Western Dairy Foods Research Center

Researching the Western U.S. Dairy Industry's Future

Annual Report
1989-1990
TABLE OF CONTENTS

Operational Advisory Committee .. 1
Principal Investigators .. 2
Budget Activity (FY90) ... 3
WDFRC Listing of Funded Projects by Account Number 5
WDFRC Project List by Research Area ... 11

ANNUAL REPORT

1. Center Activities ... 14
2. Symposia .. 15
3. Presentations Given by WDFRC Personnel 16
4. Faculty/Staff Working at WDFRC ... 20
5. Annual Report of Research Projects
 Improvement of Mozzarella Cheese Yield and Physical Properties through
 Proteinase Modification of Starter Cultures .. 22
 Improved Control of Cheese Manufacture Through Vat Monitoring 23
 Cheddar Cheese Blocks: Effect of Cheese Composition and
 Cooling Method .. 24
 Comparison Between 40 and 640 lb Blocks of Uniform
 Cooling of 640 lb Blocks .. 25
 Acid Whey Utilization: Functional Properties of a Food Grade
 Stabilizer Produced by Lactobacillus plantarum from Acid Whey 26
 Iron Fortification of Cheese Curd .. 27
 Evaluation of Milk Proteins as Whitening Agents in
 Processed Meats and Poultry Products ... 28
 Rapid Assay for Heat Resistant Microbial Proteases in
 Raw Milk by a Simple Casein Denaturation Method 29
 Characterization of the Post-Absorptive Behavior of β-Lactoglobulin
 for Control of Spore and Microbial Adhesion to Dairy Product
 Processing and Packaging Surfaces ... 30
 Method of Identifying Batch of Origin in Semi-Continuous
 Cheese Processes ... 31
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of Fourier Transform Infrared Technology to Milk and Dairy Products</td>
<td>32</td>
</tr>
<tr>
<td>Estimation of Individual Milk Proteins and Genetic Variants by Multicomponent Analysis of Amino Acid Profiles</td>
<td>33</td>
</tr>
<tr>
<td>Evaluation of Iron-Protein Complexes in Iron-Fortified Dairy Products</td>
<td>34</td>
</tr>
<tr>
<td>Optimization of the Sensory Qualities of Flavored Yogurt</td>
<td>35</td>
</tr>
<tr>
<td>Properties of Low-Fat Yogurt Manufactured from Ultrafiltered and Ultra-High Temperature Treated Milk</td>
<td>36</td>
</tr>
<tr>
<td>High Yield, Low Moisture Cheese from Homogenized Ultrafiltered Milk</td>
<td>37</td>
</tr>
<tr>
<td>Continuous Production of Cottage Cheese from Ultrafiltered Skim Milk Retentate</td>
<td>38</td>
</tr>
<tr>
<td>Cloning the Nisin and Other Genes from Lactococcus into Leuconostoc Species and Amplification of Nisin Production</td>
<td>39</td>
</tr>
<tr>
<td>Characterization of Bacteriophage Receptor Sites of Lactococcus Bacteria</td>
<td>40</td>
</tr>
<tr>
<td>Production of Omega-3 Fatty Acids by Genetically Altered Fungi and Lactic Acid Bacteria</td>
<td>41</td>
</tr>
<tr>
<td>Purification of a Bacteriocin From Pediococcus pentosaceus and Genetic Transfer of the Plasmid Borne Determinants</td>
<td>42</td>
</tr>
<tr>
<td>Prediction and Determination of the Efficacy of Nisin in Dairy Foods</td>
<td>43</td>
</tr>
<tr>
<td>Function of Whey Proteins and Lactose in Age Gelation of Ultra-High Temperature Sterilized Milk Concentrate</td>
<td>44</td>
</tr>
<tr>
<td>Project Summary Sheets</td>
<td>45-49</td>
</tr>
</tbody>
</table>

6. Technology Transfer .. 50
7. Publications .. 51-54
8. Financial Reports ... 55-90
Pursuant to the WDFRC proposal and contract with the National Dairy Promotion and Research Board, the voting members of the Operational Advisory Committee are:

Janet C. Williams
Director of Research
National Dairy Promotion and Research Board
95 King Street
Elk Grove Village, IL 60007
(708) 228-7742

Sheldon Pratt
Oregon Dairy Products Commission
10505 S.W. Barbur Blvd.
Portland, OR 97219
(503) 229-5033

Doyle J. Matthews, Dean
College of Agriculture
Utah State University
Logan, UT 84322-4800
(801) 750-2215

Ray Focht
Western Dairy Farmers Prom. Assoc.
335 Focht Road
Lander, WY 82520
(307) 332-3123

Daniel F. Farkas, Head
Department of Food Science and Technology
Wiegand Hall 240
Oregon State University
Corvallis, OR 97331
(503) 737-3131

Dave Mehnert
Kraft, Inc.
Research and Development Div.
801 Waukegan Road
Glenview, IL 60025
(312) 998-3717

Rodney J. Brown, Head
Department of Nutrition and Food Sciences
Utah State University
Logan, UT 84322-8700
(801) 750-2102

Jeff Strandholm
Kraft, Inc.
Research and Development Div.
801 Waukegan Road
Glenview, IL 60025
(312) 998-3717

W. Lee Reese
Utah Dairy Commission
4443 North 2400 West
Benson, UT 84335
(801) 752-3572

Raj G. Narasimmon
Schreiber Foods, Inc.
P.O. Box 19010
Green Bay, WI 54305
(414) 437-7601

Gale Moser
United Dairymen of Idaho
1864 South Hulls Crossing
Preston, ID 83263
(208) 852-0560

Douglas Willrett
Marschall Products
P.O. Box 592
Madison, WI 53701
(608) 276-3600

Tom Holzinger
Borden, Inc.
960 Kingsmill Parkway
Columbus, OH 43229
(614) 431-6623
Floyd W. Bodyfelt
Dept. of Food Science & Technology
Oregon State University
Corvallis, OR 97331

Mina R. McDaniel
Dept. of Food Science & Technology
Oregon State University
Corvallis, OR 97331

Rodney J. Brown
Dept. of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Joseph McGuire
Dept. of Food Science & Technology
Oregon State University
Corvallis, OR 97331

Daren P. Cornforth
Dept. of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Donald J. McMahon
Dept. of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Mark A. Daeschel
Dept. of Food Science & Technology
Oregon State University
Corvallis, OR 97331

Lynn V. Ogden
Dept. of Food Science & Nutrition
Brigham Young University
Provo, UT 84602

Bruce L. Geller
Dept. of Microbiology
Oregon State University
Corvallis, OR 97331

Michael H. Penner
Dept. of Food Science & Technology
Oregon State University
Corvallis, OR 97331

Conly L. Hansen
Dept. of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Gary H. Richardson
Dept. of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Jeffery K. Kondo
Dept. of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

William E. Sandine
Dept. of Microbiology
Oregon State University
Corvallis, OR 97331

Arthur W. Mahoney
Dept. of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Paul A. Savello
Dept. of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Antonio J. Torres
Dept. of Food Science & Technology
Oregon State University
Corvallis, OR 97331

Janine E. Trempy
Dept. of Microbiology
Oregon State University
Corvallis, OR 97331
WESTERN DAIRY FOODS RESEARCH CENTER

BUDGET ACTIVITY
(1989-1990 Fiscal Year)

1. National Dairy Promotion and Research Board
 $400,000.00

2. Regional/Industry USDA Support
 a. Regional Support:
 - Utah Dairy Commission $49,999.92
 - Oregon Dairy Products Commission $40,000.00
 - United Dairymen of Idaho $50,000.00
 - Western Dairy Farmers Promotion Assoc. $10,000.00
 Regional Subtotal $149,999.92

 b. Industry Support:
 - Kraft $5,000.00
 - Miles $10,000.00
 - Schreiber Foods, Inc. $5,000.00
 - Western Dairymen Cooperative Inc. $2,500.00
 Industry Subtotal $22,500.00

 c. USDA Agricultural Research Service (ARS) $180,000.00
 Total Regional and Industry Support $352,499.92

3. Institutional Support (Utah State University, Oregon State University, Brigham Young University) $775,837.00

TOTAL BUDGET $1,528,336.92

RESEARCH BUDGET $752,499.92

AVAILABLE FUNDS FOR ALLOCATION (minus USDA-ARS funds) $572,499.92
SUMMARY OF TOTAL BUDGET FOR ALL YEARS
(AVAILABLE FUNDS FOR ALLOCATION AND COMMITMENTS)

<table>
<thead>
<tr>
<th>FUNDS</th>
<th>FY88</th>
<th>FY89</th>
<th>FY90</th>
<th>FY91</th>
<th>FY92</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMITTED</td>
<td>$394,264</td>
<td>$743,187</td>
<td>$517,886</td>
<td>$545,740</td>
<td>$265,370</td>
</tr>
<tr>
<td>[Allocation Pending]</td>
<td></td>
<td></td>
<td>22,000</td>
<td>23,100</td>
<td></td>
</tr>
<tr>
<td>CONTRIBUTIONS</td>
<td>555,000</td>
<td>570,000</td>
<td>572,499.92</td>
<td>570,000*</td>
<td>570,000*</td>
</tr>
<tr>
<td>BALANCE (deficit)</td>
<td>160,736</td>
<td>(173,187)</td>
<td>54,613.92</td>
<td>2,260</td>
<td>281,530</td>
</tr>
</tbody>
</table>

| TOTAL AVAILABLE: -- | ($12,451) | $42,162.92 | $44,422.92 | $325,952.92 |

* Projected funds from WDFRC contributors
Western Dairy Center Listing of Funded Projects By Account Number

Project Funding Allocated Thru FY 1992

<table>
<thead>
<tr>
<th>Account Number</th>
<th>Project Number</th>
<th>Principal Investigator</th>
<th>Research Area</th>
<th>Research Title</th>
<th>Project Start</th>
<th>Project Ending</th>
<th>Non-Dairy Board FY 88</th>
<th>Dairy Board FY 88</th>
<th>Total Non-Dairy Board FY 88</th>
<th>Total Dairy Board FY 88</th>
<th>Total FY 90</th>
<th>FY 91</th>
<th>FY 92</th>
</tr>
</thead>
<tbody>
<tr>
<td>547877</td>
<td>212</td>
<td>Torres, J. Antonio</td>
<td>Product Quality</td>
<td>Acid Whey Utilization: Functional Properties of a Food Grade Stabilizer Produced by Lactobacillus Plantarum from Acid Whey</td>
<td>07/01/89</td>
<td>06/30/91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20580</td>
<td>22797</td>
<td>0</td>
</tr>
<tr>
<td>547766</td>
<td>189</td>
<td>Hansen, Conly L.</td>
<td>Ultrafiltration and Reverse Osmosis</td>
<td>Cogeneration of Biogas and Single Cell protein From Ultrafiltration Permeate and Whey</td>
<td>07/01/87</td>
<td>06/30/89</td>
<td>9863</td>
<td>19726</td>
<td>29589</td>
<td>0</td>
<td>29589</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547767</td>
<td>188</td>
<td>Kondo, Jeffery K.</td>
<td>Microbiology of Starter Cultures</td>
<td>Cloning the Nisin and Other Genes of Lactic Streptococci into Leuconostoc Species and Amplification of Nisin Production</td>
<td>07/01/87</td>
<td>06/30/92</td>
<td>13893</td>
<td>27787</td>
<td>41680</td>
<td>11479</td>
<td>22961</td>
<td>34440</td>
<td>32105</td>
</tr>
<tr>
<td>547768</td>
<td>182</td>
<td>Mahoney, Arthur W.</td>
<td>Product Quality</td>
<td>Iron fortification of cheese curd</td>
<td>08/01/87</td>
<td>06/30/90</td>
<td>6981</td>
<td>13963</td>
<td>20944</td>
<td>7251</td>
<td>14502</td>
<td>21753</td>
<td>0</td>
</tr>
<tr>
<td>547769</td>
<td>190</td>
<td>Richardson, Gary H.</td>
<td>Product Quality</td>
<td>Acquisition of Zymark II Robot for Laboratory Automation Studies</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>1667</td>
<td>3333</td>
<td>5000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547780</td>
<td>181</td>
<td>Richardson, Gary H.</td>
<td>Curd Formation/ Cheese Tech.</td>
<td>Improving Yield and Physical Properties of Mozzarella Cheese</td>
<td>07/01/87</td>
<td>06/30/91</td>
<td>7540</td>
<td>15080</td>
<td>22620</td>
<td>7553</td>
<td>15067</td>
<td>22620</td>
<td>0</td>
</tr>
</tbody>
</table>
| 547781 | 183 | Ernstrom, C. Anthon | Ultrafiltration and Reverse Osmosis | Continuous Production of Cottage Cheese From Ultra-filtrated skim milk Retenate | 09/01/87 | 08/31/89 | 0 | 8700 | 8700 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
<table>
<thead>
<tr>
<th>Account No.</th>
<th>Proj. No.</th>
<th>Principal Investigator</th>
<th>Research Area</th>
<th>Research Title</th>
<th>Project Start Date</th>
<th>Project Ending Date</th>
<th>FY 88 Non-Dairy</th>
<th>FY 88 Dairy</th>
<th>FY 88 Total</th>
<th>FY 89 Non-Dairy</th>
<th>FY 89 Dairy</th>
<th>FY 89 Total</th>
<th>FY 90</th>
<th>FY 91</th>
<th>FY 92</th>
</tr>
</thead>
<tbody>
<tr>
<td>547782</td>
<td>184</td>
<td>Cornforth, Daren P.</td>
<td>Product Quality</td>
<td>Evaluation of Milk Proteins as Whitening Agents in Processed Meats and Poultry Products</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>5109</td>
<td>10218</td>
<td>15327</td>
<td>5504</td>
<td>11008</td>
<td>16512</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547783</td>
<td>186</td>
<td>Olsen, Robert L.</td>
<td>Card Formation/ Cheese Tech.</td>
<td>Interaction of Protein and Polysaccharides in Chymosin and Acid Coagulation of Milk</td>
<td>07/01/87</td>
<td>06/30/89</td>
<td>7250</td>
<td>14500</td>
<td>21750</td>
<td>7136</td>
<td>14274</td>
<td>21410</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547784</td>
<td>187</td>
<td>Richardson, Gary H.</td>
<td>Card Formation/ Cheese Tech.</td>
<td>Improved Control of Cheese Manufacture Through Vat Monitoring</td>
<td>07/01/87</td>
<td>06/30/91</td>
<td>11767</td>
<td>23533</td>
<td>35300</td>
<td>4675</td>
<td>9325</td>
<td>14000</td>
<td>14000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547785</td>
<td>191</td>
<td>Kondo, Jeffrey K.</td>
<td>Administrative Expenses</td>
<td>Western Dairy Foods Research Center Administrative Account</td>
<td>07/01/87</td>
<td>06/30/92</td>
<td>6667</td>
<td>13333</td>
<td>20000</td>
<td>6667</td>
<td>23333</td>
<td>30000</td>
<td>30000</td>
<td>50000</td>
<td>50000</td>
</tr>
<tr>
<td>547802</td>
<td>192</td>
<td>Ernstrom, C. Anthon</td>
<td>Card Formation/ Cheese Tech.</td>
<td>Effect of Milk Clotting Enzymes on the Curing and Quality of Cheddar Cheese</td>
<td>07/01/87</td>
<td>06/30/88</td>
<td>12575</td>
<td>25085</td>
<td>37660</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547804</td>
<td>188</td>
<td>Sandine, W.E.</td>
<td>Microbiology of Starter Cultures</td>
<td>Cloning the Nisin and Other Genes of Lactic Streptococci into Leuconostoc Species and Amplification of Nisin Production</td>
<td>07/01/87</td>
<td>06/30/92</td>
<td>14855</td>
<td>29710</td>
<td>44565</td>
<td>14345</td>
<td>28689</td>
<td>43033</td>
<td>45274</td>
<td>47537</td>
<td>49914</td>
</tr>
<tr>
<td>547810</td>
<td>194</td>
<td>Sandine, W.E.</td>
<td>Microbiology of Starter Cultures</td>
<td>Characterization of Bacteriophage Receptor Sites of Lactic Streptococci</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>6037</td>
<td>12073</td>
<td>18110</td>
<td>6191</td>
<td>12382</td>
<td>18573</td>
<td>18573</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547811</td>
<td>195</td>
<td>Bodyfelt, Floyd W.</td>
<td>Product Quality</td>
<td>Rapid Assay for Heat Resistant Microbial Proteases in Raw Milk by a Simple Casein Denaturation Method</td>
<td>08/01/87</td>
<td>12/31/90</td>
<td>6094</td>
<td>12191</td>
<td>18285</td>
<td>1012</td>
<td>2023</td>
<td>3035</td>
<td>15260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Account Number</td>
<td>Project Number</td>
<td>Principal Investigator</td>
<td>Research Area</td>
<td>Research Title</td>
<td>Project Start Date</td>
<td>Project Ending Date</td>
<td>FY 88 Non-Dairy Board</td>
<td>FY 89 Non-Dairy Board</td>
<td>FY 89 Dairy Board</td>
<td>FY 89 Total</td>
<td>FY 90</td>
<td>FY 91</td>
<td>FY 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>547812</td>
<td>196</td>
<td>Bodyfelt, Floyd W.</td>
<td>Microbiology</td>
<td>Production of Omega-3 Fatty Acids by Genetically Altered Fungi and Lactic Acid Bacteria</td>
<td>09/01/87</td>
<td>12/31/90</td>
<td>8117</td>
<td>16233</td>
<td>24350</td>
<td>1805</td>
<td>3610</td>
<td>5415</td>
<td>24890</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547813</td>
<td>197</td>
<td>McGuire, Joseph</td>
<td>Product Quality</td>
<td>Characterization of the Post-Absorbtive Behavior of B-Lactoglobulin For Control of Spore and Microbial Adhesion</td>
<td>01/01/88</td>
<td>12/31/90</td>
<td>6970</td>
<td>13940</td>
<td>20910</td>
<td>10347</td>
<td>20695</td>
<td>31043</td>
<td>24643</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547814</td>
<td>198</td>
<td>Sandine, W.E.</td>
<td>Microbiology</td>
<td>Studies on the Growth and Survival of Bifidobacterium Species in Milk</td>
<td>07/01/87</td>
<td>06/30/89</td>
<td>6037</td>
<td>12073</td>
<td>18110</td>
<td>6191</td>
<td>12382</td>
<td>18573</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547822</td>
<td>183</td>
<td>Ogden, Lynn, V.</td>
<td>Ultrafiltration and Reverse Osmosis</td>
<td>Continuous Production of Cottage Cheese From Ultrafiltrated Skim Milk Retenate</td>
<td>09/01/87</td>
<td>08/31/89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2733</td>
<td>5467</td>
<td>8200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547823</td>
<td>199</td>
<td>Ogden, Lynn V.</td>
<td>Product Quality</td>
<td>Method for Identifying Batch of Origin of Semi-continuous Cheese Processes</td>
<td>07/01/88</td>
<td>06/30/90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6100</td>
<td>0</td>
<td>6100</td>
<td>6100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>547825</td>
<td>201</td>
<td>Brown, Rodney J.</td>
<td>Product Quality</td>
<td>Application of Fourier Transform Infrared Technology to Milk and Dairy Products</td>
<td>07/01/88</td>
<td>04/30/91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50250</td>
<td>23100</td>
<td>73350</td>
<td>25205</td>
<td>26366</td>
<td>0</td>
</tr>
<tr>
<td>547827</td>
<td>267</td>
<td>Brown, Rodney J.</td>
<td>Product Quality</td>
<td>Estimation of Individual Milk Proteins and Genetic Variants by Multicomponent Analysis of Amino Acid Profiles</td>
<td>07/01/88</td>
<td>06/30/91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16125</td>
<td>129300</td>
<td>145425</td>
<td>50594</td>
<td>51874</td>
<td>0</td>
</tr>
<tr>
<td>Account Number</td>
<td>Project Number</td>
<td>Principal Investigator</td>
<td>Research Area</td>
<td>Research Title</td>
<td>Project Start Date</td>
<td>Project Ending Date</td>
<td>Non-Dairy Board FY 88</td>
<td>Dairy Board FY 88</td>
<td>Non-Dairy Board FY 89</td>
<td>Dairy Board FY 89</td>
<td>Total FY 90</td>
<td>FY 91</td>
<td>FY 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>547828</td>
<td>204</td>
<td>Savello, Paul A.</td>
<td>Ultrafiltration and Reverse Osmosis</td>
<td>Use of Ultrafiltration and Different Heat Treatments on Yogurt Flavor and Physical Properties</td>
<td>08/01/88</td>
<td>06/30/91</td>
<td>9500</td>
<td>19000</td>
<td>28500</td>
<td>29700</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547833</td>
<td>203</td>
<td>Daeschel, Mark A.</td>
<td>Microbiology of Starter Cultures</td>
<td>Purification of a Bacteriocin From Pediococcus Pentosaceus and Genetic Transfer of the Plasmid Borne Determinant</td>
<td>07/01/88</td>
<td>06/30/91</td>
<td>5354</td>
<td>10708</td>
<td>16062</td>
<td>18100</td>
<td>20300</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547834</td>
<td>202</td>
<td>Torres, J. Antonio</td>
<td>Curd Formation/ Cheese Tech.</td>
<td>Cheddar Cheese Blocks: Effect of Cheese Composition and Cooling Method</td>
<td>07/01/88</td>
<td>12/31/90</td>
<td>15176</td>
<td>11354</td>
<td>26530</td>
<td>16212</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547838</td>
<td>206</td>
<td>Hansen, Conly L.</td>
<td>Curd Formation/ Cheese Tech.</td>
<td>Comparison Between 40 and 640 lb Blocks of Uniform Cooling of 640 lb Blocks</td>
<td>11/01/88</td>
<td>12/31/91</td>
<td>43172</td>
<td>2300</td>
<td>2300</td>
<td>11000</td>
<td>4600</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547839</td>
<td>200</td>
<td>McMahon, Donald J.</td>
<td>Ultrafiltration and Reverse Osmosis</td>
<td>Variations in Casein Composition of Milk High Yield, Low Moisture Cheese From Homogenized Milk</td>
<td>09/01/88</td>
<td>08/31/91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547841</td>
<td>208</td>
<td>Mahoney, Arthur W.</td>
<td>Product Quality</td>
<td>Evaluation of Iron-Protein Complexes in Iron-Fortified Dairy Products</td>
<td>10/04/88</td>
<td>06/30/91</td>
<td>35505</td>
<td>35505</td>
<td>8090</td>
<td>38442</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547848</td>
<td>210</td>
<td>Hansen, Conly L.</td>
<td>Curd Formation/ Cheese Tech.</td>
<td>A New Method for Measuring Syneresis of Renneted Gels Applied to Development of Cheese</td>
<td>03/01/89</td>
<td>03/01/91</td>
<td>7971</td>
<td>15941</td>
<td>23912</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547862</td>
<td>206</td>
<td>Torres, J. Antonio</td>
<td>Curd Formation/ Cheese Tech.</td>
<td>Cooling Rate of Cheddar Cheese: Comparison Between 40 and 640 lb Blocks of Uniform Cooling of 640 lb Blocks</td>
<td>11/01/88</td>
<td>12/31/91</td>
<td>3850</td>
<td>7699</td>
<td>11549</td>
<td>18320</td>
<td>2475</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Account Number</td>
<td>Proj</td>
<td>Principal Investigator</td>
<td>Research Area</td>
<td>Research Title</td>
<td>Project Start Date</td>
<td>Project Ending Date</td>
<td>FY 88 Non-Dairy Board</td>
<td>FY 89 Non-Dairy Board</td>
<td>Total</td>
<td>FY 90</td>
<td>FY 91</td>
<td>FY 92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547863</td>
<td>209</td>
<td>McDaniel, Mina R.</td>
<td>Product Quality</td>
<td>Optimization of the Sensory Qualities of Flavored Yogurt</td>
<td>07/01/88</td>
<td>06/30/90</td>
<td>10763</td>
<td>21364</td>
<td>32127</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547864</td>
<td>207</td>
<td>Daeschel, Mark A.</td>
<td>Microbiology of Starter Cultures</td>
<td>Prediction and Determination of the Efficacy of Nisin in Dairy Foods</td>
<td>07/01/88</td>
<td>03/31/91</td>
<td>6076</td>
<td>12154</td>
<td>18230</td>
<td>21177</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547867</td>
<td>211</td>
<td>McMahon, Donald J.</td>
<td>UHT Processing</td>
<td>Function of Whey Proteins and Lactose in Age Gelation of Ultra-High Temperature Sterilized Milk Concentrate</td>
<td>07/01/89</td>
<td>06/30/91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25000</td>
<td>25000</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547869</td>
<td>210</td>
<td>Hansen, Conly L.</td>
<td>UF/RO</td>
<td>Development of a process for production of UF milk retentate powder</td>
<td>07/01/90</td>
<td>06/30/92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>61405</td>
<td>64415</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547902</td>
<td>198</td>
<td>Sandine, William E.</td>
<td>Microbiology of Starter Cultures</td>
<td>Growth of bifidobacteria in milk: Association with Streptococcus thermophilus and Lactobacillus species as measured by genetic and enzymatic probes</td>
<td>07/01/90</td>
<td>06/30/92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25453</td>
<td>26315</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547898</td>
<td>204</td>
<td>Savello, Paul A.</td>
<td>UF/RO</td>
<td>Membrane fractionation of immunoglobulins from milk and whey</td>
<td>07/01/90</td>
<td>06/30/91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>33,500</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brown, Rodney J.</td>
<td>Microbiology of Starter Cultures</td>
<td>Characterization of milk proteolysis by lacticoccal starter culture strains using amino acid analysis</td>
<td>07/01/90</td>
<td>06/30/92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22000</td>
<td>23100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547903</td>
<td>212</td>
<td>Penner, Michael</td>
<td>Product Quality</td>
<td>Utilization of acid whey as a substrate for the production of food grade cellulases</td>
<td>07/01/90</td>
<td>06/30/91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20583</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Account Number</td>
<td>Proj Num</td>
<td>Principal Investigator</td>
<td>Research Area</td>
<td>Research Title</td>
<td>Project Start Date</td>
<td>Project Ending Date</td>
<td>FY 88 Non-Dairy Board</td>
<td>FY 88 Dairy Board</td>
<td>FY 88 Total</td>
<td>FY 89 Non-Dairy Board</td>
<td>FY 89 Dairy Board</td>
<td>FY 89 Total</td>
<td>FY 90</td>
<td>FY 91</td>
<td>FY 92</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>------------------------</td>
<td>---------------</td>
<td>---</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>547900</td>
<td>211</td>
<td>McMahon, Donald J.</td>
<td>UHT Processing</td>
<td>Controlling age gelation of UHT sterilized milk concentrates</td>
<td>07/01/90</td>
<td>06/30/92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34440</td>
<td>38740</td>
<td></td>
</tr>
<tr>
<td>547901</td>
<td>181</td>
<td>Richardson, Gary H.</td>
<td>Product Quality</td>
<td>Causes and prevention of sticky texture in Mozzarella cheese</td>
<td>07/01/90</td>
<td>06/30/91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19380</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

131422 271478 402900 253643 509079 762722 492722 567740 287880

LEGEND:

- Increase in project funding approved for FYs
- Decrease in project funding approved for FYs
- Extension (no cost) approved
- Project revision approved
WDFRC Project List by Research Area
(Projects Active or Terminated During FY90)

Curd Formation/Cheese Technology

- Improvement of Mozzarella Cheese Yield and Physical Properties through Proteinase Modification of Starter Cultures
 Dr. Gary H. Richardson
 Utah State University

- Improved Control of Cheese Manufacture Through Vat Monitoring
 Dr. Gary H. Richardson
 Utah State University

- Cheddar Cheese Blocks: Effect of Cheese Composition and Cooling Method
 Dr. J. Antonio Torres
 Oregon State University

- Comparison Between 40 and 640 lb Blocks of Uniform Cooling of 640 lb Blocks
 Dr. Conly L. Hansen
 Utah State University
 and
 Dr. J. Antonio Torres
 Oregon State University

Product Quality

- Acid Whey Utilization: Functional Properties of a Food Grade Stabilizer Produced by Lactobacillus plantarum from Acid Whey
 Dr. J. Antonio Torres
 Oregon State University

- Iron Fortification of Cheese Curd
 Dr. Arthur W. Mahoney
 Utah State University

- Evaluation of Milk Proteins as Whitening Agents in Processed Meats and Poultry Products
 Dr. Daren P. Cornforth
 Utah State University

- Rapid Assay for Heat Resistant Microbial Proteases in Raw Milk by a Simple Casein Denaturation Method
 Professor Floyd W. Bodyfelt
 Oregon State University

- Characterization of the Post-Absorptive Behavior of β-Lactoglobulin for Control of Spore and Microbial Adhesion to Dairy Product Processing and Packaging Surfaces
 Dr. Joseph McGuire
 Oregon State University

- Method of Identifying Batch of Origin in Semi-Continuous Cheese Processes
 Dr. Lynn V. Ogden
 Brigham Young University
• Application of Fourier Transform Infrared Technology to Milk and Dairy Products
 Dr. Rodney J. Brown
 Utah State University

• Estimation of Individual Milk Proteins and Genetic Variants by Multicomponent Analysis of Amino Acid Profiles
 Dr. Rodney J. Brown
 Utah State University

• Evaluation of Iron-Protein Complexes in Iron-Fortified Dairy Products
 Dr. Arthur W. Mahoney
 Utah State University

• Optimization of the Sensory Qualities of Flavored Yogurt
 Dr. Mina R. McDaniel
 Oregon State University

Ultrafiltration/Reverse Osmosis

• Properties of Low-Fat Yogurt Manufactured from Ultrafiltered and Ultra-High Temperature Treated Milk
 Dr. Paul A. Savello
 Utah State University

• High Yield, Low Moisture Cheese from Homogenized Ultrafiltered Milk
 Dr. Donald J. McMahon
 Utah State University

• Continuous Production of Cottage Cheese from Ultrafiltered Skim Milk Retentate
 Dr. Lynn V. Ogden
 Brigham Young University

Microbiology of Starter Cultures

• Cloning the Nisin and Other Genes from Lactococcus into Leuconostoc Species and Amplification of Nisin Production
 Dr. Jeffery K. Kondo
 Utah State University
 and
 Dr. William E. Sandine
 Oregon State University

• Characterization of Bacteriophage Receptor Sites of Lactococcus Bacteria
 Dr. William E. Sandine
 Oregon State University

• Production of Omega-3 Fatty Acids by Genetically Altered Fungi and Lactic Acid Bacteria
 Professor Floyd W. Bodyfelt
 Oregon State University
• Purification of a Bacteriocin From *Pediococcus pentosaceus* and Genetic Transfer of the Plasmid Borne Determinants
 Dr. Mark A. Daeschel
 Oregon State University

• Prediction and Determination of the Efficacy of Nisin in Dairy Foods
 Dr. Mark A. Daeschel
 Oregon State University

Ultra-High Temperature (UHT) Processing

• Function of Whey Proteins and Lactose in Age Gelation of Ultra-High Temperature Sterilized Milk Concentrate
 Dr. Donald J. McMahon
 Utah State University
ANNUAL REPORT

Annual Report Date (include year): September 30, 1990 (FY90)

Dairy Food Research Center (identify site): Western Dairy Foods Research Center

Dairy Center Director: Jeffery K. Kondo

Committee Approval (identify Committee and Committee members):

Center Activities (Center funded):

1. Seminars (list titles and presenters):

 “Casein Micelle Structure”
 Dr. Lawrie Creamer
 Protein Chemistry Section Head
 New Zealand Dairy Research Institute
 December 6, 1989

 “Opportunities in Biotechnology for the Dairy Industry”
 Dr. Martin L. Playne
 President, Australian Biotechnology Association
 Principal Research Scientist, CSIRO
 June 11, 1990
Symposia (list program titles, dates and include a printed program from the meeting):

None held during Fiscal Year 1990
3. Presentations given by Center personnel (list title, speaker, and audience; include abstracts submitted for professional meetings):

Mina R. McDaniel, P.I.

Joseph McGuire

Joseph McGuire (continued)

Mark Daeschel

William E. Sandine

Gary H. Richardson

Rodney J. Brown

Daren Cornforth

Donald J. McMahon

Jeffery K. Kondo

Floyd W. Bodyfelt

J. Antonio Torres

Paul A. Savello

Faculty/staff working at the Center (list and assign FTE for each):

<table>
<thead>
<tr>
<th>Principal Investigators</th>
<th>FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mina R. McDaniel, OSU</td>
<td>.50</td>
</tr>
<tr>
<td>Lynn V. Ogden, BYU</td>
<td>.50</td>
</tr>
<tr>
<td>Joseph McGuire, OSU</td>
<td>.75</td>
</tr>
<tr>
<td>Mark A. Daeschel, OSU</td>
<td>.75</td>
</tr>
<tr>
<td>Floyd W. Bodyfelt, OSU</td>
<td>.90</td>
</tr>
<tr>
<td>W.E. Sandine, OSU</td>
<td>.77</td>
</tr>
<tr>
<td>J. Antonio Torres, OSU</td>
<td>.75</td>
</tr>
<tr>
<td>Paul A. Savello, USU</td>
<td>.70</td>
</tr>
<tr>
<td>Donald McMahon, USU</td>
<td>.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co-Investigators</th>
<th>FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert D. Sproull, Assistant Professor, OSU</td>
<td>.30</td>
</tr>
<tr>
<td>Kenneth R. Swartzel, Professor, NCSU</td>
<td>.10</td>
</tr>
<tr>
<td>Xintian Ming, OSU</td>
<td>.25</td>
</tr>
<tr>
<td>H.A. Wyckoff, OSU</td>
<td>.25</td>
</tr>
<tr>
<td>M. Barnes, OSU</td>
<td>.25</td>
</tr>
<tr>
<td>K. Gillies, OSU</td>
<td>.25</td>
</tr>
<tr>
<td>G.L. Geller, OSU</td>
<td>.25</td>
</tr>
<tr>
<td>R. Valyasevi, OSU</td>
<td>.25</td>
</tr>
<tr>
<td>Daniel P. Selivonchick, OSU</td>
<td>.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research Assistants</th>
<th>FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nancy Michaels, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Viwat Krisdhasima, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Kamal Al-malah, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Sidney A. Kirtley, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Ja-Kael Luay, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Prasert Sittiprasit, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Jianguo Yang, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Dong-Sun Jung, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Sam E. Beattie, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Sergio C. Feijoo, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Miriam Martino, OSU</td>
<td>1.00</td>
</tr>
<tr>
<td>Mrudula Kalpalathicka, USU</td>
<td>.50</td>
</tr>
<tr>
<td>Craig Oberg, USU</td>
<td>.25</td>
</tr>
</tbody>
</table>
Graduate Students | FTE
---|---
Debbie L. Barnes, OSU | 1.00
Steven J. Harper, OSU | 1.00
Nilo Youssef-Hakimi, OSU | 1.00
Richard Dargan, USU | 1.00
Brian Orme, USU | 1.00
Ivan Mendenhall, USU | 1.00
Carole Hollar, USU | 1.00
Richard Merrill, USU | 1.00
James Yuan, USU | 1.00
Amos Wang, USU | .50
Jeffrey Broadbent, USU | 1.00
Rick Lord, BYU | .50
5. Research project reports (attach individual reports in format provided):

Attached
Project Title: Improvement of Mozzarella cheese yield and physical properties through proteinase modification of starter cultures

Project Status: Active

Project Summary:

1. Measurements of the physical properties of the curd will be used to establish differences among strains, culture pairs, and rod:cocci ratios.
2. The present stretch test will be evaluated to see if it provides the most accurate representation of stretchability.
3. Direct acid curd and curd from Prt+ and Prt- cultures will be compared at high pH values to evaluate the degree of stretchability and the stability of this property at refrigeration temperatures.
4. Direct acid cheese made with a variety of milk coagulating enzymes will be analyzed to determine the effect of these enzymes on the physical properties of Mozzarella cheese.

Project Results: Experiments were run comparing the helical viscometer and the Instron to measure stretch in Mozzarella cheese. The results were inconclusive. Six-liter vats of direct acid Mozzarella cheese were manufactured using either chymosin, bovine pepsin, porcine pepsin, or Mucor miehei protease. Four cheeses were made with each enzyme. Stretch using a helical viscometer, melt using a tube test, color using a reflectance colorimeter, moisture, and pH measurements were taken at 1, 7, 14, and 28 d during storage at 4°C. Analysis of variance and correlations were run on all parameters. Cook color was not affected by enzyme type but changed during storage time. Melt increased significantly with time, but was not affected by choice of enzyme. Moisture content of the cheese was not significantly affected by enzyme or by time. As melt increased over time, stretch decreased. The type of milk coagulating enzyme used in the manufacture of direct acid Mozzarella cheese played no role in development of the physical properties. Presently, Mozzarella cheese is being manufactured using various ratios of rods to cocci and the cheese is being evaluated for stretch, cook color, and melt. This study will be completed in the next two weeks. Mozzarella cheese is also being made with L. helveticus cultures and their affect on changes in physical is currently being measured.

Significance to the Dairy Industry: Proteinase negative starter cultures used in the production of Cheddar cheese, cottage cheese, and acid casein have been shown to increase yield, along with providing a number of other advantages. If proteinase negative cultures could be used in the production of Mozzarella and other high temperature Italian cheeses, an increase in yield may be possible. Additionally, if the effects of proteinase activity can be measured, there may be a possibility of improvement in the stretching, along with other physical properties. The major purchasers of pizza cheese are concerned that the physical qualities of Mozzarella curd begin to deteriorate at about ten days of age. The proteolytic activity of
the starter culture is thought to be the cause of reduction of stretch. Buyers require that the curd be grated, frozen, and stored to maintain the young cheese qualities. By incorporation of less proteolytic thermolactic starter cultures, we desire to extend these superior qualities. The better and more consistent the physical properties, the more sales for the product.

Is Additional Effort or New Direction Needed Based on Project Findings:

NDPRB Action:

Publications:

Theses/Dissertations:

Abstracts:

Patents:
Annual Report Date (M/D/Y): June 30, 1990
Project Term (include dates): 7/87 - 6/91

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: G.H. Richardson

Project Title: Improved Control of Cheese Manufacture Through Vat Monitoring

Project Status: Active

Project Summary:
1. Evaluate the control of curd strength during cottage cheese manufacture. Establish software that would be most helpful for the cheese industry.
2. Use the same system to monitor the coagulation of milk for Cheddar cheese manufacture. Determine acceptable limits of curd strength that would prevent the development of high moisture cheese due to late cutting or product losses due to early cutting of the curd. These data would then be applied to expert systems.
3. Determine abilities of chymosin, calcium salts, and lactic cultures in milk for Cheddar cheese to overcome the inability of milk from cows in late lactation to coagulate.
4. Compare the performance of proteinase negative lactic cultures when monitored by the system. Determine if they can perform at constant high cooking temperatures and if they confirm the observations of Linklater and Hall that culture volume is more important than temperature in pH control.

Project Results: A hot wire coagulation probe (Snow Brand, Ltd., Japan) was configured with pH and temperature sensors. Milk substrate coagulation was monitored with this system and four other methods (Formagraph™, Sommer Matsen apparatus, Brookfield™ LVT viscometer, and an Omnispec™). The coagulation time of the hot wire probe was measured at maxima of the first and second derivatives. Coagulation times were compared using three repetitions with three levels of chymosin. The ability of each instrument to detect coagulation time varied from first to last: hot wire probe (2nd der. max.), Omnispec and the viscometer p<.05. The hot wire probe system was also used to monitor cheese manufacture in 300 kg batches. Temperature, pH, coagulation, cutting, healing, and stirring could all be detected with the monitor system.

Significance to the Dairy Industry: The data generated from such an instrument can be useful to provide improved control to every cheese vat. A curd cut time, based coagulation, pH and temperature could decrease losses and improve cheese yield and quality. The ability to measure the length of heal time and the rates of change of pH and temperature would also benefit the cheese manufacturer. Software programs could be included that would provide more management guidance. Significant savings to the industry could result when enzyme coagulant and other additive costs can be reduced by fine tuning the process through continuous monitoring of the milk in the cheese vat.

Is Additional Effort or New Direction Needed Based on Project Findings:

NDPRB Action:
Annual Report Date (M/D/Y): May 10, 1990
Project Term (include dates): 7/1/88 - 12/31/90

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: J.A. Torres, F.W. Bodyfelt and Conly Hansen

Project Title: Cheddar cheese blocks: Effect of cheese composition and cooling methods

Project Status: Active

Project Summary: A consistent quality can only be achieved if manufacturing procedures are as controlled as possible. Unfortunately, there is still a wide variation in the sensory properties of Cheddar cheese. Experienced cheese graders frequently categorize 30-40% of all American Cheddar cheese as being "high acid (sour)" or "bitter" in off-flavor. Our research efforts are concentrated on the effect of the block cooling rate and maturation temperature on the chemical, microbiological and sensory properties of Cheddar cheese. This information is used in conjunction with a determination of the engineering properties of Cheddar cheese to guide the selection of temperature conditions that favor a more uniform and desirable product quality.

Project Results: The experimental procedures used in this research were developed primarily to accommodate the wide range of temperature effects to be covered (5-35°C) and the large experimental error associated with sensory analysis. Samples were drawn from commercial production after the pressing step in the process used at Tillamook County Creamery Assoc. (Tillamook, OR). Blocks were cut and vacuum wrapped under sanitary conditions. Samples were small enough to reach storage temperature within 1-2 hours. The experimental design includes two batches with two replicates stored at 5, 15, 25, and 35°C with results of the effect on the sensory and microbial parameters reported last year. An additional four batches with one replicate have been tested this second year. Sensory and microbial analysis of these samples have been completed. Chemical analysis is underway and will be completed summer 1990. Engineering and modeling efforts will completed by December 1990.

Significance to the Dairy Industry: American is the major type of cheese produced in the United States - the vast majority of this is Cheddar cheese. We believe that Cheddar cheese sales could increase if there was less variability in product quality. The economical impact of current variability is enormous because much Cheddar cheese has to be marketed at a younger age than is perhaps optimal for best price. The frequency of the sourness/bitterness defect reduces its quality image, reduces its market value and also limits its overall consumer acceptance (sales volume).

Is Additional Effort or New Direction Needed Based on Project Findings: No new direction is needed at this time.

NDPRB Action:
Annual Report Date (M/D/Y): June 30, 1990

Dairy Foods Research Center: Western

Dairy Center Director: Dr. J. Kondo

Principal Investigator: Dr. J.A. Torres
Dr. C.L. Hansen

Project Title: Cooling rate of Cheddar cheese: Comparison between 40 and 640 lb blocks and uniform cooling of 640 lb blocks.

Project Status: ACTIVE

Project Summary: Objectives: 1) Determine the thermal conductivity of fresh Cheddar cheese curd and compare the value with the thermal conductivity of aged Cheddar cheese.
2) Characterize the link between moisture movement within large Cheddar cheese blocks to the cooling rate of the block.

Project Results: Computer programs have been written to model the temperature profile in rectangular and cylindrical blocks under standard and modified cooling conditions. Data has been collected on a three large rectangular blocks and one cylindrical cheese block. Plots of the actual temperature have been compared to the model data to analyze deviations from theoretical expectations. Preliminary analysis shows good correlation between model and actual data. Thermal conductivity tests are underway at the present time.

Significance to the Dairy Industry: To establish whether or not moisture movement in large Cheddar cheese blocks is directly caused by cooling rate. If this is the case, then a method of cooling the blocks at a faster rate could be developed which would lead to consistent high quality Cheddar cheese.

Is Additional Effort or New Direction Needed Based on Project Findings: Not at this present time.

NDPRB Action:
Annual Report Date (M/D/Y): June 30, 1990
Project Term (include dates): 7/1/89 - 6/30/91

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigators: Drs. J.A. Torres, M.A. Daeschel, and F.W. Bodyfelt

Project Title: Acid whey utilization: Functional properties of a food grade stabilizer produced by Lactobacillus plantarum from acid whey

Project Status: Active

Project Summary: Acid whey, characterized by its high lactose content and low pH, constitutes a serious waste disposal problem to the dairy industry. Direct fermentation of acid whey by Lactobacillus plantarum 304 yielded highly viscous solutions. The polysaccharide(s) responsible for this behavior are being quantified and optimized, and their functional properties evaluated.

Project Results: Model studies (modified MRS with various sugar sources) were conducted to determine the effect of sugar source and temperature on bacterial growth and polysaccharide production. A polysaccharide isolation and purification technique was also developed. Aqueous solutions of the isolated polysaccharide, 0.1 - 5% w/v, exhibited low viscosity pseudoplastic behavior. Attempts to stabilize the viscous behavior observed in the fermentation broth, e.g. by addition of divalent salts (Ca++) were only partially successful. Finally, oil/water emulsions prepared with and without added purified polysaccharide showed that the polysaccharide has emulsion stabilization properties. Surface tension measure measurements will be made to evaluate the use of the polysaccharide as a emulsifying agent not increasing food viscosity.

HPLC analysis indicate the presence of glucose and galactose as the main sugar components of the polysaccharide. Reaction with Ca++ highlights the polyanionic character of the polysaccharide. The formation of polymeric complexes, by reaction with chitosan (a "natural" polycation) opens the possibility of developing "natural" coagulating agents for the treatment of food processing wastewater. The coagulated material could be used as an animal feed component. The polysaccharide + chitosan complex reaction can be controlled by adjusting reaction pH conditions to yield complexes with the charge ratio needed for the wastewater stream to be treated.

Significance to the Dairy Industry: A major problem faced by today's dairy industry is to find profitable uses for whey. In spite of new uses, whey utilization remains around 50%. The rest is discharged with a continuously increasing disposal cost. The production of polysaccharides with functional properties of commercial interest uses a waste to generate a by-product with commercial value.

Is Additional Effort or New Direction Needed Based on Project Findings: The use of the polycation (chitosan)-polysaccharide complex constitutes a new alternative to recover proteins from acid whey and other dairy waste streams. A treatment process could therefore involve the production of a "natural" emulsifying agent by fermentation of acid whey after recovery of the whey protein fraction using the complex as a coagulating agent. This process would utilize both the lactose and the protein whey fractions.

NDPRB Action:
RESEARCH PROJECT
ANNUAL REPORT FORM

Annual Report Date (M/D/Y): June 30, 1990
Project Term (Include dates): 8/1/87 - 6/30/90
Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Arthur W. Mahoney

Project Title: Iron Fortification of Cheese Curd

Project Status: Inactive

Project Summary:
1. To evaluate effects of 12 months aging on quality of iron fortified cheeses prepared in the last few months of the current project.
2. To determine the iron binding characteristics of iron-casein, ferricopolyphosphate whey protein (FIP-WP) and Fe-whey protein (Fe-WP) complexes prepared with different iron concentrations.
3. To determine the effects of iron fortification with 'optimized' iron-protein complexes on cheese quality.
4. To determine the effects of iron fortification on the quality of process cheddar cheese.
5. To determine the bioavailability of iron in the 'optimized' iron-protein complexes as well as cheese fortified with them.

Project Results: Iron fortification did not affect the quality of Cheddar cheese in our previous study and of process cheese in this study although some differences exist between these two cheeses. For Cheddar cheese, milk coagulation is involved, heating is at low temperature, pH is low, and microbial organisms from the starter culture are still growing during the aging period. In contrast, for process cheese, a relatively high temperature is applied, pH is high, and other ingredients are added to the cheese. However, they both have high protein contents which may act as a chelator of iron. This may be the main reason that low lipid peroxidation was observed in both kinds of iron fortified cheeses. Another reason for low lipid peroxidation may be the saturation of the fat. Milk fat contains mostly saturated fatty acids, 30% of the fatty acids are unsaturated of which about 3% are polyunsaturated. Also, for lipid peroxidation to occur, both Fe2+ and Fe3+ are required with maximal rates of lipid peroxidation at the ratio of Fe2+ and Fe3+ being approximately one. However, it is unlikely that iron bound to milk protein is free to change its oxidation state at the pH of cheese. Therefore, the conditions are favorable for iron fortification of cheese products.

Significance to the Dairy Industry: Iron fortified dairy products could be promoted for increasing the iron density of the low-iron diets as well as calcium and vitamin D contents thereby addressing two major nutritional concerns of women and children: i.e., iron deficiency (women, children under age 2 and elderly men) and osteoporosis (middle-aged women, growing children and elderly men). Young children and teenagers enjoy process cheese, making iron fortified process cheese more meaningful to target this population in prevention of iron deficiency. Fortified process cheese would be expected to contribute relatively more benefit to children and teenagers who are at risk of iron deficiency, because they eat more process cheese than other segments of the populations. Iron fortification of
process cheese improves this product nutritionally from almost no iron to an iron-rich food, 11 mg/100 kcal.

Is Additional Effort or New Direction Needed Based on Project Findings:

NDPRB Action:

Publications:

Theses/Dissertations:

Abstracts:

Patents:
Annual Report Date (M/D/Y): July 30, 1990
Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Dr. Daren Cornforth

Project Title: Evaluation of milk proteins as whitening agents in processed meat and poultry products

Project Status: Terminated

Project Summary: To determine the effects of various milk proteins (3% calcium caseinate, non-fat dry milk (NFDM), or whey protein concentrate (WPC)) on color, texture and panel acceptability of turkey rolls containing 10 or 30% turkey thigh meat. The turkey rolls were evaluated by a trained sensory panel (21 panelists) and by instrumentation. Color intensity, color uniformity, cohesiveness, tenderness, flavor, juiciness and overall acceptability were evaluated on a 8 point scale, where 7 was high and 1 was low for each attribute. The study was repeated three times.

Project Results: Controls (no milk proteins) and rolls formulated with NFDM or WPC were rated significantly higher than rolls containing caseinate for color uniformity, cohesiveness, flavor and overall acceptability. Rolls containing caseinate were significantly darker than controls or rolls with WPC. Panelists detected no significant differences among milk protein treatments for juiciness or toughness. Rolls made with milk proteins had significantly higher cooked yields (89%) than control rolls (86%).

In conclusion, milk powders containing lactose (NFDM and WPC) increased the yield and cohesiveness of turkey rolls. Color was unaffected, compared to controls. Turkey rolls made with calcium caseinate also increased yield compared to controls, but the rolls had poor texture and insufficient cohesiveness.

Significance to the Dairy Industry: Turkey rolls and other precooked meat items such as ham, bacon, or roast beef usually contain 0.5% phosphate to increase the cooked yield and product cohesiveness. Results of this study showed that addition of 3% NFDM or WPC increased yield and improved texture of turkey rolls, even in the absence of phosphate. Calcium caseinate addition increased yield, but texture was poor. NFDM or WPC are both over 50% lactose. Calcium caseinate contains no lactose. It thus appears that lactose is the substance that improves texture of turkey rolls.

Phosphates are not permitted in some cooked meat products in Europe or Japan. Thus there is great interest in substitutes for phosphates in precooked meats. Based on results of this study, both NFDM and WPC have potential to replace phosphate in precooked meats.

Caseinates have been the most widely promoted milk powder for use in meat products. Results of this study show that lactose-containing NFDM and WPC were actually superior to calcium caseinate in a cooked turkey roll. Thus there is great potential for increased use of NFDM, WPC, and lactose in precooked poultry products.

Is Additional Effort or New Direction Needed Based on Project Findings: NFDM and WPC are good meat binders. NFDM, WPC and lactose alone should be evaluated as binders in low fat franks, and pre-cooked for meat products.

NDPRB Action:
Annual Report Date (M/D/Y): June 30, 1990
Project Term (include dates): 8/01/87-12/31/90

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J. Kondo

Principal Investigator: Floyd W. Bodyfelt

Project Title: Rapid Assay for Heat Resistant Microbial Proteases in Raw Milk by a Simple Casein Denaturation Method

Project Status: ACTIVE

Project Summary:
1. Develop a diffusion casein-agar test capable of quantitating the proteolytic activity exhibited by heat resistant sporeforming bacteria (Bacillus sp.) in either raw or pasteurized milk samples that have been subjected to a standardized heat treatment.
2. Determine the optimal conditions for: (1) the initial heat treatment (standardized) of milk samples, (2) preliminary incubation conditions, and (3) other necessary assay parameters.
3. Determine the most appropriate casein fraction and the optimal buffering and suspension systems for the substrate matrix for conduct of the proteinase assay.
4. Develop and alternative method for determining populations of Bacillus sp. in selected raw milk samples by a combination of preliminary incubation and a dye reduction test.

Project Results:
A sensitive diffusion casein-agar method was developed to detect the proteolytic activity exhibited by heat resistant sporeforming bacteria (Bacillus sp.) in raw milk. Initial experiments demonstrated Beta-casein to be the preferred substrate for assessing proteinase activity of Bacillus sp. Optimum test parameters for proteinase assays were determined. The extent of proteinase activity was proportional to the relative zone size of casein precipitation, which closely corresponded with the magnitude of milk sample spore and psychrotrophic spore counts.

Significance to the Dairy Industry:
Conservatively, assuming that approximately one fourth of all milk producers incur higher than desirable Bacillus sp. counts, there may be no better way to focus on this ubiquitous milk quality problem than to develop a rapid, routine test method for screening milk samples for this troublesome microflora. Such a reliable and feasible analytical tool could be an invaluable step forward for enhancing milk quality at the farm level. An effective tool for rapid and accurate detection of Bacillus sp. could serve as a keystone test within milk quality incentive programs for the U.S. dairy industry.

Is Additional Effort or New Direction Needed Based on Project Findings:
The plate-well diffusion assay for Bacillus proteinase activity developed through this project appears to be sensitive, simple, economical and reliable. There is a need to demonstrate its applicability within dairy processor laboratories.

NDPRB Action:
Annual Report Date (M/D/Y): June 30, 1990
Project Term (include dates): 1/1/88-12/31/90

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Joseph McGuire

Project Title: Characterization of the Post-Adsorptive Behavior of Beta-Lactoglobulin for Control of Spore and Microbial Adhesion to Dairy Product Processing and Packaging Surfaces

Project Status: Active

Project Summary: It is the purpose of this research to use ellipsometry in an effort to quantify the post-adsorptive behavior of Beta-lactoglobulin on several materials as a function of time and contact surface properties. An understanding of this relationship should provide direction for the control of surface phenomena including bacterial biofilm development.

Project Results: We have constructed Beta-lactoglobulin adsorption isotherms on acrylic, glass, polycarbonate, polyester, and #304 stainless steel surfaces. Additionally, hyperpure silicone surfaces have been modified to be hydrophilic or hydrophobic; Beta-lactoglobulin adsorption isotherms have been constructed on each of these surfaces as well. The influence of pH, ionic strength, and temperature on Beta-lactoglobulin adsorption equilibrium behavior has also been investigated. In general, the amount of protein adsorbed at a surface was observed to increase with increasing surface hydrophobicity at all combinations of pH and ionic strength investigated. Moreover, these tests indicated that non-electrostatic interactions between the surface and protein dominate the adsorption process at hydrophobic surfaces, while electrostatic interactions dominate the process at hydrophilic surfaces.

Significance to the Dairy Industry: Biofilm formation on dairy processing surfaces presents a serious impediment to consistently providing wholesome, high quality milk products, and is suggested to be dependent upon the presence and conformational state of a pre-adsorbed, proteinaceous conditioning film on the contact surface. A quantitative understanding of contact material surface properties and their relationship to the initial surface-protein and subsequent protein-microbe interactions associated with biofilm development will provide powerful direction for control of biofilm formation.

Is Additional Effort or New Direction Needed Based on Project Findings: Yes

NDPRB Action:
Publications and Completed Theses

Abstracts
Project Title: Method of Identifying Batch of Origin in Semi-Continuous Cheese Processes.

Project Summary: The feasibility of using minimal color variations in alternate batches and on-line colorimetry to detect the seams between batches was investigated as a means of determining the batch or origin in semi-continuous cheese processes. Four vegetable colors were investigated in small laboratory batches using the HuntE Labscan 2. Amounts of color addition necessary for a detectable colorimetric difference and resulting relative visual difference were determined. A plant trial was conducted varying the amount of annatto in alternate batches.

Project Results: In lab trials, turmeric was the most sensitive marker and canthaxanthan the least sensitive with annatto and beta carotene in the middle. A 19% change in annatto usage was found to be necessary to detect the change colorimetrically using the Hunter b value. Nine and sixteen percent changes in annatto were tried in a plant trial using Yellow Index, Hunter b values, and the Hunter Qual probe as colorimetric measures. Colorimetric and visual sensitivity to these variations is being analysed.

Significance to the Dairy Industry: Accurate determination of batch of origin is needed in semi-continuous cheese processes to confine downgrading to only that cheese produced in defective batches. Currently the equivalent of three batches are downgraded to assure that all one defective batch is included.

Is Additional Effort or New Direction Needed Based on Project Findings: A recommendation will be made July 1990.
Annual Report Date (M/D/Y): June 30, 1990
Project Term (include dates): 7/1/88-4/30/91

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Rodney J. Brown

Project Title: Application of Fourier Transform Infrared Technology to Infrared Technology to Milk and Dairy Products

Project Status: Active

Project Summary: This project has a long series of specific objectives that lead to the ability to rapidly measure fat, protein, lactose, moisture, and fat saturation level in milk and dairy products. These specific objectives must be accomplished in a logical order:

1. Find a set of wavelengths in the infrared spectrum that respond to changes in fat, protein, and lactose concentrations.
2. Find a set of wavelengths in the infrared spectrum that do not respond to changes in saturation level, chain length, and level of free fatty acids.
3. Combine (1) and (2) to make a robust set of wavelengths common to all constraints.
4. Determine the individual spectra and common wavelengths to milk fat, protein and lactose.
5. Find a set of wavelengths common to the milk components (4) and to the robust set (3).
6. Statistically calibrate for testing samples of unknown composition using only this set of wavelengths (9) and milk samples chemically tested for fat, protein, lactose, and moisture. (Less than 1600 cm⁻¹ wavenumber should be used if possible.)
7. Calibrate, using wavenumbers greater than 2700 cm⁻¹, to determine saturation level of fat in dairy products (especially cheese).

Project Results: To identify wavelengths which respond to changes in fat concentration, we prepared a series of milk samples where the fat level varied and all other components were held constant. The correlation coefficient for absorbance and fat concentration was calculated at each wavelength. A similar experiment was performed to determine wavelengths that linearly respond to changes in protein concentration. To determine wavelengths that linearly respond to changes in lactose concentration, a series of lactose solutions were prepared where the lactose concentration varied from 1 to 5.5%. We then selected wavelengths which were responsive to fat, protein, and lactose concentrations, and relatively unaffected by saturation, chain-length, and lipolysis. Nine calibration standards (each composed of milk from a separate herd) were purchased. The FTIR was calibrated using these standards and Partial Least Squares (PLS) statistics. The concentration of fat, protein, and lactose in these samples was then predicted using the generated calibration equations. The standard deviations of difference between chemical and predicted values lie close to the AOAC recommended SD of .06%. This data was obtained with no homogenation or temperature control. A liquid ATR cell was used and 64 scans at 4 cm⁻¹ resolution were averaged to obtain each sample spectrum.
Significance to the Dairy Industry: This project will provide an improved method for measuring fat, protein, lactose and water content in dairy products. A fast method for detecting non-dairy ingredients, particularly fat, in products labeled or sold as dairy products is needed. Adulterated products sold as dairy products replace real dairy products. The large number of measurements possible in a short time allows much more powerful data processing methods to be used. Any number or combination of readings can be used to measure any component. An FTIR instrument can consider variables such as saturation level of the fat, lipolysis of fat, etc. so they do not interfere with accurate measurements. Calibration of the instruments will be less frequent.

Is Additional Effort or New Direction Needed Based on Project Findings:

NDPRB Action:

Publications:

Theses/Dissertations:

Abstracts:

Patents:
Annual Report Date (M/D/Y): June 30, 1990 Project Term (include dates): 7/88 - 6/91

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Rodney J. Brown

Project Title: Estimation of Individual Milk Proteins and Genetic Variants by Multicomponent Analysis of Amino Acid Profiles

Project Status: Active

Project Summary:
1. Determine concentrations of groups of proteins in milk such as caseins or whey protein using amino acid analysis.
2. Determine concentrations of specific milk proteins; αs1, αs2, β, and κ-caseins, α-lactalbumin, β-lactoglobulin, bovine serum albumin using amino acid analysis.
3. Separate genetic variants of specific milk proteins, and use amino acid analysis to quantify individual variants in a protein mixture.
4. Use techniques developed in 1-3 analyze milk and other dairy products.
5. Determine mathematical procedures to obtain the most accurate and reproducible methods for estimating milk protein concentrations.

Project Results: Stepwise regression was used to predict whether a given variant was present in 0, 1 or both alleles based on normalized amino acid concentrations. An R² or .83 was obtained using 12 amino acids for predicting the presence of κ-casein A or B as shown here. Amino acid analysis was not as good at predicting the β-casein variants present. The R² values obtained reflect, in part, the use of casein genetic variant mixtures being used to predict whether no, one or both alleles contained a given casein variant. In addition, Van Eenennaam and Medrano dealing with κ-cas suggest that the two alleles of each casein may not be expressed equally. One allele may dominate which could also influence the ability of amino acid analysis to identify the presence and degree to which a variant is present.

The RP-HPLC procedure used may work to identify and quantify some of the casein genetic variants with further refinements. Previous amino acid analysis research has shown it can be used to predict the percentage of the various caseins present in a mixture. We did have limited success in predicting the -casein variant present and to a lesser extent the β-casein variants.

Significance to the Dairy Industry: The goal of this project is to determine proportions of specific milk proteins (down to the level of specific genetic variants) or groups of proteins in milk and other dairy products from the information contained in a single amino acid analysis of a sample. Relative proportions of milk proteins found in traditional dairy products are subject to change as ultrafiltration and other new processes are used in their manufacture. To use these emerging manufacturing processes to produce entirely new products without the information that will be made available when this project is completed is nearly impossible.

Many areas of research will also be facilitated by the results of this research. We will be able to follow milk protein composition through lactation periods of individual cows (or other species), correlate content of each of the milk proteins with coagulation properties during cheese making, make artificial infant formula that more closely matches mothers' milk, etc.

Is Additional Effort or New Direction Needed Based on Project Findings:

NDPRB Action:
RESEARCH PROJECT
ANNUAL REPORT FORM

Annual Report Date (M/D/Y): June 30, 1990

Project Term (include dates): 10/88-6/30/91

Dairy Foods Research Center: Western

Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Dr. Arthur W. Mahoney

Project Title: Evaluation of Iron-Protein Complexes in Iron-Fortified Dairy Products

Project Status: Active

Project Summary:
1. To determine the nature of the basic interaction of individual milk proteins with ferrous/ferric iron in simple buffer systems.
2. To study the effect of pH, temperature and ionic strength on the iron-protein complex formation.
3. To determine the effect of iron binding on self-association of individual proteins and/or protein cross binding.
4. To characterize the iron-protein complexes in Jenness-Koops buffer (simulated milk salt buffer) using individual proteins as well as casein micelles and determine their stability.
5. To study the effect of iron binding to K-Casein and casein micelles on the rennin hydrolysis of the phe-met bond of K-Casein and subsequent coagulation of casein micelles.
6. To test the iron-protein complex formation in milk systems.
7. To determine the catalytic potency iron-protein complexes on oxidative damage to model lipids and to lipids in milk, yoghurt and cheese systems.

Project Results: We have now developed the necessary methods and standardized conditions for testing iron binding to milk proteins in this laboratory. Therefore, we are poised to make excellent progress toward understanding iron chemistry of fortified cheese and other milk products. Gel filtration and diafiltration were tried and the latter method was found to be satisfactory owing to the shorter time duration (4 to 5h) required to complete a binding experiment. Various iron salts were screened for their suitability in iron-protein binding experiments. Ferrous sulfate was not suitable due to rapid oxidation of the iron to the ferric state and precipitation. Ferric chloride underwent hydroxylation at pH 6.60 leading to the formation of insoluble Fe(OH)₃ polymers which did not pass through the ultrafiltration membrane. Ferric nitrilotriacetic acid, Fe(III)NTA, prepared by adding solid ferric nitrate to a solution of sodium NTA (molar ration of Fe:NTA of 1:2) was found suitable for iron binding studies. Fe(III)NTA did not form polymers at pH 6.60 and freely through the PM-10 ultrafiltration membrane.

Significance to the Dairy Industry: Iron fortification would increase the iron intakes of people who consume large amounts of dairy products, and it would allow people who are concerned with their iron nutriture to consume larger amounts of dairy products to achieve greater dietary calcium intakes. Thus, dairy products would be even more healthful in the diet if iron-fortified. This research will provide basic information on the mechanisms of iron binding in dairy products, information essential to industrializing the technology of fortifying dairy products with iron.

Is Additional Effort or New Direction Needed Based on Project Findings:

NDPRB Action:
Annual Report Date (M/D/Y): May 31, 1990
Project Term (Include dates): 7/88-6/90

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J. Kondo

Principal Investigator: Mina R. McDaniel

Project Title: Optimization of the Sensory Qualities of Flavored Yogurt

Project Status: Incomplete, but no longer funded

Project Summary: In an attempt to increase yogurt sales by raising consumer acceptance, both consumer and descriptive panels were utilized to characterize and evaluate sensory attributes in flavored and plain yogurt. Correlation of results from both panels with analytical measurements (i.e. pH, titratable acidity, HPLC) will provide information for product improvement. Given this directional information, formula optimization work could be completed.

Project Results: Large differences were found by both panels for all yogurts evaluated. Consumer overall liking was determined by liking of flavor, sweetness, and sourness. Bitterness tended to reduce acceptance of flavored yogurts. For strawberry yogurt, sweetness/sourness ratios needed to be greater than 1.0 for high consumer acceptance, and plain yogurt attributes such as acetaldehyde, sourness, and astringency strongly opposed sweetness attributes. Definite male and female differences were also found.

Significance to the Dairy Industry: This study demonstrated that there were very large differences in acceptability among the commercial samples tested for all yogurt flavors evaluated. These findings have suggested that there is a definite need for optimization work, and there is sufficient room for improvement of the sensory qualities of yogurt. If optimization work could continue, it is very possible that we could find some easy formulation changes that would improve yogurt quality and increase consumer acceptability, ultimately leading to increased yogurt sales.

Is Additional Effort or New Direction Needed Based on Project Findings: Yes, additional effort is needed to complete this project. Based on the large differences found, optimization work should be completed to determine changes needed to increase consumer acceptance.
Annual Report Date (M/D/Y): June 30, 1990
Project Term (include dates): 8/88-6/91

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Paul A. Savello

Project Title: Properties of Low-Fat Yogurt Manufactured from Ultrafiltered and Ultra-High Temperature Treated Milk

Project Status: Active

Project Summary: This project is investigating the effects of ultrafiltering milk to different total milk solids levels and applying different heat treatments on yogurt properties (viscosity, gel strength, syneresis, and water holding capacity). Structural differences will be observed by scanning and transmission electron microscopy. The effect on acidification time to desired gelation level by differently treated yogurt milks (concentration and heat treatment) will be measured. The acceptability of yogurt flavor and texture by appropriate taste panel procedures will be determined of the variously treated yogurt samples.

Project Results: Using ultrafiltration to increase solids affords greater viscosity, gel strength, WHC, and lower syneresis in UHT yogurt as compared to vat heated yogurt with added NFDM to comparable solids levels. Increasing UHT temperature (especially 280° F) does not improve gel strength, viscosity, WHC, and syneresis. Rather, lower temperatures (220-240° F) provide the greatest viscosity, gel strength, WHC, and less syneresis (especially when solids are increased by UF). Intermediate UHT treatment may provide comparable or better WHC and improved syneresis as compared to vat-heated yogurt, but this effect becomes less distinguishable as solids are increased by UF (both heating methods are good). However, UHT treatment does not appear to be able to match the same levels of gel strength and viscosity that can be seen with vat heat treatment.

Significance to the Dairy Industry: Increasing the total milk solids by ultrafiltration appears to be a good means for improved yogurt physical characteristics. Measurements of these yogurt flavor and texture attributes must still be studied.

Is Additional Effort or New Direction Needed Based on Project Findings: Yes

NDPRB Action:
Annual Report Date (M/D/Y): June 30, 1990

Project Term (include dates): 9/1/88 - 8/31/91

Dairy Foods Research Center: Western

Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Dr. D.J. McMahon

Project Title: High Yield, Low Moisture Cheese from Homogenized Ultrafiltered Milk

Project Status: Active

Project Summary: Ultrafiltration (UF) of milk can be used for the manufacture of high moisture cheeses. There are, however, some difficulties and complexities of making low moisture cheese using UF concentrated milk in that high fat losses occur and it is difficult to remove moisture. The specific objectives of this project are:

1. Determine effects of homogenization treatment on fat losses from UF retentate curd.
2. Design a cheese making process so as to obtain cheese in the range of pH 5.0—5.4 and moisture content < 40%.
3. Determine effects of milk heat treatment on moisture, texture and body of cheese made from UF retentate.
4. Provide a manufacturing procedure for making acceptable low moisture cheese from pre-fermented UF retentate that could be adopted for a continuous cheese making process.

Project Results:

Objective 1: Homogenization and Fat Loss.
Experiments have been conducted to determine effects of homogenizing whole milk on the extent of fat/casein complexing that occurs and the subsequent retention of fat in cheese curds made from 5X UF retentate. Pasteurized whole milk was divided into two lots and one lot homogenized at 3500 psi, while the other was not homogenized. Both lots were ultrafiltered without diafiltration to 38% solids. Cheeses were made simultaneously from 3.5 kilogram batches of retentate from each lot using standard cheddar make parameters. A one half kilogram, pH 5.0 water overlay, was used to float curds. Over the course of agitating and cooking curds to 39°C, a 1 cm deep free-fat layer developed in whey from the unhomogenized sample, while whey from the homogenized sample contained only a discontinuous film of free-fat. Final moisture levels were high, that is, in the range of 42-43% but homogenization did not significantly affect final moisture. On this visual basis, homogenization shows promise for increasing fat retention of UF retentates.

Objective 2: Cheese Making Process
Our experiments have shown that less rennet is required to coagulate 5X retentates if pH is below 6.4. UF retentates are also much less viscous and more easily handled if they have been adjusted to pH 6.4—6.0. We have considered that if retentates were pre-fermented to pH 6.4 at approximately 30°C, temperature could then be reduced to 20°C to slow acid production and provide a larger make-window. If retentates were renneted and cut at 20°C, curds could be cooked over a 19°C range instead of a 9°C range to increase syneresis. Experiments to determine the effect of this procedure on cheese moisture are beginning.

Objective 3: Milk Heat Treatment
Work on this objective will not be undertaken until objectives 2 and 3 are completed.

Objective 4: Cheese Quality
Textures and microstructures of cheese made from UF retentate differ from those of traditionally-made cheese. Studies made in our laboratory have shown that coagulation of milk normally occurs when hydrolysis of κ-casein is 80—90% complete. However, when milk is concentrated to 5X, coagulation occurs when only 50—60% of κ-casein is cleaved. This compression of the enzymic and aggregation phases of coagulation may in part be responsible for different curd structure and final properties of UF cheese. By lowering coagulation temperature, there is a marked slowing of aggregation rate. This slowing of aggregation rate relative to proteolysis should provide a more natural curd texture in the final cheese.

Significance to the Dairy Industry:
UF has been of only limited use in the manufacture of low moisture cheeses because concentration of milk in most UF systems reaches a limit at approximately 40% total solids. UF retentate thus requires further processing in order to reduce its moisture content to an acceptable range for many of the more popular cheese types in the U.S.A. In making a low moisture cheese from UF retentate there have been two methods used to extract moisture from the cheese curd: Vacuum evaporation for production of a cheese base for process cheese (this product has texture and body unsatisfactory for a value-added 'natural' cheese) and the SIRO-Curd method of using UF retentate to make Cheddar.
cheese by passing UF curd through a mechanical syneresis system followed by a mechanical cheddaring system (this is successful in lowering cheese moisture but has suffered from fat losses).

By developing a new UF cheesemaking procedure it will be possible to make low moisture cheeses that retain the high yield of UF. Cheeses in the moisture range of 35-45% are the most widely consumed cheeses in the U.S.A. The introduction of new varieties of cheese would have the greatest opportunity for success if they were in this category. Cheesemaking technology to be developed in this project has the potential to provide opportunities to produce new low moisture cheese products on a cost effective basis.

Is Additional Effort or New Direction Needed Based on Project Findings: No

NDPRB Action:

Publications:

Theses/Dissertations:

Abstracts:

Patents:
AnnuaiReportDate (M/D/Y): May 15, 1990

Project Term (include dates): 9/87-8/89

Dairy Foods Research Center: Western

Dairy Center Director: Dr. J. Kondo

Principal Investigator: Dr. Lynn V. Ogden

Project Title: Continuous Production of Cottage Cheese from Ultrafiltered Skim Milk Retentate

Project Status: Terminated in August, 1989

Project Summary: The use of ultrafiltration as a preconcentration step in the continuous production of cottage cheese curd was explored. Skim milk retentate of 9.1% protein was acidified at 2°C to pH 4.4-4.8. Strands of cottage cheese curd were formed by quiescently warming acidified retentate to 35°C in teflon tubes. The effect of retentate protein concentration, partial acidification before ultrafiltration, acidification pH, acid type, cooking time, and cooking temperature on curd firmness, mealiness, degree of matting, and flavor of cottage cheese curd was investigated.

Project Results: Cottage Cheese curd close to commercial curd in firmness, matting, and flavor was produced by quiescently forming curd from 9.1% protein retentate ultrafiltered at the native pH of skim milk. This curd was higher in mealiness than commercial curd samples used as controls. Conditions that minimized mealiness resulted in soft curd. Curd of commercial quality was not achieved.

Significance to the Dairy Industry: Continuous cottage cheese curd formation from retentate could replace the open vats and traditional curd forming and cutting operations. The result could be higher yield, efficiencies in equipment and labor required to form and cut the curd and better sanitation in a closed system.

Is Additional Effort or New Direction Needed Based on Project Findings: A breakthrough is needed to achieve curd of sufficient firmness yet free of mealiness.

NDPRB Action:
Annual Report Date (M/D/Y): 6/30/90

Project Term (include dates): 7/1/87-6/30/92

Dairy Foods Research Center: Western

Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Drs. W.E. Sandine and J.K. Kondo

Project Title: Cloning the nisin and other genes from Lactococcus into Leuconostoc species and amplification of nisin production

Project Status: Active

Project Summary: Leuconostoc organisms are important members of mixed strain lactic starter cultures because they produce carbon dioxide and diacetyl. Leuconostoc organisms do not grow well in milk because of their limited capability to utilize lactose and milk proteins. Therefore, one of the main goals of this project is to introduce the genes for lactose utilization and proteinase activity from lactococci into Leuconostoc. Leuconostoc strains also were shown to over-produce nisin when the nisin genes from Lactococcus were introduced into certain strains of Leuconostoc. Nisin, a "food-grade" preservative, is active against most gram positive spoilage and pathogenic bacteria. Thus, the other main goal is to introduce the nisin genes into Leuconostoc by cloning, and to stabilize production of these genes.

Project Results: Gene transfer techniques (electro-transformation and conjugation) were studied, developed, and optimized. An efficient and rapid technique for conjugal transfer of nisin production and plasmids was developed. Transformation studies indicated that cloned lactococcal genes introduced into Leuconostoc strains are unstable. To solve the instability problems, we are developing a cloning vector based on a characterized, native Leuconostoc plasmid. Also, a novel gene block (PrtA) required for utilization of milk proteins was identified. These genes possibly code for a peptidase/peptide transport system. They are required, in addition to proteinase enzyme genes (PrtM/PrtP), for utilization of milk proteins.

Significance to the Dairy Industry: Leuconostoc species are important starter bacteria for the production of fermented dairy products because of their unique capabilities to produce an appropriate amount of diacetyl and carbon dioxide. Diacetyl is an important flavor component of cultured buttermilk and sour cream and also unripened soft cheese such as cream cheese and cottage cheese. The carbon dioxide produced is important in eye formation in Gouda type cheeses and it also contributes to the effervescent properties of cultured buttermilk. Despite their importance in dairy dairy fermentations, these organisms have limited capabilities to grow in milk. Genetic enhancement of their ability to grow in milk will increase their usefulness in the development of novel fermented dairy products and to expand the production of specialty cheeses now being imported from Europe. Cloning and overproduction of nisin in Leuconostoc has important implications in increasing the safety and shelf-life of perishable fermented dairy products (nisin inhibits Listeria, Clostridium, Staphylococcus, Bacillus, and other gram positive organisms). Development of nisin-producing (and thus nisin resistant) Leuconostoc will also allow for their use with other nisin-producing cultures in mixed and multiple starter systems.

Is Additional Effort or New Direction Needed Based on Project Findings:

NDPRB Action:
Annual Report Date (M/D/Y): June 30, 1990
Project Term (Include dates): 7/1/87 - 6/31/90

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: B.L. Geller and W.E. Sandine

Project Title: Characterization of Bacteriophage Receptor Sites of Lactococcus Bacteria

Project Status: Terminates June 30, 1990

Project Summary: The overall objective is to understand the molecular mechanism of phage adsorption by lactococcus bacteria. Specifically the objectives are:

1. To identify the bacterial components including the cell wall and the cell membrane, responsible for phage attachment, release and penetration of phage DNA.
2. To define the phage receptor at the molecular level.
3. To better understand the mechanisms of resistance of binding, release and penetration of phage DNA and use this information in combination with other mechanisms of resistance to ultimately produce permanently altered strains unable to be attacked by bacteriophages.

Project Results: Currently we are studying the mechanism of phage adsorption to L. lactis subsp. lactis C2. First, cells with mutations in binding were isolated and changes in the saccharide components of the cell wall polysaccharides were analyzed by gas chromatography. Lectins with different specificities to the saccharide components of the cell wall polysaccharide were incubated with the cell walls and losses in the abilities of phage binding to the cell wall were analyzed. Lastly, we used the free saccharide receptor to compete with the cells to bind the phage and thereby inhibited the phage from lysing the cells. The results thus far suggest that the mechanism of phage resistance in most of the mutants of L. lactis subsp. lactis C2 does not involve changes in the carbohydrate receptors. It is possible that some of these mutants have altered membrane proteins which prevent the release and penetration of phage DNA.

Significance to the Dairy Industry: Over 80% of failed fermentation by mesophilic starter cultures are the result of bacteriophage attack. In our last report, we showed that mimic receptors i.e., rhamnose can be used to inhibit infection of phages from L. lactis subsp. cremoris KH. In this report, we demonstrated that rhamnose is also effective in inhibiting or sufficiently delaying infection of phages from L. lactis subsp. lactis C2. Elimination of bacteriophage problems during fermentation means a more efficient cheese production, more uniform products and better consumer acceptance of the products. Without doubt, this translates into better profits to the dairy companies and farmers.

Is Additional Effort or New Direction Needed Based on Project Findings:

NDPRB Action:
Annual Report Date (M/D/Y): June 30, 1990
Project Term (include dates): 9/87-12/31/90

Dairy Foods Research Center: Western
Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Dr. Floyd W. Bodyfelt

Project Title: Production of Omega-3 Fatty Acids by Genetically Altered Fungi and Lactic Acid Bacteria

Project Status: Active

Project Summary:
1. Examine *Saprolegnia parasitica* for extrachromosomal DNA/plasmids with the goal of using an indigenous plasmid for cloning genes facilitating metabolism of lactose.
2. One genetically altered, determine growth and lipid accumulation (fatty acid profile) of *S. parasitica* using lactose as a carbon source.
3. Develop a whey permeate based medium that will provide optimum growth and lipid accumulation by *S. parasitica*.
4. Determine the scale-up economics with an emphasis on optimum lipid extraction from large scale chemostat production into lactic acid bacteria.

Project Results: This research examines an approach to producing PUFAs from fungi genetically altered to lactose utilization. *Saprolegnia parasitica*, a filamentous fungus, was examined for eicosapentaenoic acid (20:5 omega-3, EPA) production when grown on six media with varied nitrogen and carbon sources. Optimum EPA production reached 24% of total fatty acids. In an effort to produce EPA from lactose, transformation experiments using the plasmid pKRI BLAC4-1 were undertaken. Transformation of protoplasts was by PEG/CaCl$_2$ with 1 to 6 protoplasts/mg DNA transformed. Several stable transformants were obtained. As indicated by Southern hybridization, the plasmid was incorporated genomically. SP829 produced 4-5 units β-galactosidase/mg protein. 14C lactose was used to determine lactose uptake by SP829 mycelia and protoplasts. Radiolabel was not detected in protoplasts or mycelia. This indicates that while β-galactosidase is produced the fungus lacks a functional lactose permease.

Significance to the Dairy Industry: This research has shown that the filamentous fungus *S. parasitica* is capable of producing the omega-3 fatty acid, eicosapentaenoic acid. This end product may have economic significance if a suitable substrate could be found for growing this microorganism. In an attempt to produce EPA from cheese whey permeate, we have genetically altered *S. parasitica*. Subsequently, this organism now produces a functional β-galactosidase. Current research efforts are focusing on cloning a functional lactose permease into the genome of *S. parasitica*. Until this genetic alteration of the organism is accomplished, the goal of utilizing whey permeate as a carbohydrate source to produce omega-3 fatty acids is not likely to be achieved.

Is Additional Effort or New Direction Needed Based on Project Findings: Based on the difficulty in whey permeate disposal, projects that utilize this cheese by-product should be continued. As marine sources of omega-3 fatty acids become diminished, this project may have greater future significance.

NDPRB Action:
RESEARCH PROJECT
ANNUAL REPORT FORM

Annual Report Date (M/D/Y): June 30, 1990

Project Term (include dates): 7/88-6/91

Dairy Foods Research Center: Western

Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Dr. Mark A. Daeschel

Project Title: Purification of a bacteriocin from *Pediococcus pentosaceus* and genetic transfer of the plasmid borne determinants

Project Status: Active

Project Summary: The primary objectives of this study are twofold.
1. To purify the bacteriocin, Pediocin A, using protein purification methodology to a purity suitable for the production of polyclonal antibodies.
2. To genetically transfer the Pediocin A plasmid (pMD136) into dairy fermentation strains via the current state of the genetic transfer systems that have been demonstrated with lactic acid bacteria.

Project Results: This past year we have concentrated on optimizing electroporation transformation procedures for Pediococci and Lactococci with the view of introducing the Pediocin A plasmid since we are unable at this time to use Pediocin A as a selective agent. Two alternative approaches are being explored. The first approach is to optimize electroporation conditions so that co-transformation of pMD136 and a directly selectable marker (antibiotic resistant plasmid) could occur. Co-transformants could then be individually screened for Pediocin A production. The second approach is to clone into a directly selectable plasmid vector the Pediocin A genes for production and immunity to Pediocin A. Both approaches are dependent on high transformation frequencies. We have been able to transform 3 of 5 strains of pediococci using the plasmid vector pNZ12. Transformation frequencies were in the range of 2-3 × 10^2 per ug of DNA. We have also been able to obtain transformation frequencies of about 1 × 10^6 per ug of DNA with lactococcus lactis LM 2302 which will be used as a recipient for pMD136-pNZ12 co-transformation experiments.

Significance to the Dairy Industry: Of current concern to cheese processors are the occurrence of microorganisms which cause blowing faults (*Clostridia tyrobutyricum*) in Swiss-type cheese and cheeses. Bacteriocin producing starter cultures is one approach for controlling the incidence of such microorganisms in fermented dairy foods. Certain bacteriocins from non-dairy lactic acid bacteria have been shown to inhibit clostridia and Listeria as well as other pathogens such as *Staphylococcus aureus*.

The acquisition of bacteriocin producing ability by dairy starter cultures through genetic biotechnology may allow the development of strains superior to those presently available.

Is Additional Effort or New Direction Needed Based on Project Findings: Efforts will continue to focus on purification of Pediocin A and development of optimal transformation procedures.

NDPRB Action:
Annual Report Date (M/D/Y): June 30, 1990

Project Term (Include dates): 7/1/88-3/31/91

Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Mark A. Daeschel and Floyd W. Bodyfelt

Project Title: Prediction and Determination of the Efficacy of Nisin in Dairy Foods

Project Status: Active

Project Summary:

1. To determine what molecular components of milk can interact with nisin and affect its activity.
2. To use the information gained from achieving the first objective to predict and determine the efficacy of nisin as a preservation agent in novel dairy foods such as carbonated milk beverages.
3. To determine the efficacy of nisin on the inhibition of Listeria and psychrotrophic bacilli in selected milk and milk products and the subsequent impact on safety and keeping quality.

Project Results: Beta-lactoglobulin was observed to provide a protective effect to bioassay indicator bacteria when exposed to nisin in the presence of the protein. It is hypothesized that Beta-lactoglobulin may reduce the activity of nisin by binding it and hence preventing it from inhibiting microbial cells. Experiments were conducted to determine the effects that various components of milk have on the efficacy of nisin. Two approaches were used. 1) Determination of nisin activity after exposure of nisin to different types and concentration of dairy proteins and fats. A quantitative bioassay based on well diffusion was employed. 2) Effect of different dairy components on the ability of nisin to inhibit Listeria monocytogenes in fluid milk. The most significant effect observed was the reduction in nisin activity as the fat concentration was increased in fluid milk. Nisin activity as determined by bioassay was decreased by more than 90% when added to high fat (11.5%) fluid milk. Concurrently, it was observed that nisin was less effective in inhibiting Listeria as fat concentration increased. A representative experiment is portrayed in the following figure. How milkfat interacts with nisin to reduce its activity is the focus of our current investigations.

Significance to the Dairy Industry: Nisin, after 25 years of safe use in many European countries was recently affirmed by the Food and Drug Administration (Federal Register, April 6, 1988) as GRAS for use as an antimicrobial agent to inhibit the growth of Clostridium botulinum spores and toxin formation in certain pasteurized cheese spreads. The approval of nisin will justify increased research efforts of both an applied and basic nature on the antimicrobial properties of bacteriocins. The use of nisin as an antimicrobial agent in dairy foods could enhance milk utilization by at least three mechanisms:

1. Inhibition of spoilage microorganisms in dairy foods could minimize economic losses due to spoilage.
2. Inhibition of pathogenic and toxigenic bacteria to provide consistently safe products. Contaminated products (such as with Listeria) can give rise to adverse publicity with subsequent sales loss.

Is Additional Effort or New Direction Needed Based on Project Findings:

NDPRB Action:

Publications:

Theses/Dissertations:

Abstracts:

Patents: None
Annual Report Date (M/D/Y): June 30, 1990

Project Term (include dates): 7/1/89 - 6/30/91

Dairy Foods Research Center: Western

Dairy Center Director: Dr. J.K. Kondo

Principal Investigator: Dr. D.J. McMahon

Project Title: Function of whey proteins and lactose in age gelation of ultra-high temperature sterilized milk concentrate

Project Status: Active

Project Summary: The mechanism by which age gelation in UHT sterilized milk concentrates occurs is still unknown. There have been many factors implicated but an empirical approach is taken to extend shelf life of sterilized milk. UHT sterilization promotes association between \(\kappa \)-casein and \(\beta \)-lactoglobulin. In milk concentrates the concentration of whey proteins and lactose are increased. Their role in the age gelation process will be studied in this project. The specific objectives of this project are to:

1. Determine the fate of \(\beta \)-lactoglobulin during storage of UHT sterilized milk concentrates.
2. Determine the influence of lactose concentration of milk concentrates on age gelation.
3. Monitor changes in casein micelle structure during storage of UHT sterilized milk concentrates.

Project Results:

Objective 1: \(\beta \)-lactoglobulin
The use of \(^{14}\text{C}\)-labelled \(\beta \)-lactoglobulin in UHT milk experiments has required that a laboratory scale UHT system be developed so that contaminated equipment can be properly handled. Preliminary trials have been conducted to determine that an equivalent amount of protein denaturation occurs in the two systems. After heat treatment the samples are filled into sterile containers in a cabinet with a positive flow of filtered air to prevent bacterial contamination.

Objective 2: Lactose
Adjustment of Lactose Levels in Milk Preliminary trials have been conducted to determine the best procedure for removing lactose from milk followed by addition of lactose and sucrose at specified levels. Ultrafiltration followed by repeated diafiltration was used to remove most of the lactose from milk. After three diafiltration steps, lactose was reduced from 5.1% to 0.032%. Trials were conducted to determine the optimum way to obtain the proper salt balance in milk during diafiltration.

Measurement of Lactose-Protein Interactions In order to follow the extent of lactose–protein interactions that occur because of Maillard browning reactions it is necessary to have a method to measure the available lysine present on the proteins of UHT milk. An RP-HPLC procedure using a C-18, 250 x 4.6 mm column was developed and proved successful.

Objective 3: Casein Micelle Structure
The microstructure of UHT milk concentrates was investigated using electron microscopy in conjunction with Dr. Miloslav Kalab, Food Research Centre, Ottawa, Canada. It was observed that when 3X skim milk concentrate is heated to 140°C for 4 s, about 60% of the whey proteins are denatured and the casein micelles undergo a large increase in size. This size increase is due to complexing of \(\kappa \)-casein with denatured \(\beta \)-lactoglobulin followed by further aggregation of denatured \(\beta \)-lactoglobulin onto the micelle surface. When such UHT samples are stored and eventually age gel, it was observed that many of the micelles were connected by thin threads of material. The microstructure of such gels was completely different to rennet milk gels.

Significance to the Dairy Industry: International markets for U.S. dairy products could be developed if attention was directed to manufacture of stable products from our surplus dairy production. Specifically, for this project, a way of producing a rehydratable milk concentrate which will not gel before reaching the intended consumers is to be developed. This would make US dairy products more widely available on the world market.

Is Additional Effort or New Direction Needed Based on Project Findings:

NDPRB Action:
PROJECT SUMMARY

Annual Report Date (include year): June 30, 1990

Dairy Food Research Center (identify site): Western Dairy Foods Research Center

Dairy Center Director: Jeffery K. Kondo

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Project Title</th>
<th>Starting Date</th>
<th>Ending Date</th>
<th>Total Funding</th>
<th>Total NDB Funding*</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torres, J. Antonio</td>
<td>Acid Whey Utilization: Functional Properties of a Food Grade Stabilizer Produced by Lactobacillus Plantarum from Acid Whey</td>
<td>07/01/89</td>
<td>06/30/91</td>
<td>43,377</td>
<td>30,653</td>
<td>Active</td>
</tr>
<tr>
<td>Hansen, Conly L.</td>
<td>Cogeneration of Biogas and Single Cell Protein From Ultrafiltration Permeate and Whey</td>
<td>07/01/87</td>
<td>06/30/89</td>
<td>59,178</td>
<td>19,724</td>
<td>Completed</td>
</tr>
<tr>
<td>Kondo, Jeffery K. and (Sandine, W.E.)</td>
<td>Cloning the Nisin and Other Genes of Lactic Streptococci into Leuconostoc Species and Amplification of Nisin Production</td>
<td>07/01/87</td>
<td>06/30/92</td>
<td>177,332</td>
<td>132,999</td>
<td>Active</td>
</tr>
<tr>
<td>Mahoney, Arthur W.</td>
<td>Iron Fortification of Cheese Curd</td>
<td>08/01/87</td>
<td>06/30/90</td>
<td>42,697</td>
<td>28,466</td>
<td>Completed</td>
</tr>
<tr>
<td>Richardson, Gary H.</td>
<td>Acquisition of Zymark II Robot for Laboratory Automation Studies Improving Yield and Physical Properties of Mozzarella Cheese</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>5,000</td>
<td>3,333</td>
<td>Completed</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>Project Title</td>
<td>Starting Date</td>
<td>Ending Date</td>
<td>Total Funding</td>
<td>Total NDB Funding* Project</td>
<td>Status</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Richardson, Gary H.</td>
<td>Improving Yield and Physical Properties of Mozzarella Cheese</td>
<td>07/01/87</td>
<td>06/30/91</td>
<td>67,860</td>
<td>45,609</td>
<td>Active</td>
</tr>
<tr>
<td>Ogden, Lynn V.</td>
<td>Continuous Production of Cottage Cheese From Ultra-filtered skim milk Retentate</td>
<td>09/01/87</td>
<td>08/31/89</td>
<td>8,200</td>
<td>5,467</td>
<td>Completed</td>
</tr>
<tr>
<td>Cornforth, Daren P.</td>
<td>Evaluation of Milk Proteins as Whitening Agents in Processed Meats and Poultry Products</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>31,839</td>
<td>21,227</td>
<td>Completed</td>
</tr>
<tr>
<td>Olsen, Robert L.</td>
<td>Interaction of Protein and Polysaccharides in Chymosin and Acid Coagulation of Milk</td>
<td>07/01/87</td>
<td>06/30/89</td>
<td>43,160</td>
<td>28,774</td>
<td>Completed</td>
</tr>
<tr>
<td>Richardson, Gary H.</td>
<td>Improved Control of Cheese Manufacture through Vat Monitoring</td>
<td>07/01/87</td>
<td>06/30/91</td>
<td>63,300</td>
<td>42,240</td>
<td>Active</td>
</tr>
<tr>
<td>Kondo, Jeffery K.</td>
<td>Western Dairy Foods Research Center Administrative Account</td>
<td>07/01/87</td>
<td>06/30/92</td>
<td></td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>Ernstrom, C. Anthon</td>
<td>Effect of Milk Clotting Enzymes on the Curing and Quality of Cheddar Cheese</td>
<td>07/01/87</td>
<td>06/30/88</td>
<td>37,660</td>
<td>25,085</td>
<td>Completed</td>
</tr>
<tr>
<td>Sandine, W.E.</td>
<td>Characterization of Bacteriophage Receptor Sites of Lactic Streptococci</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>55,256</td>
<td>36,712</td>
<td>Completed</td>
</tr>
</tbody>
</table>
FROM THE DIRECTOR

The 1989-1990 fiscal year (July 1, 1989 to June 30, 1990) was a very active one for the Western Dairy Foods Research Center (WDFRC). This year marked the third year of WDFRC operation and activities. Two projects were completed during this year while six projects scheduled to be completed were granted no-cost extensions based upon the justification(s) stated by the principal investigator supervising the project. Two new projects were approved for the next fiscal year. During fiscal year 1990 the WDFRC administered 23 research projects.

The WDFRC continues to conduct dairy process/product research in four program areas:

- curd formation/cheese technology
- product quality
- microbiology of starter cultures
- ultrafiltration/reverse osmosis membrane technology.

Eighteen principal investigators of the three universities of the WDFRC (Utah State University, Oregon State University, and Brigham Young University) oversee the $572,500 research budget. However, these investigators have been very resourceful in obtaining additional dairy research funds from extramural agencies. All these funds are most important to continue the excellent research being conducted and to further enhance the future goals of the WDFRC.

The WDFRC Annual Meeting was held at Oregon State University during July 12-13, 1990. All the principal investigators and graduate students involved in the research projects were present to give oral progress reports. Poster sessions of some research projects were also set up this year. These posters permitted more interaction among the participants and provided a different format of research results.

The WDFRC Operational Advisory Committee (OAC) met in formal session during the Annual Meeting. OAC members were very open in all their comments about the WDFRC. The OAC expressed enthusiasm about the progress of the WDFRC. Concern was expressed, however, about the need for more communication from the WDFRC to the supporting members of the Center. These constructive comments were noted fully by the administrators of the WDFRC who are actively working to make efficient communication channels from the WDFRC to its contributors as well as to other institutions and organizations in the dairy industry.

The OAC was informed that the National Dairy Promotion and Research Board (NDPRB) would be reviewing the WDFRC during August, 1990. The procedures and protocols of that review were presented to the OAC by Dr. Janet Williams, Director of Research of the NDPRB.

Dr. Paul Savello of Utah State University has assumed the Directorship of the WDFRC. Dr. Savello trusts that his experiences both in private industry dairy research and now in university research prove valuable tools for his administering the vital and exciting research program at the WDFRC. The administration plans to "keep the industry posted" of the WDFRC's activities and to get "feed-back" about our good works as well as those concerns that the WDFRC must review for improvement.

Our goal is common - to increase the utilization of milk and milk products. Working together in such research centers as the WDFRC, this goal can be attained so that we all can feel satisfied that our individual contributions are important to the industry.

Paul A. Savello, Ph.D.
Director
<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Project Title</th>
<th>Starting Date</th>
<th>Ending Date</th>
<th>Total Funding</th>
<th>Total NDB Funding*</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodyfelt, Floyd W.</td>
<td>Rapid Assay for Heat Resistant Microbial Proteases in Raw Milk by a Simple Casein Denaturation Method</td>
<td>08/01/87</td>
<td>12/31/90</td>
<td>36,580</td>
<td>24,439</td>
<td>Active</td>
</tr>
<tr>
<td>Bodyfelt, Floyd W.</td>
<td>Production of Omega-3 Fatty Acids by Genetically Altered Fungi and Lactic Acid Bacteria</td>
<td>09/01/87</td>
<td>12/31/90</td>
<td>54,655</td>
<td>36,269</td>
<td>Active</td>
</tr>
<tr>
<td>McGuire, Joseph</td>
<td>Characterization of the Post-Absorbative Behavior of β-Lactoglobulin for Control of Spore and Microbial Adhesion</td>
<td>01/01/88</td>
<td>12/31/90</td>
<td>76,596</td>
<td>51,143</td>
<td>Active</td>
</tr>
<tr>
<td>Sandine, W.E.</td>
<td>Studies on the Growth and Survival of Bifidobacterium Species in Milk</td>
<td>07/01/87</td>
<td>06/30/89</td>
<td>36,683</td>
<td>24,455</td>
<td>Completed</td>
</tr>
<tr>
<td>Ogden, Lynn V.</td>
<td>Continuous Production of Cottage Cheese From Ultrafiltered Skim Milk Retentate</td>
<td>09/01/87</td>
<td>08/31/89</td>
<td>8,200</td>
<td>5,467</td>
<td>Completed</td>
</tr>
<tr>
<td>Ogden, Lynn V.</td>
<td>Method for Identifying Batch or Origin of Semi-continuous Cheese Processes</td>
<td>07/01/88</td>
<td>06/30/90</td>
<td>12,200</td>
<td>0</td>
<td>Completed</td>
</tr>
<tr>
<td>Brown, Rodney J.</td>
<td>Application of Fourier Transform Infrared Technology to Milk and Dairy Products</td>
<td>07/01/88</td>
<td>04/30/91</td>
<td>124,921</td>
<td>59,758</td>
<td>Active</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>Project Title</td>
<td>Starting Date</td>
<td>Ending Date</td>
<td>Total Funding</td>
<td>Total NDB Funding*</td>
<td>Status</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Brown, Rodney J.</td>
<td>Estimation of Individual Milk Proteins and Genetic Variants by Multicomponent Analysis of Amino Acid Profiles</td>
<td>07/01/88</td>
<td>06/30/91</td>
<td>247,893</td>
<td>185,919</td>
<td>Active</td>
</tr>
<tr>
<td>Savello, Paul A.</td>
<td>Use of Ultrafiltration and Different Heat Treatments on Yogurt Flavor and Physical Properties</td>
<td>08/01/88</td>
<td>06/30/91</td>
<td>58,200</td>
<td>38,901</td>
<td>Active</td>
</tr>
<tr>
<td>Daeschel, Mark A.</td>
<td>Purification of a Bacteriocin From Pediococcus Pentosaceus and Genetic Transfer of the Plasmid Borne Determinant</td>
<td>07/01/88</td>
<td>06/30/91</td>
<td>54,462</td>
<td>40,846</td>
<td>Active</td>
</tr>
<tr>
<td>Torres, J. Antonio</td>
<td>Cheddar Cheese Blocks: Effect of Cheese Composition and Cooling Method</td>
<td>07/01/88</td>
<td>12/31/90</td>
<td>42,742</td>
<td>22,055</td>
<td>Active</td>
</tr>
<tr>
<td>Hansen, Conly L. and (Torres, J.A.)</td>
<td>Comparison Between 40 and 640 lb Blocks of Uniform Cooling of 640 lb Blocks</td>
<td>11/01/88 (11/01/88)</td>
<td>12/31/91 (12/31/91)</td>
<td>17,900 (32,344)</td>
<td>12,386 (22,381)</td>
<td>Active</td>
</tr>
<tr>
<td>McMahon, Donald J.</td>
<td>Variations in Casein Composition of Milk High Yield, Low Moisture Cheese From Homogenized Milk</td>
<td>09/01/88</td>
<td>08/31/91</td>
<td>79,356</td>
<td>63,629</td>
<td>Active</td>
</tr>
<tr>
<td>Mahoney, Arthur W.</td>
<td>Evaluation of Iron-Protein Complexes in Iron-Fortified Dairy Products</td>
<td>10/04/88</td>
<td>06/30/91</td>
<td>82,037</td>
<td>66,495</td>
<td>Active</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>Project Title</td>
<td>Starting Date</td>
<td>Ending Date</td>
<td>Total Funding</td>
<td>Total NDB Funding* Project</td>
<td>Status</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Hansen, Conly L.</td>
<td>A New Method for Measuring Syneresis of Renneted Gels Applied to Development of Cheese</td>
<td>03/01/89</td>
<td>03/01/91</td>
<td>23,912</td>
<td>15,941</td>
<td>Active</td>
</tr>
<tr>
<td>McDaniel, Mina R.</td>
<td>Optimization of the Sensory Qualities of Flavored Yogurt</td>
<td>07/01/88</td>
<td>06/30/90</td>
<td>32,127</td>
<td>21,364</td>
<td>Completed</td>
</tr>
<tr>
<td>Daeschel, Mark A.</td>
<td>Prediction and Determination of the Efficacy of Nisin in Dairy Foods</td>
<td>07/01/88</td>
<td>03/31/91</td>
<td>39,407</td>
<td>26,131</td>
<td>Active</td>
</tr>
<tr>
<td>McMahon, Donald J.</td>
<td>Function of Whey Proteins and Lactose in Age Gelation of Ultra-High Temperature Sterilized Milk Concentrate</td>
<td>07/01/89</td>
<td>06/30/91</td>
<td>50,000</td>
<td>33,000</td>
<td>Active</td>
</tr>
</tbody>
</table>

* Please underline dollars if amounts differ from total originally proposed.
6. Technology transfer -- elaborate on events/opportunities which have provided for the transfer or dissemination of technologies developed through Center-funded research:

Use of rhamnose and rhamnose containing materials to inhibit bacteriophages of lactic acid and related bacteria. A disclosure document has been filed with the Oregon State University Technology Transfer Office. It is being evaluated by patent attorneys.
Publications (attach any publications or abstracts for Center-funded research):

Lynn V. Ogden

Joseph McGuire

Joseph McGuire (continued)

William E. Sandine

Floyd W. Bodyfelt

J. Antonio Torres

J. Antonio Torres (continued)

Grazier, C., Simpson, R., Bodyfelt, F.W., and Torres, J.A. Temperature effects on the microbial activities occurring during cooling and aging of Cheddar cheese. J. Food Sci. (In preparation)

Gary H. Richardson

Jeffery K. Kondo

Arthur Mahoney

Daren Cornforth

8. Financial reports (attach approved financials).
To National Dairy Promotion and Research Board
Logan, Utah

QUALIFIED INTERNAL AUDITORS' STATEMENT

We have performed an accounting of the Annual Financial Report by Project, of the Western Dairy Research Center, from July 1, 1987 to June 30, 1990.

Keith Sedgwick
Director
Internal Audits

Utah State University
October 4, 1990
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Summary Totals for All Projects

Annual Report Ending: June 30, 1990, Final Project Term: 07/01/87 - 06/30/90

Dairy Center Director: Dr. Jeffery K. Kondo

Project Title: SUMMARY TOTALS FOR ALL WESTERN DAIRY CENTER PROJECTS

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Totals:</td>
<td>1655337</td>
<td>1313231</td>
<td>342106</td>
</tr>
<tr>
<td></td>
<td>1106903</td>
<td>862739</td>
<td>244164</td>
</tr>
<tr>
<td></td>
<td>548434</td>
<td>450492</td>
<td>97942</td>
</tr>
</tbody>
</table>

==:
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final

Dairy Center Director: Dr. Jeffery K. Kondo

Principal Investigator: KONDO JEFFERY K

Project Title: WESTERN DAIRY FOODS RESEARCH CENTER ADMINISTRATIVE ACCOUNT

Project Status: Active

USU Project Number: 191

USU Account Number: 547785

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allocated</td>
<td>Spent</td>
<td>Balance</td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>40000</td>
<td>33932</td>
<td>6068</td>
</tr>
<tr>
<td>Fringe</td>
<td>12000</td>
<td>9923</td>
<td>2077</td>
</tr>
<tr>
<td>Supplies</td>
<td>16600</td>
<td>8787</td>
<td>7813</td>
</tr>
<tr>
<td>Equipment</td>
<td>6000</td>
<td>6075</td>
<td>-75</td>
</tr>
<tr>
<td>Travel</td>
<td>25000</td>
<td>20142</td>
<td>4858</td>
</tr>
<tr>
<td>Publication</td>
<td>400</td>
<td>381</td>
<td>19</td>
</tr>
<tr>
<td>TOTALS</td>
<td>100000</td>
<td>79240</td>
<td>20760</td>
</tr>
</tbody>
</table>

The table above summarizes the financial report for the Western Dairy Foods Research Center for the project term 07/01/87 - 06/30/92, with a final report ending on June 30, 1990. The budget and financial data are detailed in various categories including salaries/wages, fringe benefits, supplies, equipment, travel, and publication expenses.
Annual Financial Report by Project

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/87 - 06/30/91
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: RICHARDSON GARY H

Project Title: IMPROVING YIELD AND PHYSICAL PROPERTIES OF MOZZARELLA CHEESE

Project Status: Active
USU Project Number: 181
USU Account Number: 547780

<table>
<thead>
<tr>
<th>Budget</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47868</td>
<td>43380</td>
<td>4488</td>
<td>32172</td>
</tr>
<tr>
<td>Fringe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10992</td>
<td>11824</td>
<td>-832</td>
<td>7388</td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>5008</td>
<td>3992</td>
<td>6049</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>400</td>
<td>-400</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>435</td>
<td>-435</td>
<td>0</td>
</tr>
<tr>
<td>Publication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>147</td>
<td>-147</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>67860</td>
<td>61193</td>
<td>6667</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/87 - 06/30/91

Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: RICHARDSON GARY H

Project Title: IMPROVED CONTROL OF CHEESE MANUFACTURE THROUGH VAT MONITORING

Project Status: Active
USU Project Number: 187
USU Account Number: 547784

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocated</td>
<td>Spent</td>
<td>Balance</td>
<td>Allocated</td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>36200</td>
<td>16683</td>
<td>19517</td>
</tr>
<tr>
<td>Fringe</td>
<td>9100</td>
<td>576</td>
<td>8524</td>
</tr>
<tr>
<td>Supplies</td>
<td>8000</td>
<td>15957</td>
<td>-7957</td>
</tr>
<tr>
<td>Equipment</td>
<td>7000</td>
<td>500</td>
<td>6500</td>
</tr>
<tr>
<td>Travel</td>
<td>3000</td>
<td>1800</td>
<td>1200</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>44</td>
<td>-44</td>
</tr>
<tr>
<td>TOTALS</td>
<td>63300</td>
<td>35560</td>
<td>27740</td>
</tr>
</tbody>
</table>

ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/88 - 06/30/90

Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: TORRES J ANTONIO

Project Title: CHEDDAR CHEESE BLOCKS: EFFECT OF CHEESE COMPOSITION AND COOLING METHOD

Project Status: Active
USU Project Number: 202
USU Account Number: 547834

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allocated:</td>
<td>Spent:</td>
<td>Balance:</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>13944</td>
<td>15238</td>
<td>-1294</td>
</tr>
<tr>
<td></td>
<td>9538</td>
<td>10424</td>
<td>-885</td>
</tr>
<tr>
<td></td>
<td>4406</td>
<td>4815</td>
<td>-409</td>
</tr>
<tr>
<td>Fringe</td>
<td>698</td>
<td>2493</td>
<td>-1795</td>
</tr>
<tr>
<td></td>
<td>477</td>
<td>1706</td>
<td>-1228</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>788</td>
<td>-567</td>
</tr>
<tr>
<td>Supplies</td>
<td>15600</td>
<td>13379</td>
<td>2221</td>
</tr>
<tr>
<td></td>
<td>10671</td>
<td>9152</td>
<td>1519</td>
</tr>
<tr>
<td></td>
<td>4929</td>
<td>4227</td>
<td>702</td>
</tr>
<tr>
<td>Equipment</td>
<td>10500</td>
<td>10180</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>10500</td>
<td>10180</td>
<td>320</td>
</tr>
<tr>
<td>Travel</td>
<td>2000</td>
<td>1471</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>1368</td>
<td>1006</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>632</td>
<td>465</td>
<td>167</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>42742</td>
<td>42761</td>
<td>-19</td>
</tr>
<tr>
<td></td>
<td>22055</td>
<td>22287</td>
<td>-232</td>
</tr>
<tr>
<td></td>
<td>20687</td>
<td>20475</td>
<td>213</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 11/01/88 - 12/31/91
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: HANSEN CONLY L
Project Title: COMPARISON BETWEEN 40 AND 640 LB BLOCKS OF UNIFORM COOLING OF 640 LB BLOCKS

Project Status: Active
USU Project Number: 206
USU Account Number: 547838

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/ Wages</td>
<td>8700</td>
<td>6523</td>
<td>2177</td>
</tr>
<tr>
<td>Fringe</td>
<td>0</td>
<td>102</td>
<td>-102</td>
</tr>
<tr>
<td>Supplies</td>
<td>3000</td>
<td>2834</td>
<td>166</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1600</td>
<td>765</td>
<td>835</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>54</td>
<td>-54</td>
</tr>
<tr>
<td>TOTALS</td>
<td>13300</td>
<td>10278</td>
<td>3022</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 11/01/88 - 12/31/91

Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: TORRES J ANTONIO

Project Title: COOLING RATE OF CHEDDAR CHEESE: COMPARISON BETWEEN 40 AND 640 LB BLOCKS OF UNIFORM COOLING OF 640 LB BLOCKS

Project Status: Active
USU Project Number: 206
USU Account Number: 547862

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocated</td>
<td>15442</td>
<td>11192</td>
<td>4250</td>
</tr>
<tr>
<td>Spent</td>
<td>772</td>
<td>2534</td>
<td>-1762</td>
</tr>
<tr>
<td>Balance</td>
<td>14670</td>
<td>8658</td>
<td>5982</td>
</tr>
<tr>
<td>Supplies</td>
<td>12055</td>
<td>14838</td>
<td>-2783</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1600</td>
<td>1317</td>
<td>283</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>211</td>
<td>-211</td>
</tr>
<tr>
<td>TOTALS</td>
<td>29869</td>
<td>30092</td>
<td>-223</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/89 - 06/30/91
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: TORRES J ANTONIO

Project Title: ACID WHEY UTILIZATION: FUNCTIONAL PROPERTIES OF A FOOD GRADE STABILIZER PRODUCED BY LACTOBACILLUS PLANTARUM FROM ACID WHEY

Project Status: Active
USU Project Number: 212
USU Account Number: 547877

<table>
<thead>
<tr>
<th></th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>5520</td>
<td>6269</td>
<td>-749</td>
</tr>
<tr>
<td>Fringe</td>
<td>276</td>
<td>2267</td>
<td>-1991</td>
</tr>
<tr>
<td>Supplies</td>
<td>14184</td>
<td>10892</td>
<td>3292</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>600</td>
<td>58</td>
<td>542</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>20580</td>
<td>19486</td>
<td>1094</td>
</tr>
</tbody>
</table>

Salaries/Wages: 5520 Allocated, 6269 Spent, -749 Balance
Fringe: 276 Allocated, 2267 Spent, -1991 Balance
Supplies: 14184 Allocated, 10892 Spent, 3292 Balance
Equipment: 0 Allocated, 0 Spent, 0 Balance
Travel: 600 Allocated, 58 Spent, 542 Balance
Publication: 0 Allocated, 0 Spent, 0 Balance
TOTALS: 20580 Allocated, 19486 Spent, 1094 Balance
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Dairy Center Director: Dr. Jeffery K. Kondo
Project Title: IRON FORTICATION OF CHEESE CURD

Project Status: Active
USU Project Number: 182
USU Account Number: 547768

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>25800</td>
<td>35000</td>
<td>8200</td>
</tr>
<tr>
<td></td>
<td>17201</td>
<td>23335</td>
<td>-6134</td>
</tr>
<tr>
<td>Fringe</td>
<td>7917</td>
<td>0</td>
<td>5278</td>
</tr>
<tr>
<td>Supplies</td>
<td>7280</td>
<td>4599</td>
<td>2681</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1700</td>
<td>2504</td>
<td>-804</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>100</td>
<td>-100</td>
</tr>
<tr>
<td>TOTALS</td>
<td>42697</td>
<td>42203</td>
<td>494</td>
</tr>
</tbody>
</table>

Project Term: 08/01/87 - 06/30/90
Principal Investigator: MAHONEY ARTHUR W
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: CORNFORTH DAREN P

Project Title: EVALUATION OF MILK PROTEINS AS WHITENING AGENTS IN PROCESSED MEATS AND POULTRY PRODUCTS
Project Status: Closed
USU Project Number: 184
USU Account Number: 547782

<table>
<thead>
<tr>
<th>Budget</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>Allocated</td>
<td>Spent</td>
<td>Balance</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>25500</td>
<td>24671</td>
<td>829</td>
</tr>
<tr>
<td>Fringe</td>
<td>0</td>
<td>1004</td>
<td>-1004</td>
</tr>
<tr>
<td>Supplies</td>
<td>0</td>
<td>5675</td>
<td>-5675</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>544</td>
<td>-544</td>
</tr>
<tr>
<td>Travel</td>
<td>0</td>
<td>978</td>
<td>-978</td>
</tr>
<tr>
<td>Publication</td>
<td>6339</td>
<td>201</td>
<td>6138</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TOTALS</td>
<td>31839</td>
<td>33072</td>
<td>-1233</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final Project Term: 08/01/87 - 06/30/90
Dairy Center Director: Dr. Jeffery K. Kondo Principal Investigator: BODYFELT FLOYD W
Project Title: RAPID ASSAY FOR HEAT RESISTANT MICROBIAL PROTEASES IN RAW MILK BY A SIMPLE CASEIN DENATURATION METHOD
Project Status: Active USU Project Number: 195 USU Account Number: 547811

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>Allocates</th>
<th>Spent</th>
<th>Balance</th>
<th>NDPRB Funds</th>
<th>Allocates</th>
<th>Spent</th>
<th>Balance</th>
<th>Local Funds</th>
<th>Allocates</th>
<th>Spent</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>14400</td>
<td>5506</td>
<td>8894</td>
<td>9621</td>
<td>3679</td>
<td>5942</td>
<td>4779</td>
<td>1827</td>
<td>2952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fringe</td>
<td>720</td>
<td>142</td>
<td>578</td>
<td>481</td>
<td>95</td>
<td>386</td>
<td>239</td>
<td>47</td>
<td>192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td>19460</td>
<td>6786</td>
<td>12674</td>
<td>13001</td>
<td>4534</td>
<td>8468</td>
<td>6459</td>
<td>2252</td>
<td>4207</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td>2000</td>
<td>522</td>
<td>1478</td>
<td>1336</td>
<td>348</td>
<td>988</td>
<td>664</td>
<td>173</td>
<td>491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>36580</td>
<td>12955</td>
<td>23625</td>
<td>24439</td>
<td>8655</td>
<td>15784</td>
<td>12141</td>
<td>4300</td>
<td>7841</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final Project Term: 01/01/88 - 12/31/90

Dairy Center Director: Dr. Jeffery K. Kondo Principal Investigator: MCGUIRE JOSEPH

Project Title: CHARACTERIZATION OF THE POST-ABSORPTIVE BEHAVIOR OF B-LACTOGLOBULIN FOR CONTROL OF SPORE AND MICROBIAL ADHESION

Project Status: Active USU Project Number: 197 USU Account Number: 547813

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/ Wages</td>
<td>27360 29193</td>
<td>18268 19492</td>
<td>9092 9701</td>
</tr>
<tr>
<td>Fringe</td>
<td>1656 1517</td>
<td>1106 1013</td>
<td>550 504</td>
</tr>
<tr>
<td>Supplies</td>
<td>43580 21195</td>
<td>29098 14152</td>
<td>14482 7043</td>
</tr>
<tr>
<td>Equipment</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Travel</td>
<td>4000 3938</td>
<td>2671 2630</td>
<td>1329 1309</td>
</tr>
<tr>
<td>Publication</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>76596 55844</td>
<td>51143 37287</td>
<td>13856 25453</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salaries/Wages</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>27360 29193</td>
<td>18268 19492</td>
<td>9092 9701</td>
<td>-1833 -1224</td>
</tr>
<tr>
<td>1656 1517</td>
<td>1106 1013</td>
<td>550 504</td>
<td>139 93</td>
</tr>
<tr>
<td>43580 21195</td>
<td>29098 14152</td>
<td>14482 7043</td>
<td>22385 62</td>
</tr>
<tr>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>4000 3938</td>
<td>2671 2630</td>
<td>1329 1309</td>
<td>62 41</td>
</tr>
<tr>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>76596 55844</td>
<td>51143 37287</td>
<td>13856 25453</td>
<td>20752 6896</td>
</tr>
</tbody>
</table>
Annual Financial Report by Project

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/88 - 06/30/90
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: OGDEN LYNN V
Project Title: METHOD FOR IDENTIFYING BATCH OF ORIGIN OF SEMI-CONTINUOUS CHEESE PROCESSES
Project Status: Closed
USU Project Number: 199
USU Account Number: 547823

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allocated</td>
<td>Spent</td>
<td>Balance</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>6100</td>
<td>6100</td>
<td>0</td>
</tr>
<tr>
<td>Fringe</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Supplies</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>6100</td>
<td>6100</td>
<td>0</td>
</tr>
</tbody>
</table>
Annual Financial Report by Project
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/88 - 04/30/91

Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: BROWN RODNEY J

Project Title: APPLICATION OF FOURIER TRANSFORM INFRARED TECHNOLOGY TO MILK AND DAIRY PRODUCTS

Project Status: Active
USU Project Number: 201
USU Account Number: 547825

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allocated</td>
<td>Spent</td>
<td>Balance</td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>34850</td>
<td>26180</td>
<td>8670</td>
</tr>
<tr>
<td>Fringe</td>
<td>10455</td>
<td>8400</td>
<td>2055</td>
</tr>
<tr>
<td>Supplies</td>
<td>2000</td>
<td>4401</td>
<td>-2401</td>
</tr>
<tr>
<td>Equipment</td>
<td>50250</td>
<td>41015</td>
<td>9235</td>
</tr>
<tr>
<td>Travel</td>
<td>1000</td>
<td>2698</td>
<td>-1698</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>98555</td>
<td>82694</td>
<td>15861</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/88 - 06/30/91

Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: BROWN RODNEY J

Project Title: ESTIMATION OF INDIVIDUAL MILK PROTEINS AND GENETIC VARIANTS BY MULTICOMPONENT
ANALYSIS OF AMINO ACID PROFILES

Project Status: Active USU Project Number: 267 USU Account Number: 547827

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allocated</td>
<td>Spent</td>
<td>Balance</td>
</tr>
<tr>
<td>Salaries/ Wages</td>
<td>38438</td>
<td>0</td>
<td>32003</td>
</tr>
<tr>
<td>Fringe</td>
<td>11531</td>
<td>0</td>
<td>9601</td>
</tr>
<tr>
<td>Supplies</td>
<td>145050</td>
<td>98434</td>
<td>46616</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1000</td>
<td>998</td>
<td>2</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>9</td>
<td>-9</td>
</tr>
<tr>
<td>TOTALS</td>
<td>196019</td>
<td>99440</td>
<td>96579</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Dairy Center Director: Dr. Jeffery K. Kondo
Project Term: 10/04/88 - 06/30/90
Principal Investigator: MAHONEY ARTHUR W

Project Title: EVALUATION OF IRON-PROTEIN COMPLEXES IN IRON-FORTIFIED DAIRY PRODUCTS
Project Status: Active
USU Project Number: 208
USU Account Number: 547841

<table>
<thead>
<tr>
<th>Summary</th>
<th>Total Funds</th>
<th>NDPRD Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>29038</td>
<td>23500</td>
<td>5537</td>
</tr>
<tr>
<td>Fringe</td>
<td>9413</td>
<td>0</td>
<td>9413</td>
</tr>
<tr>
<td>Supplies</td>
<td>3445</td>
<td>2211</td>
<td>1234</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1700</td>
<td>123</td>
<td>1577</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>305</td>
<td>-305</td>
</tr>
<tr>
<td>TOTALS</td>
<td>43595</td>
<td>26140</td>
<td>17456</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/88 - 06/30/90

Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: MCDANIEL MINA R

Project Title: OPTIMIZATION OF THE SENSORY QUALITIES OF FLAVORED YOGURT

Project Status: Active
USU Project Number: 209
USU Account Number: 547863

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allocated</td>
<td>Spent</td>
<td>Balance</td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>20092</td>
<td>19668</td>
<td>424</td>
</tr>
<tr>
<td>Fringe</td>
<td>3885</td>
<td>6755</td>
<td>-2870</td>
</tr>
<tr>
<td>Supplies</td>
<td>7050</td>
<td>4467</td>
<td>2583</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1100</td>
<td>1237</td>
<td>-137</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>32127</td>
<td>32127</td>
<td>0</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 08/01/88 - 07/31/90
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: SAVELLO PAUL A

Project Title: USE OF ULTRAFILTRATION AND DIFFERENT HEAT TREATMENTS ON YOGURT FLAVOR AND PHYSICAL PROPERTIES
Project Status: Active
USU Project Number: 204
USU Account Number: 547828

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>32960</td>
<td>13632</td>
<td>19328</td>
</tr>
<tr>
<td>Fringe</td>
<td>8240</td>
<td>204</td>
<td>8036</td>
</tr>
<tr>
<td>Supplies</td>
<td>17000</td>
<td>4277</td>
<td>12723</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>0</td>
<td>400</td>
<td>-400</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>71</td>
<td>-71</td>
</tr>
<tr>
<td>TOTALS</td>
<td>58200</td>
<td>18583</td>
<td>39617</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>32960</td>
<td></td>
<td>19328</td>
<td>22030</td>
<td>9112</td>
<td>12919</td>
<td>10930</td>
<td>4520</td>
<td>6409</td>
</tr>
<tr>
<td>Fringe</td>
<td>8240</td>
<td>204</td>
<td>8036</td>
<td>5508</td>
<td>136</td>
<td>5372</td>
<td>2732</td>
<td>67</td>
<td>2665</td>
</tr>
<tr>
<td>Supplies</td>
<td>17000</td>
<td>4277</td>
<td>12723</td>
<td>11363</td>
<td>2859</td>
<td>8504</td>
<td>5637</td>
<td>1418</td>
<td>4219</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>0</td>
<td>400</td>
<td>-400</td>
<td>0</td>
<td>267</td>
<td>-267</td>
<td>0</td>
<td>133</td>
<td>-133</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>71</td>
<td>-71</td>
<td>0</td>
<td>48</td>
<td>-48</td>
<td>0</td>
<td>24</td>
<td>-24</td>
</tr>
<tr>
<td>TOTALS</td>
<td>58200</td>
<td>18583</td>
<td>39617</td>
<td>38901</td>
<td>12421</td>
<td>26480</td>
<td>19299</td>
<td>6162</td>
<td>13137</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 09/01/88 - 08/31/91
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: McMahan Donald J

Project Title: VARIATIONS IN CASING COMPOSITION OF MILK HIGH YIELD, LOW MOISTURE CHEESE FROM HOMOGENIZED UF MILK

Project Status: Active
USU Project Number: 200
USU Account Number: 547839

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>19680</td>
<td>16400</td>
<td>3280</td>
</tr>
<tr>
<td>Fringe</td>
<td>3149</td>
<td>438</td>
<td>2712</td>
</tr>
<tr>
<td>Supplies</td>
<td>26850</td>
<td>5524</td>
<td>21326</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1800</td>
<td>504</td>
<td>1296</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>281</td>
<td>-281</td>
</tr>
<tr>
<td>TOTALS</td>
<td>51479</td>
<td>23146</td>
<td>28333</td>
</tr>
</tbody>
</table>

<p>| | | | |
| | | | |</p>
<table>
<thead>
<tr>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>19680</td>
<td>16400</td>
<td>3280</td>
<td>16332</td>
<td>13610</td>
<td>2722</td>
<td>3348</td>
<td>2790</td>
</tr>
<tr>
<td>Fringe</td>
<td>3149</td>
<td>438</td>
<td>2712</td>
<td>2613</td>
<td>363</td>
<td>2250</td>
<td>536</td>
<td>74</td>
</tr>
<tr>
<td>Supplies</td>
<td>26850</td>
<td>5524</td>
<td>21326</td>
<td>22283</td>
<td>4585</td>
<td>17698</td>
<td>4567</td>
<td>940</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1800</td>
<td>504</td>
<td>1296</td>
<td>1494</td>
<td>418</td>
<td>1076</td>
<td>306</td>
<td>86</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>281</td>
<td>-281</td>
<td>0</td>
<td>233</td>
<td>-233</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>TOTALS</td>
<td>51479</td>
<td>23146</td>
<td>28333</td>
<td>42722</td>
<td>19209</td>
<td>23513</td>
<td>8757</td>
<td>3937</td>
</tr>
</tbody>
</table>

Annual Financial Report by Project

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 09/01/87 - 08/31/89
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: OGDEN LYNN V
Project Title: CONTINUOUS PRODUCTION OF COTTAGE CHEESE FROM ULTRAFILTRATED SKIM MILK RETENATE
Project Status: Closed
USU Project Number: 183
USU Account Number: 547822

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allocated</td>
<td>Spent</td>
<td>Balance</td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>6124</td>
<td>6124</td>
<td>0</td>
</tr>
<tr>
<td>Fringe</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Supplies</td>
<td>1034</td>
<td>428</td>
<td>606</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1042</td>
<td>1042</td>
<td>0</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>8200</td>
<td>7594</td>
<td>606</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/87 - 06/30/92
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: KONDO JEFFERY K
Project Title: CLONING THE NISIN AND OTHER GENES OF LACTIC STREPTOCOCCI INTO LEUCONOSTOC SPECIES AND AMPLIFICATION OF NISIN PRODUCTION
Project Status: Active
USU Project Number: 188
USU Account Number: 547767

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>50600</td>
<td>54809</td>
<td>-4209</td>
</tr>
<tr>
<td>Fringe</td>
<td>16368</td>
<td>8708</td>
<td>7660</td>
</tr>
<tr>
<td>Supplies</td>
<td>27697</td>
<td>38135</td>
<td>-10438</td>
</tr>
<tr>
<td>Equipment</td>
<td>12560</td>
<td>4321</td>
<td>8239</td>
</tr>
<tr>
<td>Travel</td>
<td>1000</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>252</td>
<td>-252</td>
</tr>
<tr>
<td>TOTALS</td>
<td>108225</td>
<td>106624</td>
<td>1601</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salaries/Wages</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>50600</td>
<td>41215</td>
<td>38050</td>
<td>12550</td>
</tr>
<tr>
<td>Fringe</td>
<td>12308</td>
<td>6548</td>
<td>4060</td>
</tr>
<tr>
<td>Supplies</td>
<td>20827</td>
<td>28676</td>
<td>6870</td>
</tr>
<tr>
<td>Equipment</td>
<td>12560</td>
<td>4321</td>
<td>8239</td>
</tr>
<tr>
<td>Travel</td>
<td>1000</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>189</td>
<td>-189</td>
</tr>
<tr>
<td>TOTALS</td>
<td>108225</td>
<td>106624</td>
<td>1601</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salaries/Wages</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>41215</td>
<td>38050</td>
<td>12550</td>
<td>13594</td>
</tr>
<tr>
<td>6548</td>
<td>4060</td>
<td>2160</td>
<td>1900</td>
</tr>
<tr>
<td>28676</td>
<td>6870</td>
<td>9459</td>
<td>-2589</td>
</tr>
<tr>
<td>12560</td>
<td>4321</td>
<td>8239</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>400</td>
<td>600</td>
<td>752</td>
</tr>
<tr>
<td>252</td>
<td>189</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>TOTALS</td>
<td>106624</td>
<td>36288</td>
<td>29695</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salaries/Wages</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>106624</td>
<td>36288</td>
<td>29695</td>
<td>6593</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final Project Term: 07/01/87 - 06/30/92
Dairy Center Director: Dr. Jeffery K. Kondo Principal Investigator: SANDINE W R

Project Title: CLONING THE NISIN AND OTHER GENES OF LACTIC STREPTOCOCCI INTO LEUCONOSTOC SPECIES
AND AMPLIFICATION OF NISIN PRODUCTION

Project Status: Active USU Project Number: 188 USU Account Number: 547804

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>73320</td>
<td>63606</td>
<td>9714</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50047</td>
<td>43416</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6630</td>
<td>23273</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20190</td>
<td>3083</td>
</tr>
<tr>
<td>Fringe</td>
<td>19986</td>
<td>11597</td>
<td>8389</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13642</td>
<td>7916</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5726</td>
<td>6344</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3681</td>
<td>2663</td>
</tr>
<tr>
<td>Supplies</td>
<td>36066</td>
<td>43712</td>
<td>-7646</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24618</td>
<td>29837</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5219</td>
<td>11448</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13875</td>
<td>-2427</td>
</tr>
<tr>
<td>Equipment</td>
<td>3500</td>
<td>3955</td>
<td>-455</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>3500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3955</td>
<td>-455</td>
</tr>
<tr>
<td>Travel</td>
<td>0</td>
<td>2099</td>
<td>-2099</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>-1433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>666</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>-666</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOAALS</td>
<td>132872</td>
<td>124969</td>
<td>7903</td>
</tr>
<tr>
<td></td>
<td>88307</td>
<td>82602</td>
<td>5705</td>
</tr>
<tr>
<td></td>
<td>44565</td>
<td>42367</td>
<td>2198</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final

Dairy Center Director: Dr. Jeffery K. Kondo

Principal Investigator: SANDINE W E

Project Title: CHARACTERIZATION OF BACTERIOPHAGE RECEPTOR SITES OF LACTIC STREPTOCOCCI

Project Status: Active

USU Project Number: 194

USU Account Number: 547810

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>22320</td>
<td>14829</td>
<td>7491</td>
</tr>
<tr>
<td>Fringe</td>
<td>8936</td>
<td>5937</td>
<td>2999</td>
</tr>
<tr>
<td>Supplies</td>
<td>24000</td>
<td>15946</td>
<td>8054</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>0</td>
<td>0</td>
<td>728</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>55256</td>
<td>36723</td>
<td>18549</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 09/01/87 - 08/31/91
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: BODYFELT FLOYD W

Project Title: PRODUCTION OF OMEGA-3 FATTY ACIDS BY GENETICALLY ALTERED FUNGI AND LACTIC ACID BACTERIA

Project Status: Active
USU Project Number: 196
USU Account Number: 547812

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/ Wages</td>
<td>14400</td>
<td>18371</td>
<td>-3971</td>
</tr>
<tr>
<td>Fringe</td>
<td>8705</td>
<td>2856</td>
<td>5849</td>
</tr>
<tr>
<td>Supplies</td>
<td>29550</td>
<td>24661</td>
<td>4889</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>1791</td>
<td>-1791</td>
</tr>
<tr>
<td>Travel</td>
<td>2000</td>
<td>1435</td>
<td>565</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>54655</td>
<td>49114</td>
<td>5541</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/88 - 06/30/91

Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: DAESCHEL MARK A

Project Title: PURIFICATION OF A BACTERIOCIN FROM PEDIOCoccus PENTOSACEUS AND GENETIC TRANSFER OF THE PLASMID BORNE DETERMINANT

Project Status: Active
USU Project Number: 203
USU Account Number: 547833

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRD Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>15492</td>
<td>18159</td>
<td>-2667</td>
</tr>
<tr>
<td>Fringe</td>
<td>775</td>
<td>3310</td>
<td>-2535</td>
</tr>
<tr>
<td>Supplies</td>
<td>15645</td>
<td>11962</td>
<td>3683</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>239</td>
<td>-239</td>
</tr>
<tr>
<td>Travel</td>
<td>2250</td>
<td>257</td>
<td>1993</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>34162</td>
<td>33927</td>
<td>235</td>
</tr>
</tbody>
</table>

Summary: Allocated: Spent: Balance: Allocated: Spent: Balance: Allocated: Spent: Balance:

- **Salaries/Wages:** 15492 18159 -2667 10355 12138 -1783 5137 6022 -884
- **Fringe:** 775 3310 -2535 518 2212 -1694 257 1097 -841
- **Supplies:** 15645 11962 3683 10457 7995 2462 5188 3967 1221
- **Equipment:** 0 239 -239 0 0 0 0 239 -239
- **Travel:** 2250 257 1993 1504 172 1332 746 85 661
- **Publication:** 0 0 0 0 0 0 0 0 0
- **TOTALS:** 34162 33927 235 22834 22517 317 11328 11410 -82
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Dairy Center Director: Dr. Jeffery K. Kondo
Project Term: 07/01/88 - 06/30/91
Principal Investigator: DAESCHEL MARK A

Project Title: PREDICTION AND DETERMINATION OF THE EFFICACY OF NISIN IN DAIRY FOODS

Project Status: Active
USU Project Number: 207
USU Account Number: 547864

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>13944</td>
<td>12758</td>
<td>1186</td>
<td>9246</td>
<td>8460</td>
<td>787</td>
<td>4698</td>
<td>4298</td>
<td>400</td>
</tr>
<tr>
<td>Fringe</td>
<td>6563</td>
<td>4972</td>
<td>1591</td>
<td>4352</td>
<td>3297</td>
<td>1055</td>
<td>2211</td>
<td>1675</td>
<td>536</td>
</tr>
<tr>
<td>Supplies</td>
<td>17400</td>
<td>7849</td>
<td>9551</td>
<td>11538</td>
<td>5205</td>
<td>6333</td>
<td>5862</td>
<td>2644</td>
<td>3218</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1500</td>
<td>325</td>
<td>.1175</td>
<td>995</td>
<td>215</td>
<td>779</td>
<td>505</td>
<td>109</td>
<td>396</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>39407</td>
<td>25904</td>
<td>13503</td>
<td>26131</td>
<td>17177</td>
<td>8954</td>
<td>13276</td>
<td>8727</td>
<td>4549</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/89 - 06/30/91
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: McMAHON DONALD J

Project Title: FUNCTION OF WHRY PROTEINS AND LACTOSE IN AGE GELATION OF ULTRA-HIGH TEMPERATURE STERILIZED MILK CONCENTRATE

Project Status: Active
USU Project Number: 211
USU Account Number: 547867

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>9900</td>
<td>9000</td>
<td>900</td>
</tr>
<tr>
<td>Fringe</td>
<td>2970</td>
<td>2880</td>
<td>90</td>
</tr>
<tr>
<td>Supplies</td>
<td>10930</td>
<td>1127</td>
<td>9803</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1200</td>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>25000</td>
<td>13007</td>
<td>11993</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
<th>Allocated</th>
<th>Spent</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>6534</td>
<td>5940</td>
<td>594</td>
<td>3366</td>
<td>3060</td>
<td>306</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>1901</td>
<td>59</td>
<td>1010</td>
<td>979</td>
<td>31</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7214</td>
<td>744</td>
<td>6470</td>
<td>3716</td>
<td>383</td>
<td>3333</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>792</td>
<td>792</td>
<td>408</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16500</td>
<td>8584</td>
<td>7916</td>
<td>8500</td>
<td>4422</td>
<td>4078</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

==
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 03/01/89 - 03/01/91

Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: HANSEN CONLY

Project Title: A NEW METHOD FOR MEASURING SYNERESIS OF RENNETED GELS APPLIED TO DEVELOPMENT OF CHEESE

Project Status: Closed
USU Project Number: 210
USU Account Number: 547848

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>3345</td>
<td>0</td>
<td>2192</td>
</tr>
<tr>
<td>Fringe</td>
<td>95</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>Supplies</td>
<td>1080</td>
<td>0</td>
<td>708</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>962</td>
<td>0</td>
<td>630</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>5481</td>
<td>0</td>
<td>3592</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final Project Term: 07/01/87 - 06/30/88

Dairy Center Director: Dr. Jeffery K. Kondo Principal Investigator: ERNSTROM C ANTHON

Project Title: EFFECT OF MILK CLOTTING ENZYMES ON THE CURING AND QUALITY OF CHEDDAR CHEESE

Project Status: Closed USU Project Number: 192 USU Account Number: 547802

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>27837</td>
<td>18509</td>
<td>9328</td>
</tr>
<tr>
<td>Fringe</td>
<td>541</td>
<td>360</td>
<td>181</td>
</tr>
<tr>
<td>Supplies</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>600</td>
<td>399</td>
<td>201</td>
</tr>
<tr>
<td>Publication</td>
<td>46</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>TOTALS</td>
<td>29024</td>
<td>19298</td>
<td>9726</td>
</tr>
</tbody>
</table>

ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/87 - 06/30/89
Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: HANSEN CONLY L

Project Title: COGENERATION OF BIOGAS AND SINGLE CELL PROTEIN FROM ULTRAFILTRATION PERMEATE AND WHEY

Project Status: Closed
USU Project Number: 189
USU Account Number: 547766

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>50774</td>
<td>50774</td>
<td>0 16923</td>
</tr>
<tr>
<td>Fringe</td>
<td>2435</td>
<td>2435</td>
<td>0 812</td>
</tr>
<tr>
<td>Supplies</td>
<td>4897</td>
<td>4897</td>
<td>0 1632</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Travel</td>
<td>966</td>
<td>966</td>
<td>0 322</td>
</tr>
<tr>
<td>Publication</td>
<td>106</td>
<td>106</td>
<td>0 35</td>
</tr>
<tr>
<td>TOTALS</td>
<td>59178</td>
<td>59178</td>
<td>0 19724</td>
</tr>
</tbody>
</table>

Fringe	0 1623	0 1623	0 0 0 0 0 0
Supplies	0 3265	0 3265	0 0 0
Travel	0 644	0 644	0 0 0 0 0 0
Publication	0 71	0 71	0 0 0 0 0 0
TOTALS	39454	39454	0 0 0 0 0 0
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final

Project Term: 07/01/87 - 06/30/89

Dairy Center Director: Dr. Jeffery K. Kondo

Principal Investigator: OLSEN ROBERT L

Project Title: INTERACTION OF PROTEIN AND POLYSACCHARIDES IN CHYMOSIN AND ACID COAGULATION OF MILK

Project Status: Closed

USU Project Number: 186

USU Account Number: 547783

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>22938</td>
<td>15627</td>
<td>-1849</td>
</tr>
<tr>
<td>Fringe</td>
<td>6862</td>
<td>4675</td>
<td>-3817</td>
</tr>
<tr>
<td>Supplies</td>
<td>10556</td>
<td>7192</td>
<td>1375</td>
</tr>
<tr>
<td>Equipment</td>
<td>900</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>42056</td>
<td>28039</td>
<td>308</td>
</tr>
</tbody>
</table>

Budget Summary

Salaries/Wages: 22938 - 25652 = -2714
Fringe: 6862 - 5714 = 1148
Supplies: 10556 - 8538 = 2018
Equipment: 900 - 1352 = -452
Travel: 800 - 800 = 0
Publication: 0 - 0 = 0

TOTALS: 42056 - 28039 = 27717

-308
ANNUAL FINANCIAL REPORT BY PROJECT

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/87 - 06/30/89

Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: SANDINE W E

Project Title: STUDIES ON THE GROWTH AND SURVIVAL OF BIFIDOBACTERIUM SPECIES IN MILK

Project Status: Closed
USU Project Number: 198
USU Account Number: 547814

<table>
<thead>
<tr>
<th>Budget</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>Allocated:</td>
<td>Spent</td>
<td>Balance</td>
</tr>
<tr>
<td>Salaries/Wages</td>
<td>14760</td>
<td>17873</td>
<td>-3113</td>
</tr>
<tr>
<td>Fringe</td>
<td>5923</td>
<td>106</td>
<td>5817</td>
</tr>
<tr>
<td>Supplies</td>
<td>16000</td>
<td>18705</td>
<td>-2705</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>36683</td>
<td>36683</td>
<td>0</td>
</tr>
</tbody>
</table>
ANNUAL FINANCIAL REPORT BY PROJECT
Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final

Dairy Center Director: Dr. Jeffery K. Kondo

Project Term: 09/01/87 - 08/31/89

Principal Investigator: .ERNSTROM C ANTHON

Project Title: CONTINUOUS PRODUCTION OF COTTAGE CHEESE FROM ULTRA-FILTRATED SKIM MILK RETENATE

Project Status: Closed

USU Project Number: 183

USU Account Number: 547781

<table>
<thead>
<tr>
<th>Budget</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wages</td>
<td>0</td>
<td>1950</td>
<td>-1950</td>
</tr>
<tr>
<td>Fringe</td>
<td>0</td>
<td>637</td>
<td>-637</td>
</tr>
<tr>
<td>Supplies</td>
<td>8700</td>
<td>5631</td>
<td>3069</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>0</td>
<td>435</td>
<td>-435</td>
</tr>
<tr>
<td>Publication</td>
<td>0</td>
<td>47</td>
<td>-47</td>
</tr>
<tr>
<td>TOTALS</td>
<td>8700</td>
<td>8700</td>
<td>0</td>
</tr>
</tbody>
</table>
Annual Financial Report by Project

Western Dairy Research Center

Annual Report Ending: June 30, 1990, Final
Project Term: 07/01/87 - 06/30/90

Dairy Center Director: Dr. Jeffery K. Kondo
Principal Investigator: RICHARDSON GARY H

Project Title: ACQUISITION OF ZYMARK II ROBOT FOR LABORATORY AUTOMATION STUDIES

Project Status: Active
USU Project Number: 190
USU Account Number: 547769

<table>
<thead>
<tr>
<th>Budget Summary</th>
<th>Total Funds</th>
<th>NDPRB Funds</th>
<th>Local Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries/Wages</td>
<td>1474</td>
<td>1474</td>
<td>0</td>
</tr>
<tr>
<td>Fringe</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Supplies</td>
<td>1455</td>
<td>1236</td>
<td>219</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Travel</td>
<td>1963</td>
<td>1963</td>
<td>0</td>
</tr>
<tr>
<td>Publication</td>
<td>108</td>
<td>108</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>5000</td>
<td>4781</td>
<td>219</td>
</tr>
</tbody>
</table>

TOTAL: 3334 3188 146 1667 1594 73
Western Dairy Foods Research Center
1990 Annual Meeting Agenda
Lasells Stewart Center, Oregon State University

Thursday, July 12, 1990, Agricultural Science Room

9:00 Opening remarks and introductions: Jeffery K. Kondo, Floyd Bodyfelt.

Welcome and comments: Dr. Roy Arnold, Dean, College of Agriculture and Science, Oregon State University.

9:30-10:45 Oral progress reports

Curd formation/cheese technology

9:30 Cooling rate of Cheddar cheese: comparison between 40 and 640 lb blocks and uniform cooling of 640 lb blocks. Dr. Conly L. Hansen and Sterling Larsen, Utah State University; Dr. J. Antonio Torres, Oregon State University.

10:00 Cheddar cheese blocks: effect of cheese composition and cooling method. Dr. J. Antonio Torres, Connie Grazier, Ricardo Simpson, and Jorge Bouzas, Oregon State University.

10:15 Improving yield and physical properties of mozzarella cheese. Dr. Gary H. Richardson and Dr. Craig J. Oberg, Utah State University.

10:30 Improved control of cheese manufacture through vat monitoring. Dr. Gary H. Richardson and Mike LeFevre, Utah State University.

10:45-11:00 Break; Investigators: please set up posters.

11:00-12:00 Poster session, First Interstate Bank Room

12:00-1:00 Lunch, Autumn Room, McNary Dining Hall

1:00-2:00 Continue Poster session, First Interstate Bank Room

Microbiology of starter cultures

Oral presentations (Agricultural Science Room):

2:00 Production of omega-3 fatty acids by genetically altered fungi and lactic acid bacteria. Floyd Bodyfelt and Sam Beattie, Oregon State University.

2:15 Characterization of bacteriophage receptor sites of lactic streptococci. Dr. William E. Sandine, Dr. Bruce Geller, and Rudy Valysevi, Oregon State University.

2:30 Use of 16S ribosomal RNA probes for identification of Lactococcus lactis ssp. cremoris. Dr. William E. Sandine, Dr. S. J. Giovannoni, and May-Soon Salama, Oregon State University.
2:45 Cloning the nisin and other genes of lactic streptococci into *Leuconostoc* species and amplification of nisin production. Dr. W. E. Sandine and Herb Wyckoff, Oregon State University; Dr. Jeffery K. Kondo and Jeffery R. Broadbent, Utah State University.

3:15 Break

Product Quality

Oral presentations:

3:30 Application of Fourier transform infrared technology to milk and dairy products. Dr. Rodney J. Brown and Ivan Mendenhall, Utah State University.

3:45 Estimation of individual milk proteins and genetic variants by multicomponent analysis of amino acid profiles. Dr. Rodney J. Brown and Carol Hollar, Utah State University.

4:00 Adjourn for the day.

5:00-7:00 Salmon BBQ-Indian Style, Maple Grove-Avery Park

7:00-9:30 p.m. Operational Advisory Committee meeting, Agricultural Science Room, LaSells Stewart Center

Friday, July 13, 1990

Oral presentations:

9:00 a.m. Iron fortification of cheese curd. Dr. Arthur Mahoney, Dr. Dejia Zhang, and Dr. Mohan Reddy, Utah State University.

9:15 Method for identifying batch of origin of semi-continuous cheese processes. Dr. Lynn V. Ogden, Brigham Young University.

9:30 Optimization of the sensory qualities of flavored yogurt. Dr. Mina R. McDaniel and Debbie Barnes, Oregon State University.

9:45 New projects approved for funding (approximately 5-10 min each):

Development of a process for production of UF milk retentate powder. Dr. Conly L. Hansen and Dr. Donald J. McMahon, Utah State University.

Controlling age gelation of UHT sterilized milk concentrates. Dr. Donald J. McMahon, Utah State University.

Membrane fractionation of immunoglobulins from milk and whey. Dr. Paul A. Savello, Utah State University.
Characterization of milk proteolysis by lactococcal starter culture strains using amino acid analysis. Dr. Rodney J. Brown and Dr. Jeffery K. Kondo, Utah State University.

Causes and prevention of sticky texture in Mozzarella cheese. Dr. Gary H. Richardson and Dr. Craig Oberg, Utah State University.

Utilization of acid whey as a substrate for the production of food grade cellulases. Dr. Michael Penner, Oregon State University.

Growth of bifidobacteria in milk: association with Streptococcus thermophilus and Lactobacillus species as measured by genetic and enzymatic probes. Dr. William E. Sandine and Dr. Jane Trempy, Oregon State University

10:30 Break

11:00-12:00 Last chance to look at posters

12:00-1:00 Lunch

1:00 Discussion of NDPRB review, August 22-23, 1990.

2:00 Research group discussions

4:00 Adjourn meeting

Poster session:

Product quality.

Rapid assay for heat resistant microbial proteases in raw milk by a simple casein denaturation method. Floyd Bodyfelt and Sergio Feijoo, Oregon State University.

Evaluation of milk proteins as whitening agents in processes meat and poultry products. Dr. Daren P. Cornforth and Brent Dobson, Utah State University.

Characterization of the post-absorptive behavior of B-lactoglobulin for control of spore and microbial adhesion. Dr. Joseph McGuire and Vihat Krisdhasimay, Oregon State University.

Evaluation of iron-protein complexes in iron-fortified dairy products. Dr. Arthur Mahoney and Dr. Mohan Reddy, Utah State University.

Ultrafiltration/Reverse Osmosis

High yield, low moisture cheese from homogenized UF milk. Dr. Don McMahon and Brian Orme, Utah State University.

Use of ultrafiltration and different heat treatments on yogurt flavor and physical properties. Dr. Paul A. Savello and Richard Dargan, Utah State University.
Ultra-high Temperature Processing

Function of whey proteins and lactose in age gelation of ultra-high temperature sterilized milk concentrate. Dr. Don McMahon and Mrudula Kalpalathika, Utah State University.

Microbiology of Starter Cultures

Purification of a bacteriocin from Pediococcus pentosaceus and genetic transfer of the plasmid borne determinant. Dr. Mark A. Daeschel and Xintian Ming, Oregon State University.

Prediction and determination of the efficacy of nisin in dairy foods. Dr. Mark A. Daeschel and Dong-Sun Jung, Oregon State University.

Acid-whey utilization: functional properties of a food grade stabilizer produced by Lactobacillus plantarum from acid whey. Dr. J. Antonio Torres, Dr. Mark A. Daeschel, Miriam Martino, and Nilo Youssef-Hakimi, Oregon State University.
PROJECT SUMMARY

Annual Report Date (include year): June 30, 1990

Dairy Food Research Center (identify site): Western Dairy Foods Research Center

Dairy Center Director: Jeffery K. Kondo

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torres, J. Antonio</td>
<td>Acid Whey Utilization: Functional Properties of a Food Grade Stabilizer Produced by Lactobacillus Plantarum from Acid Whey</td>
</tr>
<tr>
<td>Hansen, Conly L.</td>
<td>Cogeneration of Biogas and Single Cell Protein From Ultrafiltration Permeate and Whey</td>
</tr>
<tr>
<td>Kondo, Jeffery K.</td>
<td>Cloning the Nisin and Other Genes of Lactic Streptococci into Leuconostoc Species and Amplification of Nisin Production</td>
</tr>
<tr>
<td>Mahoney, Arthur W.</td>
<td>Iron Fortification of Cheese Curd</td>
</tr>
<tr>
<td>Richardson, Gary H.</td>
<td>Acquisition of Zymark II Robot for Laboratory Automation Studies Improving Yield and Physical Properties of Mozzarella Cheese</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
<th>Starting Date</th>
<th>Ending Date</th>
<th>Total Funding</th>
<th>Total NDB Funding* Project</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torres</td>
<td>07/01/89</td>
<td>06/30/91</td>
<td>17,406</td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>Hansen</td>
<td>07/01/87</td>
<td>06/30/89</td>
<td>0</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>Kondo</td>
<td>07/01/87</td>
<td>06/30/92</td>
<td>32,105</td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>Mahoney</td>
<td>08/01/87</td>
<td>06/30/90</td>
<td>0</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>Richardson</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>0</td>
<td></td>
<td>Completed</td>
</tr>
</tbody>
</table>

* Please underline dollars if amounts differ from total originally proposed.
<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Project Title</th>
<th>Starting Date</th>
<th>Ending Date</th>
<th>Total Funding</th>
<th>Total NDB Funding* Project</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richardson, Gary H.</td>
<td>Improving Yield and Physical Properties of Mozzarella Cheese</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>$2,620</td>
<td>Complete</td>
<td>Completed</td>
</tr>
<tr>
<td>Ernststrom, C. Anthon</td>
<td>Continuous Production of Cottage Cheese from Ultrafiltered skim milk Retentate</td>
<td>09/01/87</td>
<td>08/31/89</td>
<td>$0</td>
<td>Completed</td>
<td>Completed</td>
</tr>
<tr>
<td>Cornforth, Daren P.</td>
<td>Evaluation of Milk Proteins as Whitening Agents in Processed Meats and Poultry Products</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>$0</td>
<td>Complete</td>
<td>Completed</td>
</tr>
<tr>
<td>Olsen, Robert L.</td>
<td>Interaction of Protein and Polysaccharides in Chymosin and Acid Coagulation of Milk</td>
<td>07/01/87</td>
<td>06/30/89</td>
<td>$0</td>
<td>Completed</td>
<td>Completed</td>
</tr>
<tr>
<td>Richardson, Gary H.</td>
<td>Improved Control of Cheese Manufacture through Vat Monitoring</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>$14,000</td>
<td>Completed</td>
<td>Active</td>
</tr>
<tr>
<td>Kondo, Jeffery K.</td>
<td>Western Dairy Foods Research Center Administrative Account</td>
<td>07/01/87</td>
<td>06/30/92</td>
<td>$50,000</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>Ernststrom, C. Anthon</td>
<td>Effect of Milk Clotting Enzymes on the Curing and Quality of Cheddar Cheese</td>
<td>07/01/87</td>
<td>06/30/88</td>
<td>$0</td>
<td>Completed</td>
<td>Completed</td>
</tr>
<tr>
<td>Sandine, W. E.</td>
<td>Cloning of the Nisin and Other Genes of Lactic Streptococci into Leuconostoc Species and Amplification of Nisin Production</td>
<td>07/01/87</td>
<td>06/30/92</td>
<td>$45,274</td>
<td>Active</td>
<td>Active</td>
</tr>
</tbody>
</table>

* Please underline dollars if amounts differ from total originally proposed.
<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Project Title</th>
<th>Starting Date</th>
<th>Ending Date</th>
<th>Total Funding</th>
<th>Total NDB Funding* Project</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandine, W.E.</td>
<td>Characterization of Bacteriophage Receptor Sites of Lactic Streptococci</td>
<td>07/01/87</td>
<td>06/30/90</td>
<td>18,573</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>Bodyfelt, Floyd W.</td>
<td>Rapid Assay for Heat Resistant Microbial Proteases in Raw Milk by a Simple Casein Denaturation Method</td>
<td>08/01/87</td>
<td>06/30/90</td>
<td>15,260</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>Bodyfelt, Floyd W.</td>
<td>Production of Omega-3 Fatty Acids by Genetically Altered Fungi and Lactic Acid Bacteria</td>
<td>09/01/87</td>
<td>08/31/91</td>
<td>24,990</td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>McGuire, Joseph</td>
<td>Characterization of the Post-Absorbive Behavior of B-Lactoglobulin for Control of Spore and Microbial Adhesion</td>
<td>01/01/88</td>
<td>12/31/90</td>
<td>24,643</td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>Sandine W.E.</td>
<td>Studies on the Growth and Survival of Bifidobacterium Species in Milk</td>
<td>07/01/87</td>
<td>06/30/89</td>
<td>0</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>Ogden, Lynn V.</td>
<td>Continuous Production of Cottage Cheese From Ultrafiltered Skim Milk Retentate</td>
<td>09/01/87</td>
<td>08/31/89</td>
<td>0</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>Ogden, Lynn V.</td>
<td>Method for Identifying Batch of Origin of Semi-continuous Cheese Processes</td>
<td>07/01/88</td>
<td>06/30/90</td>
<td>6,100</td>
<td></td>
<td>Completed</td>
</tr>
</tbody>
</table>

* Please underline dollars if amounts differ from total originally proposed.
<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Project Title</th>
<th>Starting Date</th>
<th>Ending Date</th>
<th>Total Funding</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown, Rodney J.</td>
<td>Application of Fourier Transform Infrared Technology to Milk and Dairy Products</td>
<td>07/01/88</td>
<td>04/30/91</td>
<td>$25,005</td>
<td>Active</td>
</tr>
<tr>
<td>Brown, Rodney J.</td>
<td>Estimation of Individual Milk Proteins and Genetic Variants by Multicomponent Analysis of Amino Acid Profiles</td>
<td>07/01/88</td>
<td>06/30/91</td>
<td>$50,594</td>
<td>Active</td>
</tr>
<tr>
<td>Savello, Paul A.</td>
<td>Use of Ultrafiltration and Different Heat Treatments on Yogurt Flavor and Physical Properties</td>
<td>08/01/88</td>
<td>07/31/90</td>
<td>$29,700</td>
<td>Active</td>
</tr>
<tr>
<td>Daeschel, Mark A.</td>
<td>Purification of a Bacteriocin From Pediococcus Pentosaceus and Genetic Transfer of the Plasmid Borne Determinant</td>
<td>07/01/88</td>
<td>06/30/91</td>
<td>$18,100</td>
<td>Active</td>
</tr>
<tr>
<td>Torres, J. Antonio</td>
<td>Cheddar Cheese Blocks: Effect of Cheese Composition and Cooling Method</td>
<td>07/01/88</td>
<td>06/30/90</td>
<td>$16,212</td>
<td>Active</td>
</tr>
<tr>
<td>Hansen, Conly L.</td>
<td>Comparison Between 40 and 640 lb Blocks of Uniform Cooling of 640 lb Blocks</td>
<td>11/01/88</td>
<td>12/31/91</td>
<td>$11,000</td>
<td>Active</td>
</tr>
<tr>
<td>McMahon, Donald J.</td>
<td>Variations in Casein Composition of Milk High Yield, Low Moisture Cheese From Homogenized Milk</td>
<td>09/01/88</td>
<td>08/31/91</td>
<td>$26,543</td>
<td>Active</td>
</tr>
</tbody>
</table>

* Please underline dollars if amounts differ from total originally proposed.
<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Project Title</th>
<th>Starting Date</th>
<th>Ending Date</th>
<th>Total Funding</th>
<th>Total NDB Funding* Project</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahoney, Arthur W.</td>
<td>Evaluation of Iron-Protein Complexes in Iron-Fortified Dairy Products</td>
<td>10/04/88</td>
<td>06/30/90</td>
<td></td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>Hansen, Conly L.</td>
<td>A New Method for Measuring Syneresis of Rennet Gels Applied to Development of Cheese</td>
<td>03/01/89</td>
<td>03/01/91</td>
<td></td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>Torres, J. Antonio</td>
<td>Cooling Rate of Cheddar Cheese: Comparison Between 40 and 640 lb Blocks of Uniform Cooling of 640 lb Blocks</td>
<td>11/01/88</td>
<td>12/31/91</td>
<td>18,320</td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>McDaniel, Mina R.</td>
<td>Optimization of the Sensory Qualities of Flavored Yogurt</td>
<td>07/01/88</td>
<td>06/30/90</td>
<td></td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>Daeschel, Mark A.</td>
<td>Prediction and Determination of the Efficacy of Nisin in Dairy Foods</td>
<td>07/01/88</td>
<td>3/31/91</td>
<td>21,177</td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>McMahon, Donald J.</td>
<td>Function of Whey Proteins and Lactose in Age Gelation of Ultra-High Temperature Sterilized Milk Concentrate</td>
<td>07/01/89</td>
<td>06/30/91</td>
<td>25,000</td>
<td></td>
<td>Active</td>
</tr>
</tbody>
</table>

*Please underline dollars if amounts differ from total originally proposed.