The Canadian Advanced Nanospace eXperiment 7 (CanX-7) Demonstration Mission: Deorbiting Nano- and Microspacecraft

Barbara Shmuel, Jesse Hiemstra, Vincent Tarantini, Fiona Singarayar, Grant Bonin, Dr. Robert E. Zee

Space Flight Laboratory
University of Toronto Institute for Aerospace Studies
Space Flight Laboratory

- SFL founded in 1998
- MOST: Canada’s First Space Telescope
- Canadian Advanced Nanospace eXperiment (CanX) Missions
 - Rapid, responsive, and highly capable
 - Low cost, quick to develop and launch
- Generic Nanosatellite Bus (GNB) and Nanosatellite for Earth Monitoring and Observation (NEMO) class missions
Space Debris

- Increased activity in space
- NORAD tracking ~20,000 objects
 - Decommissioned satellites, upper stages, debris from separations, explosions
 - Objects lost and found on regular basis
- Environment becoming increasingly dangerous for new missions

Space Debris Visualization [1]
IADC Guidelines

• Inter-Agency Space Debris Coordination Committee (IADC) Space Debris Mitigation Guidelines (2007)
 – Two protected regions (LEO, GEO)
 – LEO guidelines -> deorbit within 25 years from EOM

• Not the law (yet)...
 – Foreign Affairs and International Trade Canada (DFAIT), Industry Canada require debris plan as pre-requisite for licenses
 – Significant issue for Canadian satellites, particularly small, responsive missions
De-orbiting Small Satellites

- Several Approaches
 - Propulsive
 - Active solar sail
 - Electrodynamics tethers
 - Inflatable devices
 - Drag sails

Canadian Advanced Nanospace eXperiment (CanX-7)

- Mission Goals
 - Demonstrate a drag sail deorbit device for cubesats
 - Validate post-deployment de-orbit models
 - Operate secondary payload provided by COM DEV
CanX-7 Bus

- **Mechanical**
 - 10x10x34cm form factor
 - Passive thermal control

- **Power**
 - Generic Nanosatellite Bus electronics used
 - Body-mounted triple-junction solar strings
 - 4.8Ah Li-Ion battery
 - DET system with PPT functionality

- **C&DH**
 - Generic Nanosatellite Bus electronics used
 - Single housekeeping computer

- **TT&C**
 - Generic Nanosatellite Bus electronics used
 - 4 kbps UHF Rx, 32 kbps S-Band Transmitter
 - Existing SFL ground station used

- **ADCS**
 - Magnetometer, panel currents for determination
 - Three magnetorquers for magnetic stabilization
Expected Lifetime of the CanX-7 Satellite

![Graph showing the expected lifetime of the CanX-7 satellite with varying drag areas and altitudes represented by different lines and colors. The x-axis represents Drag Area (m²), and the y-axis represents Lifetime (Years). Legend includes 800km, Cd=2.4, 700km, Cd=2.4, 600km, Cd=2.4, 800km, Cd=2.2, 700km, Cd=2.2, and 600km, Cd=2.2, with 25 Years also marked.]
The Overall Effective Drag Area takes into account spacecraft attitude dynamics as well as the changing atmospheric density. It is determined in two steps:

1. Simulations are performed to determine the average projected area over several orbits at different atmospheric densities.
2. These results are then combined in a weighted average, where the weights are determined by the duration spent at each density over one solar cycle.

In order for CanX-7 to meet the 25 year de-orbit lifetime requirement in any initial orbit, the required overall effective drag area must be at least 0.5 m².

The primary factors affecting the overall projected drag area are:
- Spacecraft residual magnetic properties: 7 different configurations considered
- Orbit (altitude, LTAN, and inclination): 24 different orbits considered for each initial altitude
Overall Effective Area Results

Orbit Properties

<table>
<thead>
<tr>
<th>LTAN [HHMM]</th>
<th>Inclination [deg]</th>
<th>Altitude [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0300 to 2400</td>
<td>80, 90, 100</td>
<td>500 to 800</td>
</tr>
</tbody>
</table>

Spacecraft Residual Magnetic Dipole Moment Properties

<table>
<thead>
<tr>
<th>Magnitude [Am²]</th>
<th>Orientation [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00, 0.05, 0.10</td>
<td>0, 45, 90</td>
</tr>
</tbody>
</table>

All combinations of the above parameters are simulated:

168 configurations per altitude
Drag Sail Design

Sail Module

Boom

Sail
Drag Sail Design

Reel

Roller

Sail Cartridge

Coiled Booms

Door
Deployment Test
Multi-Mission Use
Conclusion

• CanX-7 will be a de-orbiting demonstration mission
• Show de-orbit of a cubesat in LEO within the IADC period of 25 years
• Space qualify core drag sail design for cubesats, with future improvements for larger missions
• Ensure no hindrance to future small satellite launches
References

- Slide 3 Picture:

- Slide 5 Pictures: