example

Max <346, 592> [260, 592] [346, 462] [346, 560]

Maqsood 
and Huang

2003 Two-stage 
stochastic 
program

SWM 
example

Min <0.147, 0.255> [0.147, 0.260]* [0.15, 0.26] [0.149, 0.255]

Maqsood, 
Huang, 
and Zeng

2004 Two-stage 
mixed integer 
program

SWM 
example

Min <249, 432> [249, 478]* [302, 432] [272, 432]

Maqsood, 
Huang, 
and 
Yeomans

2005 Fuzzy two-
stage 
stochastic 
program

WR 
numerical 
example

Max <203, 571> [154, 571]* [203, 462] [203, 538]

Li, Huang, 
Nie, Nie, 
and 
Maqsood

2006 Two-stage 
mixed integer 
program

SWM 
example

Min <119, 278> [119, 283]* [124, 278] NA

Li, Huang, 
and Nie

2006 Multi-stage 
stochastic 
program

WR 
numerical 
example

Max <1435, 2605> [1240, 2605]* [1435, 2404] [1435, 2606]

Li, Huang, 
and Nie

2007 Fuzzy two-
stage mixed 
integer program

Flood 
diversion 
example

Min <1899, 2215> [1899, 2634]* [2083, 2215] NA

Rosenberg 
and Lund

2008 Two-stage 
mixed integer 
program

Water 
supply 
planning

Min <-15, 112> [-15, 281] [4, 112] [4.8, 112]

Best / Worst 
Cases Interacting 

Primary Stage

* denotes author's calculation does not verify against published risk prone solution for reasons described in the text

Existing     
(risk prone)

Author Risk 
Adverse

DirectionApplicationProgramming 
ApproachYear

Objective Function Ranges
Grey Number Solution Methods
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Table 4. Comparison of solution methods to stochastic programs with recourse 

Primary 
Stage

Recourse 
Stage

Best/Worst cases (8) and (10) <Xi
-, Xi

+> <Die
-, Die

+> Solutions do not necessarily construct stable, feasible 
ranges for selecting decision alternatives.

Existing risk prone (8) then (9) Xi
* [Die

-, Die
+] Wide-ranging objective function performs worse than 

worst-case. Primary-stage decisions f ixed across sub-
models.

Risk adverse (10) then (11) Xi
-

[Die
-
, Die

+
] Minimizes objective function deviations. Objective 

function performs no worse than worst-case. Primary-
stage decisions fixed across sub-models.

Interacting primary 
stage

(10) then (12) [Xi
-
, Xi

+
] [Die

-
, Die

+
] Interaction constraints identify range of primary-stage 

decisions. Objective function performs no worse than 
worst-case and better than risk-adverse technique.

Notes
G

re
y-

nu
m

be
r

Decision Variables
Sub-modelsSolution Method
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Figure 1. Comparison of objective function values for best / worst case and grey-number solution methods for the water allocation problem posed by Huang and 
Loucks (2000) 
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