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ABSTRACT 

 

Electrostatic Discharge in Spacecraft Materials 

by 

Jennifer A. Roth, Bachelor of Science  

Utah State University, 2009 

 
 

Faculty Mentor: Dr. J. R. Dennison 
Graduate Mentor: Ryan Hoffmann 
 
 
Understanding the characteristics of electron beam bombardment that induce electrostatic 

discharge (ESD) of insulating materials is crucial to constructing an electrically stable 

spacecraft.  A measurement system has been designed to determine the beam energy and 

charge flux densities at which typical spacecraft materials intended for the James Webb 

Space Telescope (JWST) undergo ESD.  Because discharge events occur over time 

intervals ranging from nanoseconds to minutes, multiple detection methods were 

employed as charge was accumulated on a sample surface; these methods included 

monitoring of sample current and optical emissions from the sample surface.  Each 

sample was also examined with optical microscopy before and after testing to determine 

permanent changes in the materials.  Testing for various samples was done at 130 K, 170 

K, and 200 K.   

 

An overview of ESD incidence for all materials is provided in relation to beam conditions 

and material composition.  Data for a carbon fiber material is discussed in greater detail, 

comparing results from each detection method.  Two discharge modes were observed: a 

sudden-onset, long-duration exponentially-decaying sample current accompanied by the 

release of intense blue photons, and a sudden spike or arc in current with a white light 

flash.  The implications of test results for JWST are discussed.   
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CHAPTER 1 

INTRODUCTION 

 

Though many never think about what happens above ground level, everyone is impacted 
by satellites—from the business executive in a bustling city to the flood victim in a 
remote village.  Practical applications of satellite technology include accurate mapping, 
weather forecasting, natural disaster response, global positioning, communications, and 
myriad scientific research applications for geology, atmospheric science, physics, 
astronomy, ecology, and other fields.  One of the most famous satellites designed for 
scientific purposes is the Hubble Space Telescope.  Launched in 1990, the Hubble has 
produced astronomical images of immense scientific value and breathtaking beauty, 
observing even young galaxies formed not long after the Big Bang.1 A new orbiting 
telescope is now being designed that will observe radiation in the infrared and near-
infrared range. 
 
NASA, in conjunction with the European (ESA) and Canadian (CSA) Space Agencies, is 
designing and constructing this next generation space telescope, called the James Webb 
Space Telescope (JWST).  It is scheduled to launch in 2013 and to make observations for 
at least 10 years. The craft will reside at the second earth-sun Lagrange point (L2), where 
it will orbit the sun at the same rate as the earth, permanently shielded from the sun by 
earth’s shadow.2 At this location, the telescope will operate at a temperature less than 40 
K.3 

 

 
The JWST consists of a telescope, an IR and near-IR instrument package, sunshield, and 
spacecraft. Larger than Hubble (4.2 m x 13.3 m), the spacecraft is approximately 12 m by 
22 m.4 Its primary mirror is approximately 6.6 m in diameter and consists of 18 
hexagonal beryllium components.3 This telescope is intended to study four main topics: 
first light and reionization, the assembly of galaxies, the evolution of stars, and planetary 
systems and the origins of life.3 
 

Fig 1.1: Size comparisons of the Hubble Space Telescope and the James Webb Space Telescope.4 
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Materials for the craft were selected to withstand the conditions and constraints of the 
JWST mission.  For instance, in order to fit inside a rocket for launching, the JWST is 
able to “fold up” into a 16.3 m by 4.75 m rectangle.4 The craft must also be able to 
function at the low temperature and, as is the focus of this study, be able to operate in the 
electrically charged space plasma environment. 
 

Satellites, especially JWST, are expensive to design, build, and launch, and are often 
impossible to repair.  Therefore, it is vital that these craft be created to withstand the 
conditions of the space plasma environment in which they reside.  It is particularly 
important to mitigate the effects of electrical charging, which accounts for more than half 
of spacecraft anomalies attributed to space environment interactions.5 Without other 
means of dissipating built-up charge, electrostatic discharge (ESD) can occur, causing 
anomalies ranging from circuit malfunctions to material destruction.  The purpose of this 
study is to understand electron-induced electrostatic discharge for JWST materials, in 
order to ensure the electrical stability of the spacecraft. Results can also improve the 
understanding of ESD theory and the occurrence of ESD in similar materials used for 
both space and ground applications. 
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CHAPTER 2 

THEORY 

This section provides brief explanations of spacecraft charging and several phenomena 
that may occur when materials are brought into contact with high energy electrons.  
These explanations prove very useful when analyzing ESD data. 
 
2.1 Spacecraft Charging 
 
In order for satellites to function they must be 
designed to withstand the conditions of the space 
plasma environment.  This plasma is composed of 
photons, ions, and electrons that interact 
electrically with the surfaces of spacecraft, as 
shown in Figure 2.1.  Of these energetic particles, 
electrons are the largest contributor to spacecraft 
charging, due to their high mobility.6 Electron 
interactions will be the focus of this study.   

 
The typical low-energy plasma environment for 
satellites in L2 orbit is created by ambient solar 
wind, the magnetosheath and the magnetotail.7 The energies of incident electrons in this 
environment range from about 10 eV – 1 keV.7 When solar storms arise, the L2 
environment becomes populated with higher energy particles, ranging from about 10 keV 
– 1 MeV.7 As the spacecraft surface interacts with these electrons, the once electrically 
neutral material becomes charged.  The energy and flux of impingent electrons and the 
resistivity of the material determine the amount of charge accumulated. 
 
2.2 Conduction vs. Accumulation of Electric Charge 
 
Charge accumulation, which is the forerunner to ESD, depends upon three key factors:  
the nature of incident electrons, the exposure time, and the electrical resistivity of the 
material.  The energy distribution and flux density of incident electrons, as well as the 
time the material is exposed to the electrons, determine the magnitude of the charge and 
energy incident on the material.  The conductivity of the material, which is temperature 
and material-dependent, determines how the material responds to this influx of charge. 
 
For metals or conductors, which have high conductivity, this charge is conducted rapidly.  
On earth, the charge can be conducted to ground, and the material then returns to its 
electrically neutral state.  However, metal surfaces in space are ungrounded, so the entire 
metal surface develops a voltage relative to the ambient plasma environment, a process 
known as absolute charging.8  According to the semiclassical model of electron 
dynamics, the high mobility of electrons in metals or conductors results from the partially 
filled valence and conduction bands in these materials.9 By a similar token, good 
insulators have low conductivity due to electron bands which are completely full or 
completely empty.9 Because insulators are not able to conduct charge rapidly, an 

Energetic Magnetospheric
   Ions    &    Electrons

UV
sunlight Photo-emitted

Electrons

Ambient
Ions
 &
Electrons

Backscattered
ElectronsSputtered Ions

Secondary
Electrons (SE’s)

Fig. 2.1: Illustration of electrical interactions between    
 a satellite and the space plasma environment.
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insulator will not likely have a constant 
voltage across its surface.  Instead, regions 
of high and low voltage can develop—a 
process known as differential charging 
(See Figure 2.2).8 Often differential 
charging occurs between regions that are 
shaded and regions in full sunlight as in 
Fig. 2.1B.8 Voltage differences across the 
surface of a dielectric, or voltage 
differences between metal and insulating 
surfaces can cause ESD.  This type of arc 
discharge, across surfaces, is known as 
“flashover” discharge.10 

 
Deep dielectric or bulk charging can also lead to ESD.  Bulk charging occurs in 
dielectric/insulating materials or on insulated floating conductors as energetic electrons 
are deposited in a material.8 If electrons are deposited at a faster rate than they are 
dissipated, an electric field develops in the material.  If this electric field becomes larger 
than the breakdown strength, arc discharging occurs through the material, an ESD event 
known as “punch-through” discharge.8, 10 

 
In some cases, discharges can also occur from a spacecraft to ambient space plasma, a 
phenomena known as “discharge to space.”10 This occurs when the craft develops a large 
electric potential relative to the ambient plasma. 
 
2.3 Continuous Slow-Down Approximation 
 
The continuous slow-down approximation (CSDA) is a useful model for deep dielectric 
charging.  The CSDA assumes that an electron loses its energy at a constant rate as it 
moves through a material.11 Under this model, an electron will eventually lose all of its 
energy and will be deposited at some range, R.  As time passes, charge is accumulated 
thereby producing a sample voltage, VS, which obeys the following relation for a plane of 
charge, 
 
 VS = JB·t·R/(2ε0), (1) 
 
where JB is the current density of the electron beam and t is the 
exposure time of the sample to the electron beam.12 When this 
voltage reaches the material-dependent breakdown voltage, 
ESD can occur. 
 
2.4 Radiation-Induced Conductivity 
 
Another factor that affects the dissipation of charge in a 
material is Radiation Induced Conductivity (RIC).  This 
occurs when radiation of sufficient energy to overcome a 

Fig 2.3: Illustration of Radiation 
Induced Conductivity.  Black 
dots represent electrons. 

Fig. 2.2: Differential charging on a dielectric surface. 



 

 

5 

band gap excites electrons into the conduction band. These electrons travel some distance 
before decaying to a localized intermediate trapped state, where they can easily be 
excited back into the conduction band.  This pattern repeats itself until the electron 
decays back to its ground state, as in Figure 2.3.13 
 
It is possible that RIC could play a significant role in conduction during tests with high 
energy electron beam radiation, such as the experiments performed in this study. 
 
2.5 Luminescence 
 

In a similar manner, luminescence can occur 
when a quantum of radiation excites an 
electron into the conduction band.14 Instead 
of moving back and forth between an 
intermediate state and the conduction band 
as in RIC, luminescence occurs when 
electrons decay from the intermediate 
trapped state to a lower state, releasing 
photons in the process, as in Figure 2.4.  
Luminescence occurs over time intervals 
ranging from 10’s of nanoseconds to 10’s of 
seconds.  This is another phenomenon that 
could occur during high energy electron 
beam irradiation. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.4: Illustration of luminescence.  After 
decaying to an intermediate state, an 
electron decays to a lower state, and a 
photon is emitted. 
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CHAPTER 3 
METHODS 

3.1 Experimental Set-up 

Various techniques were used to simulate the environments to which the JWST will be 
exposed, to induce arcing, and to detect arcs.  First, samples were prepared to fit on 1-cm 
diameter cylindrical copper billets.  These were placed in a sample carousel, which was 
housed in the USU Electron Emission Chamber, an ultra high vacuum (UHV) chamber.  
A vacuum pressure of about 10-8 to 10-9 Torr was maintained in order to eliminate 
atmospheric charging and absorption effects, and to approach the low atomic pressures of 
the space environment. 
 
Tests were performed at three temperatures: 130 K, 170 K, and 200 K.  In order to 
maintain these temperatures, the sample stage was cooled using liquid nitrogen.  The 
flow of liquid nitrogen was regulated by a temperature controller.  Although the JWST 
will be submitted to much lower temperatures, the low temperatures used in 
experimentation provide useful information about the effect of temperature on ESD 
occurrence.  It was expected that temperature changes would affect electrostatic 
discharge events, since the resistivity of a given material is temperature-dependent. 
 
In space, a satellite will be exposed to a certain flux of electrons over a number of years.  
In the laboratory, it would be impractical and expensive to submit samples to an 
extremely low-flux electron beam over a time scale of years.  Instead, the sample is 
exposed to similar amounts of total charge by decreasing the exposure time and 
increasing the electron flux.  Samples were exposed to an electron beam from a High 
Energy Electron Diffraction (HEED) gun.  The electron beam had current densities of 0.1 
nA/cm2 and 1.0 nA/cm2, and energies equal to 22 keV or 7 keV for total exposure times 
1000 s and 3600 s.  Before each run, the HEED gun was conditioned to the appropriate 
beam energy and spot size (large enough to cover the entire 1-cm diameter sample area.)  
The beam was then directed at a Faraday cup and adjusted until the appropriate current 
density was obtained.  
 
Before experimentation began, several measurements were taken to characterize the 
HEED beam. The HEED gun was condition to a specific energy, defocused, and then 
swept over a standard Faraday cup.  Current measured from the Faraday cup was 
deconvoluded to determine the size and shape (Gaussian) of the beam.  This was done to 
determine the current density of the beam at various energies, and to ensure that the beam 
would cover the entire surface of each 1-cm diameter sample. 
 
All of these initial experimental conditions were met in order to minimize atmospheric 
effects and approach the conditions of the space plasma environment to which the JWST 
will be subjected.  
 
3.2 Detection Methods  
 
Although models of space plasma arcing can be useful, actually performing arc testing is 
imperative to understanding the reaction of a material to the space plasma environment.  
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Fig 3.1: Diagram of ESD detection 

Induced Electrostatic Breakdown Test Resolutions 
 

Current Tests Image Tests 
Property Units Oscilloscope 

Resistivity 
Oscilloscope 
Pearson Coil Electrometer Low Light Video High Res. 

Still 
Microscope 
Before/After 

Temporal 
Resolution 

msec ~5·10-4 ~5·10-4 18 33 34,600 NA 

Test 
Duration 

sec ~2.5·10-2 ~2.5·10-2 Full Test Full Test 30 NA 

Spatial 
Resolution 

µm/Pixel NA NA NA 59 55 10 

Image 
Size 

µm 
Pixels NA NA NA 18900x14200 

640x480 
14500x13900 

265x255 
10000 
5725 

Spatial 
Conversion 
Factor 

µm/Pixel 
NA NA NA 29.5 54.6 1.75 

Energy 
Resolution 

µJ/ 
Pixel-Count ~2·10-3 ~2·10-3 ~2·10-4 55 105 NA 

Maximum 
Energy 

µJ ~4 ~6 ~5 ~4 µJ 
~13 µJ/Pixel 

~1.7 µJ 
~25 µJ/Pixel NA 

Energy 
Conversion 
Factor 

varies 
NA NA 0.18 J/A ~0.05 µJ/Pixel-Count ~0.01µJ/Pixel-Count NA 

Wavelength 
Resolution 

--- NA NA NA RGB RGB Full Color 

 

Table 3.1: Instrument Test Resolutions for ESD experiments. 

This is because phenomena not predicted in arc models often occur in actual ESD 
testing.15 ESD events can occur over time intervals ranging from picoseconds to 
microseconds.16 Peak currents of ESD phenomena also have a wide range, from 
milliamps to tens of amps.16 Because of their highly unpredictable nature, several 
measurement techniques were used to detect and characterize ESD events.  As the 
electron beam was irradiating the sample surface, a still camera and video camera were 
positioned to observe the sample surface.  A wire connected to the back of the sample 
billet allowed current to flow through a Resistor, and Pearson Coil.  The current flowing 
through these devices was measured by an oscilloscope.  Sample current was also 
measured by a feedback ammeter or electrometer.  By using a variety of capture devices 
of different sensitivities, a wide range of optical and electrical data was obtained. 
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Fig 3.3:  Pearson Electronics 
Current Monitor. 

3.2.1 Pearson Coil 

 
 
 

One of the current measurement methods uses a Pearson Electronics current monitor, also 
known as a current transformer or Pearson Coil.  The sample current passes through the 
center of the Pearson Coil, which then outputs 0.1 V for every 1A of sample current.  If 
the sample current detected by the Pearson Coil rises above a user-defined threshold a 
Tektronix TDS 2040 Digital Storage Oscilloscope records a user-defined time interval of 
data about the trigger event.  The time between data points depends upon this user 
defined time-interval.  For most experiments, the time between data points was 2 ns.     
 
The current recorded by the Pearson Coil contains a high level of noise.  As the 
transformer is very sensitive, it detects other nearby current sources.  Often it is difficult 
to separate the sample current from all of the stray currents appearing in the data.  
Although this measurement technique does have this disadvantage, it also has a major 
advantage.  It has a greater sensitivity and a faster response time than the resistor 
technique.   
 
3.2.2 Resistor/Shunt Ammeter 
 
Another device used for measuring current is a shunt ammeter, made with a 47-ohm 
resistor.  The oscilloscope also acts as the voltage meter for this method.  Ohm’s law 
states that the voltage drop (V) across the resistor is the product of the current passing 
through the resistor (I) times the resistor value (R),      
 

V = I·R       (2) 

Current from the sample, or input current (Iin), flows through a resistor, known as the 
shunt resistor (Rsh).  The shunt ammeter measures the voltage drop, or output voltage 
(Vo), across the shunt resistor.  The current is calculated by using Ohm’s law, as in the 
equation (3).        

Iin = Vo / Rsh       (3) 

Fig 3.2: Tektronix TDS 2014 Digital Storage Oscilloscope—measures 
Pearson Coil, resistor current data. 
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Fig 3.4: Zeiss Optical Microscope.  

A major advantage of using this measurement technique is the high current resolution 
(i.e. less noise from stray current sources), especially when compared with the magnitude 
of the noise in the Pearson Coil data.  In some cases, this measurement method provides 
current data when the signal from the Pearson Coil is buried in the noise.   
 
One disadvantage to this method of current measurement is the slower response due to a 
time constant delay,  
   

τ = RshCo       (4) 
 
where Co is the capacitance of the system.17 
 
3.2.3 Electrometer/ Isolation amplifier board 
 
A third technique for measuring current uses the electrometer/isolation amplifier board 
built by Dr. J.R. Dennison. The electrometer has a sampling rate of approximately 60 Hz.  
Unlike the current data for the oscilloscope, which is only recorded when triggered, the 
electrometer current data is recorded for the entire duration of each experiment.  
 
3.2.4 Optical Microscope 
 
This is the only optical measurement not recorded during 
ESD testing.  Images of each sample surface are taken before 
and after ESD testing.  A Canon Rebel XT Digital SLR 
camera is connected to a Zeiss microscope at 2.5X 
magnification.  Photographs are taken over the entire sample 
surface, and are then stitched together in Photoshop.  Each 
image has a pixel resolution of 1.70 µm/pixel.  
 
The images before and after are carefully reviewed and 
compared with one another, and notes are made of any 
differences between the two.  Particular attention is devoted 
to detecting scorch marks and other physical signs that 
suggest the occurrence of an ESD event.  The location and 
magnitude of these markings are recorded. 
 
3.2.5 Low-level Video Camera 
 
Footage of the sample as it was irradiated was taken by a Xybion low-level light video 
camera, which is sensitive into the near infrared range.  The camera resided outside the 
vacuum chamber, and observed the sample through a quartz window.  This video stream 
was recorded onto videotapes using a Sony camcorder at a rate of approximately 30 
frames per second.  The video was converted to AVI format for digital storage and to aid 
in analysis. 
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Fig 3.5: Canon Digital SLR 
Camera 

Each video was viewed twice, looking for flashes indicative of an ESD event.  The times 
at which flashes appear in the video were compared with the times at which events 
occurred in the current data.   
 
The video is recorded in grayscale/black and white.  Although it lacks spectral data, it 
does indicate the magnitude of photons released during arcing.  The video data is also 
advantageous in that it is an optical data set with timing information of about 30 ms, 
which information is not contained in the other two optical analysis methods. 
 
3.2.6 Digital SLR Camera 
 
Still photographs of each sample were taken during ESD testing 
using a Canon Rebel XT Digital SLR camera.  As with the video 
camera, the still camera was placed outside of the vacuum chamber 
and focused on the sample through a quartz window.  The camera 
shutter was opened to download the image for 30 seconds and closed 
for four seconds of reset time.  This pattern was repeated for the 
duration of the experiment.  For every experiment, photographs were 
converted to bitmap images and cropped identically.  These images 
were analyzed using a MathCad program that determined the 
intensity of the red, green, and blue light as well as the total light 
intensity of each frame. 
 
Although this optical analysis method lacks precise timing information to indicate when 
arcs occurred, it does provide spectral information about the arcing in the visible range, 
and has a better spatial resolution than the video camera.  The still photographs are also 
an excellent source for determining the locations on the sample surface at which ESD 
occurred. 
 
3.3 Materials Tested 
 
Tests were performed for four types of materials used as structural and optical/thermal 
materials for JWST.  Tables 4.6 and 4.7 contain test results for each of these materials, 
and specify each material’s test designation number.  Detailed descriptions of each 
material follow.  
 
3.3.1 M55 J Carbon Fiber Tube 
 
The M55J Carbon fiber tube material consists of an approximately 3000 µm carbon 
composite layer with about 25 µm of an epoxy resin on top.13 This material was tested in 
experiments 50, 51, 52, and 53 reported in Chapter 4. 
 
 
 
 
 

Fig 3.6.: Photographs of M55J Carbon Fiber Tube (a) in bulk form and (b) in 1-cm diameter disk. 
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3.3.2 IEC Radiator Reflector Material 
 
The IEC Radiator Reflector Material, referred to as “IEC Au” elsewhere in the report, 
contains several layers.  The top layer is ~ 0.1 µm gold (Au), followed by ~0.01 µm 
chromium (Cr).  These metal layers are located atop 100 µm fiberglass/epoxy composite 
atop about 1000 µm carbon fiber composite, atop an additional 100 µm fiberglass/epoxy 
composite.13 This material was tested in test 60, 61, and 62 reported in Chapter 4. 
 
 
 
 
 
 
 

 
3.3.3 IEC Shell Face Sheet with Carbon Veil 
 
This IEC Shell Face material has a total thickness of approximately 1500 µm. One ply 
carbon fiber veil is situated atop six plies fiberglass all embedded in an epoxy resin 
material.  Approximately 25 µm epoxy resin is layered on top of the carbon veil.13 This 
material was tested in experiments 70, 71, 72, and 73. 
 
3.3.4 Au Coated Fiberglass IEC Frame 
 
The material consists of a fiberglass/epoxy composite coated with gold (Au) and 
chromium (Cr).11 The sample, from top to bottom is approximately 0.1 µm Au on ~0.01 
µm Cr, on a thin ~25 µm layer of epoxy resin, on about 100 µm E765/120 style 
fiberglass, on about 1500 µm of E765/7781 style fiberglass composite, on another 100 
µm of E765/120 style fiberglass.13 This material was used in tests 80, 81, and 82. 

 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
CHAPTER 4 

Fig 3.7: Photographs of IEC Radiator Reflector Material (a) in bulk form and (b) in 1-cm diameter disk. 

Fig 3.8: Photograph 
of IEC Shell Face 
Sheet with Carbon 
Veil mounted on 
copper billet.  A Cu 
tape cap around the 
outside edge of the 
sample is used to 
ground the upper 
surface.

Fig 3.9: Photograph 
of Au Coated 
Fiberglass IEC 
Frame mounted on a 
copper billet.  A Cu 
tape cap around the 
outside edge of the 
sample is used to 
ground the upper 
surface.
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DATA AND ANALYSIS 
 

This chapter describes the results of the tests for the four materials described in Section 
3.3.  Section 4.1 provides an overview of results for all 14 experiments.  Section 4.2 
includes more in-depth analyses of all experiments for the IEC Shell Face Sheet material.   
 
4.1 Overview for all materials 
 
The results of all fourteen experiments performed for the four materials described in 
Section 3.3 are summarized in Tables 4.1 and 4.2 below.  Two types of ESD events were 
observed.  One type of discharge was an arc observed as a spike in current data or a flash 
in the optical data.  The other discharge type was observed as a sudden-onset 
exponentially decaying current accompanied by a glow.  Table 4.3 provides information 
about the occurrence of these glows in relation to the electron beam energy and current 
density.  
 
ESD events were observed during three of the four experiments on M55J carbon fiber 
tube—Tests 50, 51, and 52.  The experiment that had no arc events (Test 53) used the 
highest electron beam flux density, but was of shorter duration (1000 s) and had smaller 
beam energy (7 keV).  
 
It is obvious that ESD occurred during Tests 60 and 61 for Au/Cr coated fiberglass, as arc 
events were detected by all six instruments. Glows occurred around the sample edge.  
Damage sites observed by ex-situ microscope imaging, and oscilloscope triggers during 
the experiment suggest arcing also occurred during Test 62.  Sample damage incurred 
during experimentation included the removal of gold from the surface of the sample.  By 
comparing grayscale bitmap images before and after experimentation, it was determined 
that approximately 2% of the Au surface area was removed during Test 61.12     
 
For Test 70, which had the higher electron beam energy (EB = 22000±1 eV) and the lower 
flux current density (JB = 0.1±0.1 nA/cm2), one persistent exponentially decaying current 
and one persistent exponentially growing current were seen as well as at least 35 arc 
events.  Test 71 had the same beam energy and a higher current density (JB = 1.5 ± 0.03 
nA/cm2), but lasted only 1000 seconds.  At least five arcs and one long decay were 
observed.  Only one possible arc event was detected by the oscilloscope during Tests 72, 
which had the lowest electron beam energy, and current flux density.  Test 73 had the 
lower energy, but the higher current flux density and lasted longer than Test 72.  At least 
two arc events occurred, but no exponentially decaying currents were seen.  
 
An exponentially-decaying glow was observed around the upper left edge of the samples 
during Tests 80 and 81.  At least one arc event also occurred during both of these 
experiments.  Three possible ESD events were detected only by the still camera during 
Test 82.  None of the other data indicated that electrostatic discharge had occurred during 
this test, which had the lowest beam energy (7 keV) and a low current density (JB= 0.25 ± 
0.03 nA/cm2).  
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Low current 
0.1 nA/cm 2

High current 
1.0 nA/cm 2 

All currents  
0.1, 1.0 nA/cm 2

Low energy 
7 keV 0 1 1

High energy  
22 keV 4 4 8

All energies 
7, 22 keV 4 5 9

 
 
 
  
 
 
 

 
 

4.2 IEC Shell Face Sheet with Carbon Veil 
 
A more in-depth discussion of the data acquired and analysis for one material, the IEC 
Shell Face Sheet with Carbon Veil, is given below.  Several discharge events occurred 
during ESD testing for the IEC Shell material.  These events were observed by some or 
all of the detection instruments.  Details of the observations for Tests 70, 71, 72, and 73 
follow. 
 
4.2.1 Test 70:  EB=22000 ± 1 eV, JB=0.1 ± 0.1 nA/cm2, t=3600 ± 3 s, T=185 ± 1 K 
 
More ESD events occurred during Test 70 than in any of the fourteen tests performed in 
this study.  Evidence of dramatic discharge events was seen in all of the optical and 
electrical detection methods.  An exponentially decaying current beginning at about 600 s 
was detected by the oscilloscope, electrometer, still camera, and video camera.  At least 
35 arc events were also detected throughout the experiment. 
 
Electrometer Data for Test 70   

 
 
 
 
The current data recorded by the electrometer provide an excellent overview of the entire 
test.  At approximately 580 s a sudden-onset, exponentially decaying negative current 
began to flow.  It reached a minimum value of -9.47 nA and then decayed toward 0 nA 
until about 3500 s, after which the current appears to exponentially grow in the negative 
current direction.  After 580 seconds, at least 35 arc signatures appear in the electrometer 
trace.  Table 4.4 summarizes the times and peak values for each of these arcs.  Although 
the sudden-onset, decaying current is negative, the arc events are positive.  In other 

Table 4.3: Number of experiments in which a glow occurred versus beam energy and beam density. 

Fig 4.1: Graph of Electrometer Current versus time for Test 70. 
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words, electrons flow in opposite directions for the two phenomena.  A summary of arcs, 
including the time at which they occurred and their peak currents, appears in Table 4.4. 
 

Time 
Elapsed 
(s)

Arc Height 
from Base 
Current 
(nA)

Time 
Elapsed 
(s)

Arc Height 
from Base 
Current 
(nA)

Time 
Elapsed 
(s)

Arc Height 
from Base 
Current 
(nA)

644 3.06 1207 23.68 2275 3.32
681 22.06 1293 21.38 2369 22.65
767 23.82 1390 23.77 2510 20.50
840 23.25 1485 21.23 2670 22.51
872 1.50 1536 2.18 2836 20.87
900 8.32 1557 8.41 2960 11.80
932 22.87 1586 17.19 3065 21.92
972 7.91 1650 22.18 3315 21.69

1021 23.06 1759 22.38 3487 8.97
1074 8.14 1896 22.70 3527 7.91
1116 22.86 2071 22.38 3576 23.74
1167 2.51 2209 21.55  

 
 
 

Oscilloscope Data for Test 70 
 
The oscilloscope was triggered 621 s, 2070 s, and 3527 s after the electron beam began 
impinging on the sample surface.  The data from the current monitor (PC) and shunt 
ammeter (Resistor) are in Figures 4.2, 4.3, and 4.4.   
 
 

 
 
 
 
 
 
 

Fig 4.2: Graphs of Resistor and Pearson Coil (PC) current for Test 70 at 621 s. 

Table 4.4: Time of occurrence and arc heights for Test 70 
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The energy of each event as recorded by the shunt ammeter or resistor (ER) and the arc 
energy recorded by the Pearson Coil (EPC) were calculated by integrating the measured 
current and multiplying this by the estimated breakdown voltage, 5 V.  The breakdown 
voltage is the product of the breakdown electric field (about 20 MV/m for the epoxy in 
the IEC Shell material18) and the CSDA Range. The calculated arc energy values are 
listed in Table 4.5.  It is interesting to note that these energies span almost three decades 
in energy. 

Fig 4.4: Graphs of Resistor and Pearson Coil (PC) current for Test 70 at 3527 s. 

Fig 4.3: Graphs of Resistor and Pearson Coil (PC) current for Test 70 at 2070 s. 
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Event time 
(s) ER (µJ) EPC (µJ) 
621 2.41  ± 0.06 2.14  ± 0.05 
2070 > 1189 ± 6 > 1086 ± 5 
3527 167 ± 1 181  ± 1 

 
 
From the graphs above, it seems that the ESD events occurring at 621 s and 3527 s were 
completely captured by the oscilloscope.  The event at 2070 s was an oscillating current 
that exceeded the oscilloscope’s preset range (± 0.1 A).   
 
It should also be noted that the oscilloscope did not reset automatically after the initial 
trigger at 621 s.  Additionally, there is a time delay after the oscilloscope is triggered—it 
records the triggered time window of data, then saves this data as a text file, and then 
begins measuring sample current again.  For these reasons, several arc events could have 
been missed between 621 s and 2070 s, when the oscilloscope was manually reset. 
 
Digital SLR Camera Data for Test 70 
 
The digital still photographs contain evidence of discharging during test 70.  These 
photographs show intensity integrated over 30 seconds and were taken at 34-second time 
intervals.  Beginning with the eighteenth sample frame (i.e. after an elapsed time of about 
578 s), a football-shaped region of the sample appears to emit photons.  This glow has a 
sudden onset, and slowly decays in intensity throughout succeeding frames.  The glow 
becomes brighter in the last three sample frames, 104-106.  (Frame 107 was likely taken 
after the electron beam was turned off.) 
 
It is likely that this phenomenon is related to the sudden increase in sample current, 
which also slowly decays over time.  The decrease in base sample current near the end of 
the test seems to correlate with the increased brightness of the glow in the last few 
frames. 
 
There is also a very faint glow seen in frames 1 through 17, which correlates with the 
electron beam turning on. 
 
 

 
 

Table 4.5: Arc energies calculated with resistor data (ER) and Pearson Coil data (EPC). 
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Fig 4.5: Photographs taken by Digital SLR Camera for Test 70.  Sample: Image taken in full 
light.  Dark: 30-second exposure taken with all light sources off.  1-107: 30-second 
exposures taken consecutively during Test 70 with a four-second reset time between frames. 
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Fig 4.6: Intensity of Test 70 still camera images versus time. a)  linear plot b) semi-log plot. 

0 2 103× 4 103×
1 103×

1 104×

1 105×

1 106×

1 107×

Elapsed time (s)

In
t. 

A
rc

 In
te

ns
ity

 (p
ix

el
)

In
t. 

A
rc

 In
te

ns
ity

 (p
ix

el
)

The relative intensity of each frame was used to create the graph of integrated arc 
intensity and arc energy shown below.  Again notice the sudden increase in intensity at 
approximately 600 s and the gradual intensity increase beginning at about 3500 s.  The 
linear nature of the semi-log curve suggests exponential intensity decay. 
 

 

 
 
 

 
 
No sudden flashes or arc events appear in the digital photographs.  The arcs detected by 
the electrometer may have produced a sudden flash of photons, but the exponentially-
decaying glow seen after 578 s masked any arcing events that may have taken place.  
 
Low-level Video Camera Data for Test 70 
 
The low-level video camera detected the decaying glow as seen in the still camera 
photographs, and was also able to detect arc events.  A small flash, which may have been 
an ESD event, was detected at 376 s.  The sudden luminescence was first seen at 580 
seconds, after which it slowly decreased in brightness.  This glow was still present during 
the succeeding arc events, which were characterized by a sudden flash or increase in light 
intensity.  These arc events occurred at 643, 680, 767, 899, 932, 1115, 1207, 1294, 1390, 
1558, 1589, 1650, 1760, 1897, 2071, 2671, 2961, 3015, and 3316 seconds. 
 
Microscope Imaging Results for Test 70 
    
As shown to the right, from a 
macroscopic view, it is difficult to 
notice any discrepancies between 
the sample surface before and after 
ESD testing.  Careful inspection 
under a microscope also confirmed 
that no noticeable change between 
the sample surface before and after 
ESD testing. 
 
 Fig 4.7: High resolution image of sample 70 a) before ESD testing and b) after ESD testing. 
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Time 
Elapsed 
(s)

Arc Height 
from Base 
Current 
(nA)

572 -15.75
645 5.73
781 2.53
924 8.42
954 2.39
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4.2.2 Test 71: EB=22000±1 eV, JB=1.5 ± 0.03 nA/cm2, t=1000±3 s, T=195± 1 K 
 
A higher flux density was used during this test, but the duration was shorter.  A sudden-
onset exponentially-decaying current was first detected at about 600 seconds.  At least 
five additional arc events were also observed.    
 
Electrometer Data for Test 71 
 
The data recorded by the electrometer shows a sudden-onset, exponentially-decaying 
current similar to that seen in Test 70.  Five arc events were also detected, the first of 
which appears to have happened either immediately before or simultaneously with the 
onset of the exponentially-decaying current.  This arc occurred at 572 s, and is a spike in 
the negative current direction with a peak value of -15.75 nA from the base current.  The 
other arcs (at 645, 781, 924, and 954 s) occur after the sudden-onset current, and are 
spikes in the direction of positive current. 
 

 
 
 
 
 
 

 
 
 

 
 
 
Oscilloscope Data for Test 71 
 
Although the oscilloscope was triggered four times during the experiment, it appears that 
the first two triggers were invalid as the data recorded is of a completely different time 
scale from the time scale set for ESD triggering.  The last two pulses, occurring at 924 s 
and 954 s, have the right time scale.  Graphs of resistor and Pearson Coil currents versus 
time, as well as the energies of these events are shown in Figures 4.9 and 4.10 and Table 
4.7. 

Table 4.7: Test 71 arc energies calculated with resistor data (ER) and Pearson Coil data (EPC). 

Table 4.6: Time of occurrence 
and arc heights for Test 71.Fig 4.8: Graph of Electrometer Current versus time for Test 71. 
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Fig 4.9: Graphs of Resistor and Pearson Coil (PC) current for Test 71 at 924 s. 

Fig 4.10: Graphs of Resistor and Pearson Coil (PC) current for Test 71 at 954 s. 
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Digital SLR Camera Data for Test 71 
 
A sudden-onset luminescence appears near the end of Frame 17 and the beginning of 
frame 18, at approximately 575 seconds.  The glow gradually decreases until the beam is 
turned off at the end of the last frame.  Like Test 70, there is also a very faint glow seen 
in frames 1 through 17, which correlates with the electron beam turning on.  Also as with 
the photographs for Test 70, no arcs/flashes were observed, probably due to the light 
from the luminescence overpowering any quick events that may have occurred.  

 
 
 
 
 
 
Low-level Video Camera Data for Test 71 
 
A very small flash observed at 284 s may have been ESD-related.  The flash was close in 
magnitude to the background noise of the video frames, however, and could have been 
noise.  A decaying glow began at 573 s and a flash, indicating an arc, occurred at 924 s. 
 
Microscope Imaging Results for Test 71 
 
No noticeable changes were 
observed between the sample 
surface before and after Test 71, 
as shown in Figure 4.12. 
     
 
 
 
 
 
 

Fig 4.11: Photographs taken by Digital SLR Camera for Test 71.  Sample: Image taken in 
full light.  Dark: 30-second exposure taken with all light sources off.  1-30: 30-second 
exposures taken consecutively during Test 70 with a four-second reset time between frames. 

Fig 4.12: High resolution image of sample 71 a) before ESD testing and b) after ESD testing. 
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4.2.3 Test 72: EB=7000±1 eV, JB=0.1± 0.03 nA/cm2, t=3600±3 s, T=190± 1 K 
 
Electrometer Data for Test 72 
 
No arcs or persistent exponentially decaying currents were observed by the electrometer 
during test 72 (see Figure 4.13), which had a lower electron beam energy (EB = 7000±1 
eV) than tests 70 and 71 (EB = 22000±1 eV) and had a current flux density, JB=0.1± 0.03 
nA/cm2. 
 

 
 
 
 
Oscilloscope Data for Test 72 
 
The oscilloscope was only triggered once during test 72 at 1399 seconds.  Figure 4.14 
shows the oscilloscope traces.  The energy of the arc was 1.6 ± 0.1 µJ as recorded by the 
resistor and 0.45 ± 0.02 µJ as measured by the Pearson Coil.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.14: Graphs of Resistor and Pearson Coil (PC) current for Test 72 at 1399 s. 

Fig 4.13: Graph of Electrometer Current versus time for Test 72. 
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Fig 4.16: Intensity of Test 72 still camera images versus time. 

Digital SLR Camera Data for Test 72 
 
No arcing or persistent glows were detected by the digital still camera.  All of the 107 
frames taken during experimentation look like the dark image.  The first 30 of these 
frames are in Figure 4.15.   
 

 
 
 
 

Analysis of the light intensity of each frame is also shown in Figure 4.16.  As the 
intensity never rises above the minimum detectable intensity (or noise threshold), no 
significant light flashes or glows occurred during this test. 

 
 
 
Low-level Video Camera Data for Test 72 
 
No glows or flashes were detected by the low-level 
video camera during this test. 
 
Microscope Imaging Results for Test 72 
No noticeable changes were observed between the 
sample surface before and after Test 72 (see Fig. 4.17). 

Fig 4.15: Photographs taken by Digital SLR Camera for Test 72.  Sample: Image taken in 
full light.  Dark: 30-second exposure taken with all light sources off.  1-30: 30-second 
exposures taken consecutively during Test 70 with a four-second reset time between frames. 

Fig 4.17: High resolution image of sample 72 a) before ESD testing and b) after ESD testing. 
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4.2.4 Test 73: EB=7000±1 eV, JB=1.54 ± 0.03 nA/cm2, t=1000±3 s, T=200189± 2 K 
 
Electrometer Data for Test 73 
 
As for test 72, no exponentially-decaying currents appear in the electrometer data for Test 
73.  However, two small arc events were detected at t = 804s and t = 944 s, which 
reached peak values of I = 0.16 nA and I = 0.29 nA, measured from the baseline current.  
(See Table 4.8 and Figure 4.18.) 

Time 
Elapsed 
(s)

Arc Height 
from Base 
Current 
(nA)

804 0.16
944 0.29  

 
 
Oscilloscope Data for Test 73 
 
The oscilloscope was also triggered at 945 seconds, which corresponds in time with a 
small arc observed in the electrometer data.  The energy of the arc was 1.46 ± 0.01 µJ as 
recorded by the resistor and 0.242 ± 0.008 µJ as measured by the Pearson Coil.  Figure 
4.19 shows the resistor and Pearson Coil currents during the event. 

 
 

Fig 4.19: Graphs of Resistor and Pearson Coil (PC) current for Test 73 at 945 s. 

Fig 4.18: Graph of Electrometer Current versus time for Test 73. 

Table 4.8: Time of occurrence 
and arc heights for Test 73. 
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Digital SLR Camera Data for Test 73 
 
A very faint decaying glow can be seen in the frames throughout the experiment (see 
Figure 4.20).  Similar phenomena are observed at the beginning of Tests 70 and 71.  
 

 
 
 
 
 
 
Low-level Video Camera Data for Test 73 
 
Three possible arcing events were captured by the video camera during Test 73.  One 
small flash at 166 s was only slightly brighter and larger than the background noise; it 
suggests ESD may have occurred, but is not compelling evidence.  Two distinct flashes at 
801s and 941 s provide stronger indications that ESD occurred.  Both flashes correspond 
to times for arcs seen in the electrometer data. 
   
Microscope Imaging Results for Test 73 
  
 No noticeable changes were observed 
between the sample surface before and after 
Test 72, as shown in Figure 4.21. 
 
 
 
 
 
 
 
 

Fig 4.20: Photographs taken by Digital SLR Camera for Test 73.  Sample: Image taken in 
full light.  Dark: 30-second exposure taken with all light sources off.  1-30: 30-second 
exposures taken consecutively during Test 70 with a four-second reset time between frames. 

Fig 4.21: High resolution image of sample 73 a) before ESD testing and b) after ESD testing. 
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CHAPTER 5 
CONCLUSIONS 

 
Although further analysis is necessary before any definitive conclusions can be 
reached, there is evidence that electrostatic discharge can be induced by the 
conditions of electrons in the L2 space plasma environment.  Discharge events 
occurred for all four materials under the simulated accelerated space plasma charging 
conditions.  ESD events occurred for all eight experiments using the higher energy 
electron beam (~22 keV), whereas only one of the six lower energy (7 keV) electron 
beam tests induced ESD.  Five of the six higher current (1.0nA/cm2) beams induced 
glows, while glows occurred for only four of the eight lower current (0.1 nA/cm2) 
experiments (see Table 4.3). 
 
Two types of discharge events were observed: a sudden-onset, persistent, 
exponentially-decaying current accompanied by luminescence and a brief spike, or 
arc, in current sometimes accompanied with a flash in the video data.  For the gold-
covered samples, any glows seen occurred around the edge of the sample.  For the 
composite materials, glows occurred in a football shape across about one-third of the 
sample surface.  The initial magnitude of the glow current ranged from 1.7 times the 
electron beam current, to 121 times the electron beam current.  The still camera and 
electrometer showed exponential decays with time constants on the order of 10 
minutes.  Multiple glows did occur in some cases. In all five experiments where the 
glow extended to the end of testing, the glow ceased immediately when the beam 
turned off.  The coincidence of glows was very good between electrometer, video, 
and still camera data. 
 
Analysis of the oscilloscope data showed that the arcs had periods on the order of 
0.05 µs and lasted for about 1 µs.  These events had energies ranging from 0.02 µJ to 
1200 µJ, and reached maximum currents of 5.1 to 181 mA.  In four of the five tests 
where arcs occurred outside of a glow, these arc currents were negative.  For all five 
tests with arcs occurring during a glow, these arc currents were positive.  Sometimes 
the oscilloscope would not trigger for an arc detected by the other two methods. 
However, there was good overall coincidence of arcs between electrometer, 
oscilloscope, and video data.   
 
The results of this study have already initiated a project by the JWST design team to 
increase the thickness of the conducting gold layer of the IEC Au Radiator Reflector 
Material.  This is intended to mitigate arcing induced by storm conditions in the L2 
environment.  Based on the estimation that approximately 2% of the gold surface was 
removed during irradiation by the electron beam, JWST researchers are considering 
the feasibility of increasing the thickness of the gold layer to enhance charge 
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dissipation and reduce the likelihood of exposing the underlying fiberglass and 
carbon fiber material.  Additional design alterations may also be necessary for all 
materials to avoid ESD anomalies, particularly to minimize light contamination from 
glows. 
 
Future research at USU includes further analysis of data already taken.  This analysis 
includes, but is not limited to: determination of arc energy as measured by the 
electrometer, calculating time constants for the exponentially decaying currents, 
computation of accumulated charge at onset time for exponentially decaying currents, 
analysis of comparative brightness of video frames, and determining the orientation 
and magnitude of luminescence on video and still camera shots.  It would also be 
beneficial to perform more precise sensitivity measurements for each of the detection 
instruments to better understand the limitations of each detection method. 
 
Additional planned experimentation would involve incorporating a spectrometer into 
the ESD detection system, in order to better characterize the luminescence or glow 
seen in many of the tests.  Using a phosphor screen to characterize the shape of the 
electron beam may provide explanations for the shape of the glow, which has an 
abrupt edge in the upper left portion of each sample. There are also plans to exactly 
repeat several ESD tests, which will provide information about the reproducibility of 
arc events. Future testing will be performed for the Au Radiator Reflector material 
with a thicker layer of gold to test the functionality of the thicker gold layer. 
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