Global change accelerates carbon assimilation by a wetland ecosystem engineer

Joshua S. Caplan
Bryn Mawr College

Rachel Nia Hager
Utah State University, rachel.nia.hager@gmail.com

J. Patrick Megonigal
Smithsonian Environmental Research Center

Thomas J. Mozdzer
Bryn Mawr College

Follow this and additional works at: https://digitalcommons.usu.edu/wats_stures

Part of the Life Sciences Commons

Recommended Citation

Global change accelerates carbon assimilation by a wetland ecosystem engineer

To cite this article: Joshua S Caplan et al 2015 Environ. Res. Lett. 10 115006

View the article online for updates and enhancements.

Related content
- Tidal influences on carbon assimilation by a salt marsh
 James C Kähilankal, Thomas J Mozdzer, Jose D Fuentes et al.
- Modeling Long-term Forest Carbon Spatiotemporal Dynamics With Historical Climate and Recent Remote Sensing Data
 Jing M. Chen
- Carbon dioxide and methane exchange at a cool-temperate freshwater marsh
 Ian B Strachan, Kelly A Nugent, Stephanie Crombie et al.

Recent citations
- Climate Dynamics, Invader Fitness, and Ecosystem Resistance in an Invasion-Factor Framework
 Stephen L. Young et al
- ‘Blue Carbon’ and Nutrient Stocks of Salt Marshes at a Temperate Coastal Lagoon (Ria de Aveiro, Portugal)
 Ana I. Sousa et al
- Nitrogen-mediated effects of elevated CO2on intra-aggregate soil pore structure
 Joshua S. Caplan et al
Global change accelerates carbon assimilation by a wetland ecosystem engineer

Joshua S Caplan1,2, Rachel N Hager1,2,3, J Patrick Megonigal1 and Thomas J Mozdzer1,2

1 Department of Biology, Bryn Mawr College, 101 North Merion Avenue, Bryn Mawr, PA 19010, USA
2 Smithsonian Environmental Research Center, 647 Cometes Wharf Road, Edgewater, MD 21037, USA
3 Ecology Center and Department of Watershed Sciences, Utah State University, 5210 Old Main Hill, Logan, UT 84322, USA

E-mail: jcaplan@mail.com

Keywords: coastal wetland, elevated CO2, eutrophication, global change, Phragmites australis (common reed), tidal saltmarsh, primary productivity

Abstract

The primary productivity of coastal wetlands is changing dramatically in response to rising atmospheric carbon dioxide (CO2) concentrations, nitrogen (N) enrichment, and invasions by novel species, potentially altering their ecosystem services and resilience to sea level rise. In order to determine how these interacting global change factors will affect coastal wetland productivity, we quantified growing-season carbon assimilation (≈gross primary productivity, or GPP) and carbon retained in living plant biomass (≈net primary productivity, or NPP) of North American mid-Atlantic saltmarshes invaded by Phragmites australis (common reed) under four treatment conditions: two levels of CO2 (ambient and +300 ppm) crossed with two levels of N (0 and 25 g N added m−2 yr−1).

For GPP, we combined descriptions of canopy structure and leaf-level photosynthesis in a simulation model, using empirical data from an open-top chamber field study. Under ambient CO2 and low N loading (i.e., the Control), we determined GPP to be 1.66 ± 0.05 kg C m−2 yr−1 at a typical Phragmites stand density. Individually, elevated CO2 and N enrichment increased GPP by 44 and 60%, respectively. Changes under N enrichment came largely from stimulation to carbon assimilation early and late in the growing season, while changes from CO2 came from stimulation during the early and mid-growing season. In combination, elevated CO2 and N enrichment increased GPP by 95% over the Control, yielding 3.24 ± 0.08 kg C m−2 yr−1. We used biomass data to calculate NPP, and determined that it represented 44–60% of GPP, with global change conditions decreasing carbon retention compared to the Control. Our results indicate that Phragmites invasions in eutrophied saltmarshes are driven, in part, by extended phenology yielding 3.1× greater NPP than native marsh. Further, we can expect elevated CO2 to amplify Phragmites productivity throughout the growing season, with potential implications including accelerated spread and greater carbon storage belowground.

1. Introduction

Global change is altering the fundamental ecological processes that control coastal wetland productivity, and is thereby altering ecosystem processes such as soil accretion, elevation gain, and carbon sequestration [1, 2]. Global change affects primary productivity, for example, by altering photosynthetic rates, temporal patterns of growth, allocation to above- versus belowground organs, and plant community composition [3]. Such changes have the potential to alter the resilience of tidal wetlands to sea level rise, with consequences for ecosystem services like providing wildlife habitat and protecting coasts from storm surges [4].

The productivity response of marsh ecosystems to global change is highly context specific, with the response to rising atmospheric carbon dioxide (CO2)
concentrations dependent on local abiotic conditions such as nitrogen (N) loading, salinity, and functional traits of the biotic community, including the dominant photosynthetic pathway [3–7]. Although research on native plant communities has provided strong insights into the relationships of rising CO$_2$, N loading, and biotic change in coastal wetlands [6, 8], biological invaders are re-engineering coastal ecosystems, thus modifying how global change factors influence ecosystem productivity, resilience to sea level rise, and provisioning of ecosystem services [9, 10].

Invasive plant species and genotypes not only respond to environmental change but also amplify or fundamentally alter ecological processes through novel traits or feedbacks [11], and can therefore be considered a form of global change themselves [12]. Several highly successful plant invasions have proceeded through this form of ecosystem re-engineering; the most prominent case in North American coastal wetlands is that of Phragmites australis (hereafter Phragmites) or common reed. Phragmites is a clonal C$_3$ grass that grows in fresh to polyhaline wetlands throughout the world [13]. Although there are many genetic lineages of Phragmites globally, one haplotype (designated M) is highly invasive in North America, where it was introduced from Eurasia in the 1800s [14]. Several Phragmites lineages, including haplotype M, are known to have particularly strong trait responses to elevated CO$_2$, temperature, and N conditions, such as increased light-saturated photosynthetic rates, relative growth rates, and stand densities [15–17]. However, experiments evaluating Phragmites traits and their responses to global change have been short-term and have used young, containerized plants [15–19], thus limiting their ability to provide insight into ecosystem-level processes. Quantification of carbon fluxes and storage in Phragmites-dominated marshes, for example, requires data from mature clones growing in the field. Such quantification would be useful for carefully evaluating if and how Phragmites will alter rates of soil elevation gain under future environmental conditions. Some have suggested that the negative effects of Phragmites invasion be weighed against its potential to enable some coastal wetlands to keep pace with accelerating rates of sea level rise [20].

Relatively few data sets describe variation in carbon assimilation under expected future CO$_2$ conditions at timescales necessary to provide insight into the influence of intra-annual temporal patterns on annual productivity. However, growth and senescence phenology can strongly influence annual productivity, e.g., by moderating canopy structure [21, 22] or the duration of the growing period [23–25]. Further, these phenological changes are influenced by global change factors such as CO$_2$, N, and temperature [23, 26, 27]. Much of the research on plant productivity responses to global change is based on plant biomass measurements, with data collected one to a few times annually [6, 28]. A lack of fine-scale, temporally explicit data on carbon assimilation rates under predicted future conditions limits our ability to understand and model the effects of global change on coastal wetlands.

Although CO$_2$, N, and other global change factors can be manipulated in the field, quantifying carbon fluxes at a high temporal frequency in concert with such experiments poses methodological challenges. Eddy covariance generates high frequency data and has been used successfully in coastal wetlands [29–31], but fumigation with CO$_2$ disrupts the CO$_2$ gradients that are the basis of the technique. Measurements of carbon assimilation can be made with flux chambers [32, 33], but collecting data at a sufficient interval to capture variation in solar radiation is prohibitively difficult; this is especially true for large-stature species such as Phragmites (heights reach 4 m). Modeling can be used to overcome these challenges, though accurate modeling under global change conditions requires vegetative responses to these conditions to be determined and represented. At large spatial scales, this has been achieved by coupling models of carbon cycling and climate processes, and running these models under various emissions scenarios [34]. At the smaller scales relevant to determining the influence of plant community composition on productivity, modeling has enabled leaf-level carbon fluxes to be extended to the stand scale [24, 35, 36]. Empirical data from manipulative global change field experiments can provide the relationships and parameters needed to accurately represent differences in plant physiology and canopy structure in such models.

We present here a quantification of gross primary productivity (GPP) by Phragmites in a North American mid-Atlantic Coast wetland that is finely temporally scaled (hourly to daily) and was derived from a combination of experimentation and modeling. Using data and relationships derived from a new, manipulative field experiment on the Chesapeake Bay, we simulated Phragmites growth, canopy structure, and carbon assimilation under factorial combinations of atmospheric CO$_2$ and N loading. Although Phragmites stand dynamics have been modeled successfully several times before [37–42], these efforts did not consider the effects of global change on model parameters, and most focused on aboveground productivity. We specifically determined how global change will alter the magnitude of carbon assimilation by Phragmites tidal marshes at the annual timescale (GPP$_a$) as well as temporal patterns of carbon assimilation through the growing season. We also estimated annual net primary productivity (NPP$_a$) of Phragmites marshes, and used these values to constrain carbon use efficiency (CUE), i.e., the fraction of GPP$_a$ retained, under the global change treatments considered. Finally, we compared the stimulation effects of Phragmites marshes (based on GPP$_a$ and NPP$_a$) to each other and to those of native marshes (based on NPP$_a$). We expected Phragmites to increase GPP$_a$ and NPP$_a$ in response to both elevated CO$_2$ and N enrichment, but to experience the
greatest productivity stimulation under the combined treatment. Further, we expected *Phragmites* to increase its CUE under all global change conditions and to exhibit stronger stimulation effects than the native community.

2. Methods

2.1. Field experiment

The field experiment was established in a brackish tidal marsh within the Smithsonian Global Change Research Wetland (Kirpatrick Marsh; 38.8742° N, 76.5474° W) in Edgewater, Maryland, USA. Salinity at the site varies from 4–15 ppt (mean = 10 ppt) and the mean tidal range is 44 cm. The high-marsh platform is predominantly organic (>80%) to 5 m depth. Mean daily air temperatures range from −4 to 31 °C and mean annual precipitation is 108 cm. The native plant community is dominated by the C₃ sedge *Schoenoplectus amercianus* (formerly *Scirpus americanus* and *S. olneyi*) and the C₄ grasses *Spartina patens* and *Distichlis spicata*. A single stand of *Phragmites* was documented in 1972 [43], whereas it now covers approximately 25% of the site.

Twelve open-top chambers (OTCs; 1.25 × 2.5 × 4.4 m) were installed at the leading edge of an expanding *Phragmites* stand in 2011. During the 2011–2013 growing seasons (May through October) half of the OTCs were fumigated with air approximately 300 ppm CO₂ above ambient levels (denoted eCO₂), while the remaining chambers were fumigated with unamended air. This CO₂ level is representative of those predicted for year 2100 under a moderate rise in global atmospheric CO₂ (e.g., scenario RCP6 [44]), and has been used in other experiments at the site [2, 5]. Three OTCs of each CO₂ treatment type received 25 g N m⁻² yr⁻¹ (denoted Nₘₑₑ), which was applied monthly during the growing season as dissolved NH₄Cl (5 g N m⁻² per month). This enrichment level represents moderate N loading in wetlands of the Chesapeake Bay [45] and has been used in an experiment in the native community at the site [2]. Treatments were randomly assigned to OTCs, thus preventing treatment effects from being confounded with spatially autocorrelated patterns, e.g., in *Phragmites* genetic relatedness or in microtopography.

Aluminum skirts at the base of each chamber (extending to 30 cm depth), in combination with low lateral movement of water at this site and the low mobility of NH₄, ensured that minimal fertilizer was removed by tidal flooding [46]. Air temperatures measured in the middle and upper *Phragmites* canopy (175 and 230 cm, respectively) in one OTC from July–October were 2.0 ± 2.8 °C (24 h mean ± SD) warmer than outside the chamber but above the native plant canopy (at 175 cm). Warming was greater during the day (3.6 ± 2.8 °C; 7:00–19:59 h) than at night (0.0 ± 0.6 °C; 20:00–6:59 h), and ~1 °C less in the lower canopy (85 cm). This magnitude of warming is comparable to that reported for another OTC experiment at the field site [27], and is likely due to heat being trapped by both the plant canopy and by the chambers. *Phragmites* abundance within OTCs increased from 2010–2013, but the composition of most chambers in 2013 was transitional between *Phragmites*- and native-dominated. An intensive data collection effort was undertaken during the 2013 growing season to define the properties and relationships used in a simulation model of canopy growth and carbon assimilation.

2.2. GPP simulation model

We determined canopy-level carbon assimilation by combining empirical data on plant growth, canopy structure, leaf senescence, and leaf-level photosynthesis in a simulation model. Methodological details of the model structure, the empirical data we collected, and the relationships we defined from these data are provided in supplement 1; a summary is provided in table 1. Briefly, we used the R computing environment (R Foundation for Statistical Computing, Vienna, Austria) to generate virtual, monotypic stands of *Phragmites* that had characteristics of plants growing in each of the four treatments at our field site (i.e., Control, eCO₂, N enr, and eCO₂ + N enr). Empirical data from the three replicate chambers of each treatment type were pooled to determine plant characteristics in simulations.

Stand densities were established at the outset of each simulation (table 1). At daily intervals, plants grew in height (figure 1) and added leaves according to relationships derived from field data (figures S1–S3). Daily representations of *Phragmites* canopy were divided into 10 cm thick layers such that total leaf area and associated aggregate characteristics (e.g., light attenuation) could be quantified. At hourly intervals spanning the 261 days of the growing season, empirical records of light availability and air temperature were applied to the canopy. Gross carbon assimilation by each canopy layer was determined as the sum of photosynthesis and respiration rates. These were based on monthly light response curves (figure S4) recorded at the leaf level near the top of the canopy. Measured rates were adjusted to account for declines with canopy position (figure S5) as well as diurnal changes in air temperature (table 1). Adjusted rates were summed across canopy layers and through all hours of the day to yield daily GPP values (GPPd); these were then summed through the growing season to yield GPPs.

Phragmites stand densities vary widely in the field [16, 47, 48], and the associated changes in canopy leaf area alter carbon assimilation both positively via photosynthetic area and negatively via within-canopy shading. To assess how these countervailing processes would combine to determine carbon gain at the stand
scale, we ran simulations at stand densities spanning the range typically seen in Atlantic Coast marshes [16, 49]: 50, 75, 100, 125, 150 culms m⁻². Specifically, we ran simulations at 50, 75, 100, 125, and 150 culms m⁻². To characterize the influence of stochasticity associated with the selection of plant growth curves (figure 1), ten replicate model runs were carried out at each stand density. Where not stated otherwise, we report the means of replicate runs, with means computed at the daily scale. All computations were carried out in R 3.1.1.

2.3. Estimates of NPP and CUE
We calculated the NPPₐ of *Phragmites* marsh under each treatment condition from estimates of above-ground biomass (BMₐg). Biomass was derived from

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Determination</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand</td>
<td>Treatment</td>
<td>Established at outset</td>
<td>Four levels: Ctrl, eCO₂, Nₑₓₑ, eCO₂ + Nₑₓₑ</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>Established at outset</td>
<td>Five levels: 50, 75, 100, 125, 150 culms m⁻²</td>
</tr>
<tr>
<td>Culm</td>
<td>Height</td>
<td>Random draw from curve set, treatment</td>
<td>Logistic equation fit to weekly measurements from 113 plants (figure 1)</td>
</tr>
<tr>
<td></td>
<td>Number of leaves</td>
<td>Culm height</td>
<td>Linear regression using data from 24 plants (figure S1)</td>
</tr>
<tr>
<td>Leaf</td>
<td>Rank</td>
<td>Numbered sequentially</td>
<td>Apical leaf = 1</td>
</tr>
<tr>
<td></td>
<td>Vertical position</td>
<td>Leaf rank, culm height, treatment</td>
<td>Spline functions fit to data from 24 plants (figure S2)</td>
</tr>
<tr>
<td></td>
<td>Area</td>
<td>Leaf rank, treatment</td>
<td>Means of data by leaf rank from 36 plants (figure S3)</td>
</tr>
<tr>
<td></td>
<td>Living/dead</td>
<td>Leaf age</td>
<td>Constant lifespan assumed (75 d)</td>
</tr>
<tr>
<td>Canopy layer</td>
<td>Total leaf area</td>
<td>Leaf area, vertical position</td>
<td>All leaves included (=LAI)</td>
</tr>
<tr>
<td></td>
<td>Living leaf area</td>
<td>Leaf area, living/dead</td>
<td>Live leaves only</td>
</tr>
<tr>
<td></td>
<td>PPFD fraction</td>
<td>Total leaf area</td>
<td>Beer’s law using coefficient from [51]</td>
</tr>
<tr>
<td></td>
<td>Positional correction</td>
<td>Treatment</td>
<td>Quadratic function applied to Aₐₑₑ and Rₑₑ; data from [51] (figure S5)</td>
</tr>
<tr>
<td>Carbon assimilation</td>
<td>Photosynthesis rate</td>
<td>Treatment, month, PPFD time series</td>
<td>Aₐₑₑ from light response curves (figure S4) based on 3 plants per chamber per month</td>
</tr>
<tr>
<td></td>
<td>Respiration rate</td>
<td>Treatment, month</td>
<td>Rₑₑ from light response curves used at all PPFD</td>
</tr>
<tr>
<td></td>
<td>Temperature correction</td>
<td>Q₁₀ coefficient, temperature time series</td>
<td>Q₁₀ values derived from [53] for photosynthesis and [54] for respiration</td>
</tr>
</tbody>
</table>

Note: Determination lists dependencies among properties and other factors used in calculations. Details include the datasets, functions, and other information used in calculations. A complete description of the simulation model is provided in supplement 1.
morphometric measurements on individual plants that were collected during late July 2013, near peak standing biomass; we applied allometric relationships derived from plants collected outside of the chambers to determine BMag. We then computed the mean mass per culm in each of the four treatments, and scaled these values to 100 culms m\(^{-2}\) (table S1 in supplement 2). We applied belowground mass fractions from an experiment with identical treatment levels as used in this study [55]. Note that plants in that experiment were containerized and grown from seed, potentially yielding smaller biomass allocation responses than mature plants exhibit. To convert biomass production to NPP, we summed above and belowground biomass estimates and assumed that plant tissue was 45% carbon by mass [56]. We calculated Phragmites’ CUE as the ratio of NPP to GPP.

We also compared stimulation effects between GPP and NPP for Phragmites-dominated marsh and with NPP-based values for the native high-marsh community at the field site. Atmospheric CO\(_2\) and N loading have been manipulated in factorial combination in the native marsh experiment (\(n = 5\) chambers of each of the four treatment types) using identical enrichment rates to those used in the Phragmites study, though it began in 2005 [6]. Dominant species in the native experiment included Schoenoplectus americanus, Spartina patens, and Distichlis spicata, all of which produce new aboveground organs annually. Chambers were censused near peak standing biomass (late July to early August) and BMag was determined using allometric equations. Annual production of belowground biomass was measured with ingrowth bags (to 30 cm depth; collected in November). Given the low rates of decomposition in Chesapeake Bay tidal marshes [57] and the lack of dead fine roots in ingrowth bags (A Langley, personal observation), root turnover is likely to be negligible in this system. As with Phragmites, we assumed that biomass was 45% carbon.

3. Results

3.1. Annual carbon assimilation

Our simulations of Phragmites australis stands growing under current atmospheric CO\(_2\) concentrations and ambient N conditions (i.e., the Control) yielded a GPP, of 1.66 ± 0.05 kg C m\(^{-2}\) yr\(^{-1}\) (mean ± SD) at a typical stand density for Atlantic Coast marshes (100 culms m\(^{-2}\); figure 2). A 300 ppm rise in CO\(_2\) (i.e., the eCO\(_2\) treatment) induced a 44% stimulation to GPP, (we define stimulation as the percent increase over the Control), which equated to 2.39 ± 0.05 kg C m\(^{-2}\) yr\(^{-1}\). Moderate N loading (i.e., the N\(_{\text{enr}}\) treatment) yielded a 60% stimulation at ambient CO\(_2\), raising GPP, to 2.65 ± 0.02 kg C m\(^{-2}\) yr\(^{-1}\), while eCO\(_2\) + N\(_{\text{enr}}\) induced a 95% stimulation, raising GPP, to 3.24 ± 0.08 kg C m\(^{-2}\) yr\(^{-1}\). Phragmites culm heights, total leaf areas, and photosynthesis rates all increased under eCO\(_2\) and N\(_{\text{enr}}\) (figures 1, S3, and S4), contributing to these effects.

Alteration stand density had a curvilinear effect on GPP (figure 2) that was strongest under N\(_{\text{enr}}\) and weakest under the Control. Specifically, a 50% increase in stand density (from 100 to 150 culms m\(^{-2}\)) yielded increases in GPP of 11%–31%, while a 50% decrease in density (100 to 50 culms m\(^{-2}\)) yielded decreases in GPP of 27%–39%. Despite the curvilinear relationship, treatment rankings were consistent across all densities. The margins by which eCO\(_2\) exceeded the Control (0.56–0.73 kg C m\(^{-2}\) yr\(^{-1}\)) and by which eCO\(_2\) + N\(_{\text{enr}}\) exceeded eCO\(_2\) (0.79–0.88 kg C m\(^{-2}\) yr\(^{-1}\)) were relatively consistent (CV = 0.10 and 0.05, respectively). However, the margin by which N\(_{\text{enr}}\) exceeded eCO\(_2\) (0.36–0.41 kg C m\(^{-2}\) yr\(^{-1}\)) decreased with stand density and was therefore more variable (CV = 0.42).

3.2. Daily carbon assimilation

Temporal patterns of carbon assimilation differed among global change scenarios, with rates on a given day strongly influenced by PPFD (figures 3(a) and (c)). GPP\(_{d}\) under all global change conditions exceeded rates under the Control by increasingly wide margins through most of the early growing season (March–May; figures 3(a) and (b)). Rates under N\(_{\text{enr}}\) with or without simultaneous CO\(_2\) addition, were greater than rates under eCO\(_2\) through this period, and surpassed 50% stimulation through most of April and May. By the end of May, cumulative carbon assimilation represented for 17%–19% of GPP under the Control, eCO\(_2\), and eCO\(_2\) + N\(_{\text{enr}}\) treatments, but 22% of annual GPP under N\(_{\text{enr}}\).

During the middle of the growing season (June–July), the temporal trend in GPP\(_{d}\) was nearly linear under Control and eCO\(_2\) conditions, though the rise was steeper under eCO\(_2\) (figure 3(a)). GPP\(_{d}\) also increased under N\(_{\text{enr}}\), but the trend was more variable and less steep than for the Control; rates rarely exceeded those reached in late May. Given the greater rise in GPP\(_{d}\) under eCO\(_2\) than under N\(_{\text{enr}}\), the two treatments had similar rates during the peak period of July 15–20 (34.6 ± 2.1 and 32.8 ± 1.9 g C m\(^{-2}\) d\(^{-1}\), respectively; mean ± SD). Under eCO\(_2\) + N\(_{\text{enr}}\), the temporal trend in GPP\(_{d}\) paralleled that of the Control, but was 1.7× greater during the peak in mid-July (40.1 ± 2.2 versus 23.0 ± 1.3 g C m\(^{-2}\) d\(^{-1}\)).

GPP\(_{d}\) continued to exceed all other treatments under eCO\(_2\) + N\(_{\text{enr}}\) for the remainder of the growing season (August–November), exhibiting >100% stimulation for the majority of August and September. Carbon assimilated during the late growing season represented 27% of GPP\(_{d}\) under eCO\(_2\) + N\(_{\text{enr}}\). This delay in the end-of-season GPP\(_{d}\) decline also occurred under N\(_{\text{enr}}\) though it was less pronounced; stimulation effects were half as strong as those under eCO\(_2\) + N\(_{\text{enr}}\) and carbon gains during the late
Growing season accounted for 22% of GPPa. In contrast, stimulation by eCO2 declined throughout this period, with GPPd rates falling below those of the Control in late August. Carbon assimilated from August–November represented 18% of GPPa for eCO2 and 21% for the Control.

Figure 2. Annual carbon assimilation (GPPa) by monotypic stands of Phragmites australis as a function of stand density. Box heights are scaled to the range of values over 10 replicate model runs, with variability resulting from the random selection of empirical height growth curves that occurred in each run.

Figure 3. (a) Simulated daily carbon assimilation (GPPd) by monotypic stands of Phragmites australis (100 culms m⁻²) during the 2013 growing season. Points represent mean GPPd rates over 10 replicate runs. Spline curves depict temporal trends for each treatment. (b) Stimulation of daily carbon assimilation by treatment, expressed as the difference from the Control on a percentage basis. (c) Daily maximum photosynthetic photon flux density (PPFD), for which units are μmol photons m⁻² s⁻¹.
3.3. Estimates of NPP and CUE

NPP\text{a} estimates for \textit{Phragmites}-dominated coastal marshes ranged from 1.00 – 1.68 kg C m\(^{-2}\) yr\(^{-1}\), with Control and eCO\(_2\) + N\(\text{enr}\) conditions yielding the least and greatest rates, respectively (figure 4). NPP\text{a} varied among treatments primarily according to their N enrichment level; this largely derived from mean aboveground biomass being similar within each N level (table S1). NPP\text{a} was substantially greater for \textit{Phragmites} than for the native saltmarsh community, with \textit{Phragmites} 2.3 and 2.4 × more productive than the native marsh under low N loading (i.e., Control and eCO\(_2\) conditions, respectively), but 3.1 and 3.2 × more productive under high N loading (N\(\text{enr}\) and eCO\(_2\) + N\(\text{enr}\), respectively). Carbon retained as NPP\text{a} represented approximately half of GPP\text{a} for \textit{Phragmites}, although it lost less carbon to respiration under the Control (CUE = 0.60 ± 0.09; mean ± SD, where SD was propagated from NPP\text{a} and GPP\text{a}) than under any global change condition; CUE was 0.44 ± 0.08 under eCO\(_2\), 0.57 ± 0.09 under N\(\text{enr}\) and 0.52 ± 0.09 under CO\(_2\) + N\(\text{enr}\).

Elevated CO\(_2\) stimulated NPP\text{a} in the \textit{Phragmites} marsh far less than GPP\text{a} (6 versus 40%, respectively), but NPP\text{a} stimulation was similar to the multi-year average of the native marsh (9%; figure 4). N\(\text{enr}\) stimulated \textit{Phragmites} GPP\text{a} and NPP\text{a} similarly (60 and 51%, respectively), whereas the native marsh experienced a far smaller stimulation to NPP\text{a} (13%). The combination of eCO\(_2\) + N\(\text{enr}\) induced the greatest stimulation effects for \textit{Phragmites}; effects were slightly less than additive for GPP\text{a} (95%) but more than additive for NPP\text{a} (68%). The native marsh experienced an NPP\text{a} stimulation under eCO\(_2\) + N\(\text{enr}\) that was less than half of that experienced by \textit{Phragmites} (32%).

4. Discussion

4.1. Carbon assimilation

The annual carbon assimilation computed here for monotypic \textit{Phragmites} stands indicates that the wetlands it invades will experience a sharp increase in GPP\text{a} under future CO\(_2\) concentrations, especially where N loading is high. GPP\text{a} is typically <2 kg C m\(^{-2}\) yr\(^{-1}\) in temperate ecosystems, including wetlands [29, 58–60], but rates can exceed that value under eutrophied conditions (e.g., 2.3 kg C m\(^{-2}\) yr\(^{-1}\) [33]). At 3.24 kg C m\(^{-2}\) yr\(^{-1}\), the rate we computed under eCO\(_2\) + N\(\text{enr}\) for a stand containing 100 culms m\(^{-2}\), \textit{Phragmites}-dominated marshes would assimilate carbon more rapidly than many other temperate ecosystems, including those measured under elevated CO\(_2\) [61–63].

Our simulations indicate that changes in \textit{Phragmites}' growth and senescence phenology are key components of its enhanced productivity under elevated N conditions, and suggest that \textit{Phragmites} will substantially increase carbon assimilation as atmospheric CO\(_2\) rises. Most notably, we observed far greater GPP\text{a} early and late in the growing season under high versus low levels of N loading. This temporal pattern can be attributed to a combination of earlier initiation of canopy growth, prolonged canopy expansion, and maintenance of high leaf-level photosynthetic rates from June through September (figures 1, S3, S4).
addition, *Phragmites* carbon assimilation declined late in the growing season under eCO₂. This response contrasts with that of the dominant native C₃ species at our site (*Schenoplectus americanus*), whose biomass is elevated through delays in senescence under eCO₂ [27].

4.2. Carbon retention
Under future atmospheric CO₂ concentrations, our results indicate that *Phragmites*-dominated wetlands are likely to experience stronger stimulation of NPPₐ than most other wetland or upland systems. Many CO₂ enrichment studies have found small or negligible stimulation effects on productivity, especially when C₄ grasses are dominant [28, 64]. Few field studies have quantified combined eCO₂ + Nₑₜ stimulation effects; the three we found for grass-dominated communities that did [65–67] all based their values on current-year biomass production (∞NPPₐ). Stimulation effects ranged from 7 to 42% in the three studies. Similarly, the CO₂ × N experiment of the native community at the Global Change Research Wetland experienced a mean eCO₂ + Nₑₜ stimulation of 32% over eight years. All of these NPPₐ stimulation estimates are therefore well below the 68% that we found for *Phragmites*.

Our estimates of *Phragmites*’ growing season CUE (0.44–0.60) are in the middle of the range reported for wetland plant species (0.34–0.77) [33, 60, 68], suggesting that *Phragmites*’ high NPPₐ and strong stimulation by global change factors are due to advantages in carbon assimilation rather than an ability to minimize carbon losses via respiration. The decrease in CUE under eCO₂ relative to the Control is consistent with patterns seen in some, but not all, other studies [63]. Such decreases can arise if elevated CO₂ facilitates greater nonstructural carbohydrate production, as their metabolism can induce a greater rise in rates of respiration than photosynthesis [68]. The fertilization-induced increase in CUE seen under elevated, but not ambient, CO₂ may have been due to decreased allocation to roots causing respiration to increase less than photosynthesis [63].

4.3. Model evaluation
Results from two other studies of carbon assimilation by *Phragmites* suggest that our GPPₐ values are reasonable. A study using eddy covariance reported GPPₐ for a *Phragmites*-dominated marsh in northeastern China as 0.71 kg m⁻² yr⁻¹ [29]. Given that this haplotype had approximately half the maximum height (1.5 m; stand density not reported) of the *Phragmites* at our field site under ambient conditions, a GPPₐ that is 52% of our modeled values for Control conditions over the range of likely stand densities (50–100 culms m⁻²) suggests good agreement. Further, Stefanik and Mitsch [33] measured GPP for North American introduced *Phragmites* using flux chambers in a constructed freshwater wetland. Although the stand density was lower at their site than our simulation evaluated (42 culms m⁻², K Stefanik, pers comm), N loading was substantially greater (~100 g N m⁻² yr⁻¹) [69]. Nevertheless, the estimate of GPPₐ in that study (3.09 kg C m⁻² yr⁻¹) was similar to the value generated by our Nₑₜ simulations at 150 culms m⁻² (2.93 kg C m⁻² yr⁻¹). The results of these studies demonstrate that our quantification of GPPₐ is in line with values determined via more direct measurements than we used, at least under the treatment conditions considered.

Our quantification of GPP in *Phragmites*-dominated marshes had several inherent limitations. For one, we could not determine the effects of salinity, which changes inter-annually due to variation in rainfall and sea level, and reduces productivity and CO₂ stimulation effects when high [7]. Because our focal growing season had moderate salinity conditions (monthly means ranged from 8.2–12.4 ppt), years with more (or less) rainfall than occurred in 2013 would likely yield greater (or lesser) GPPₐ than reported here. However, we would not expect the effect of salinity to be consistent among treatments, as elevated CO₂ is known to reduce the effects of salinity on *Phragmites* growth [70]. Second, we assumed that variables were unaffected by CO₂ and N conditions when we did not have empirical data demonstrating otherwise; these included leaf lifespan, Q₁₀ values, and the decay constant for PPFD attenuation. This assumption is unlikely to hold true in many cases. For example, N enrichment can increase leaf longevity in *Phragmites* [71]. Third, although chamber temperatures reflected warming in the range expected by year 2100 [72], our temperature time series reflected contemporary conditions. If acclimation substantially altered the nature of *Phragmites*’ photosynthesis response to varying temperature, our results could have been biased. However, it is difficult to predict the magnitude or direction of this potential bias, especially given that some of *Phragmites*’ physiological responses to temperature are CO₂ dependent [18]. We expect to be able to address many of these limitations with empirical data once *Phragmites* densities increase in our field experiment.

5. Conclusions
The data-driven simulation of *Phragmites* canopy growth used here allowed us to translate leaf-level photosynthesis data to the stand scale, and thereby calculate GPP at a fine temporal resolution. The approach provided information on GPP that was independent of NPP measurements, making it possible to constrain CUE under global change conditions. Although the method’s data requirements are not
small, similar approaches could be used in other
animal systems where plant canopy structure is
relatively simple. Perhaps the greatest advantage of the
approach is that it can provide insight into intra-
annual temporal shifts in carbon assimilation induced
by global change.

By quantifying GPP at a daily resolution, we were
able to determine that N enrichment sharply increased
carbon assimilation both early and late in the growing
season, whereas CO₂ elevation increased assimilation
more moderately and through the early and mid-
growing season. Given that N loading is already ele-
\[\text{Nenr}\]vated in many North American estuaries [73],
productivity advantages due to extended leaf phenology
help to explain the close landscape-level association
between the distribution of Phragmites and N enrich-
ment [74, 75]. Our results also confirm earlier specula-
tion that delayed leaf senescence by introduced versus
native Phragmites in North America contributes sub-
stantially to its productivity, especially in eutrophied
wetlands [56]. Further, the strong increase in late sea-
son carbon assimilation that we found under eCO₂ + Nenr compared to Nenr conditions suggests
that late season carbon gains will comprise an increas-
ing fraction of Phragmites’ annual production.

Our results indicate that Phragmites could increase
in productivity through the coming century, given that
atmospheric CO₂ levels will likely reach 700 ppm and
that eutrophication will likely become increasingly
widespread in that time [44, 76]. Although the pro-
ductivity of native saltmarsh plants is also projected to
increase in response to global change, taxa investigated
previously have responded much less strongly than
Phragmites to combined increases of CO₂ and N [6].
The plastic response to eCO₂ + Nenr found here indi-
cates that Phragmites will be able to capitalize on these
two global change factors simultaneously, likely yield-
ing stronger competitiveness than it exhibits currently.
Together with other advantages that Phragmites gains
under global change conditions, like access to deep-
soil nutrients [55] and elevated patch-level genetic
diversity, floret production, and therefore potential
for spread via seeds [77, 78], this productivity advan-
tage will likely translate into accelerated rates of Phrag-
mities invasion in tidal marshes of the North American
Atlantic Coast.

Global change-induced increases in Phragmites
productivity may have particularly strong effects
belowground. Phragmites allocates a substantial pro-
portion of its growth to roots and rhizomes (82% of
standing biomass in the Meadowlands of New Jersey)
[79], and these penetrate more deeply into soils than
do belowground organs of native plants [80, 81]. In
addition to the greater root and rhizome biomass that
can be expected to accompany high Phragmites
GPP in the coming decades, belowground biomass is
also likely to deepen further into the soil profile [55].
Rhizome construction costs are also lower under
eCO₂ + Nenr than under Control conditions [19],
suggesting that rhizome growth could be particularly
strongly enhanced under future conditions, together
with rhizome-dependent processes like convective gas
flow [82]. A key effect of greater rhizome and root pro-
duction may be accelerated mineralization rates of
sequestered nutrients, which could provide an addi-
tional N source for Phragmites and thereby accelerate
its vegetative growth, seed production, and spread,
even in sites that have low N inputs [35]. Further,
exports of dissolved carbon (DOC and DIC) from wet-
lands invaded by Phragmites may increase through
greater belowground productivity, potentially affect-
ing the carbon balance of coastal aquatic commu-
nities [83].

Increases in Phragmites productivity also have the
potential to influence carbon sequestration below-
ground, which determines the soil building capacity
(i.e., surface accretion) of tidal wetlands, especially in
peat-based systems [1]. Given rising sea levels, our
estimates of NPP suggest that Phragmites marshes will
have an increased likelihood of outpacing sea level rise
than native communities [20, 84], although more
refined quantifications of accretion will be needed to
address this possibility with greater certainty. Coastal
wetland conservation may therefore require strategic
planning in order to decide whether to prevent or
allow re-engineering by Phragmites at small spatial
scales, such that ecosystem functions can be optimized
at broad spatial scales. Development and refinement
of predictive models like the one used here will be
required to accurately forecast the local- and land-
scape-scale effects of global change on coastal wetland
ecosystems, and to support management decisions
that will mitigate the threat that accelerated sea level
rise poses to their future stability.

Acknowledgments

We thank Adam Langley, Franziska Eller, Eric Hazel-
ton, Blanca Bernal, Joshua Shapiro, Sydne Record,
several anonymous reviewers, and students in the
Global Change Ecology lab at Bryn Mawr College for
their valuable input on this research. We are also
grateful to Gary Peresta, Andrew Peresta, and Jim Duls
for maintaining the field experiment and to the SERC
Phytoplankton Lab for essential data on PPFD. We
thank Daniel Potts, Kay Stefanik, and Adam Langley
for contributing data as well. The field experiment was
funded by grants from NSF LTREB (award DEB-
0950080) and Maryland Sea Grant (award SA7528114-
WW). JSC was funded by a Bucher-Jackson Postdoc-
toral Fellowship. Additional support was provided by the
Smithsonian Environmental Research Center and
by Bryn Mawr College. The authors have no conflicts
of interest with respect to this research.
References

[28] Ainsworth E A and Long S P 2005 What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂ New Phytol. 165 351–71

Meschter E J 2015 Effects of Phragmites australis (common reed) invasion on nitrogen cycling, porewater chemistry and vegetation structure in a brackish tidal marsh of the Rhode River, Maryland MS Thesis University of Maryland.
