Temporal and Spatial Correlations in Electron-induced Arcs of Adjacent Dielectric Islands

Justin Christensen
Utah State University

JR Dennison
Utah State University

Justin Dekany
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_post

Part of the Condensed Matter Physics Commons

Recommended Citation
Christensen, Justin; Dennison, JR; and Dekany, Justin, "Temporal and Spatial Correlations in Electron-induced Arcs of Adjacent Dielectric Islands" (2016). 14th Spacecraft Charging Technology Conference. Posters. Paper 34.
https://digitalcommons.usu.edu/mp_post/34
Temporal and Spatial Correlations in Electron-Induced Arcs of Adjacent Dielectric Islands

Justin Christensen, JR Dennison, and Justin Dekany
Materials Physics Group, Utah State University

I. Introduction
This study investigated coincidence behaviour of a common form of electron-induced light emission [6]. These very short duration (<1 ms) flashes termed “arcs” are caused by rapid discharge arcs from isolated charged insulating epoxy “glue dots” to an underlying grounded substrate, while the dielectric materials are exposed to space-like energetic electron fluxes through electron bombardment [1,7]. It is important to understand charge and discharge phenomena that occur under space like conditions, because spacecraft charging is leading environmental cause of spacecraft anomalies [2,3]. These arcs are often, but not always, localized to small regions of the charged surface. In previous studies of spacecraft charging, arcing sometimes occurs in neighbouring samples nearly simultaneously, even though they are electrically isolated from one another. In this study we investigated the relationship between coincident arcing events of nearby charged samples and sample separation. The possibility that a given arc might stimulate arcs in adjacent “glue dots” was investigated through coincidence correlation analysis, as was the dependence of such correlations with “glue dot” separation.

II. Experimental Details

- All samples simultaneously exposed to uniform electron beams with space-like energies and fluxes.
- Numerous small isolated samples were mounted around the periphery of a large conductive substrate (see Fig. 1). The insulators were 36 separate, electrically-isolated, small (>3 mm diameter), approximately hemispherical bisphenol/amine epoxy “glue dots” (see Fig. 4).
- The substrate was mounted inside a high vacuum chamber, attached to a cooled grounded metal plate. Low conductivity at ~120 K minimized charge dissipation.
- Video data and incident current flux densities were collected [4,5].

III. Analysis

Arc Identification To analyse the data, the video files were converted to individual frame images. Radiance values were calculated for each sample in each video frame as the average sample pixel value converted to absolute spectral radiance using NIST traceable video camera calibration. Analysis of regions for each glue dot and several background regions of sequential frames after correction for stray light contamination, created an array of calibrated intensities (absolute spectral radiance) versus time for each region. These data were normalized with the electron flux data. Fig. 2(a) shows a typical curve of absolute spectral radiance versus exposure time for a single “glue dot”.

Arcs were deemed as any data point above the threshold intensity. The threshold was set as the upper bound (first zero to the right of peak) of a histogram of the spectral radiance data [see Fig. 2(b)]; however, relative arc rates and coincidence analysis were largely independent of how the threshold was chosen.

Arc Correlation A temporally correlated arc was defined to be an arc occurred within ±1 frame (±33 ms) of an arc in a separate sample. To test for spatial correlation between arcs in nearby samples the following definition was used. The total number of correlated arcs in sample i caused by arcs in sample j, \(N_{ij} \), was divided by the total number of arcs in sample i, \(N_{ii} \), to determine a correlation value between samples i and j for the element \(C_{ij} \). These values are graphed in Fig. 3.

To improve contrast of non-diagonal correlation matrix elements, their values were normalized to show how each element related to the average, \(C_{avg} \), and standard deviation, \(\sigma \), of the correlation matrix. See Fig. 4.

\[
C_{ij} = N_{ij} / N_{ii} \equiv \frac{\text{number of correlated arcs between samples } i \text{ and } j}{\text{total number of arcs in sample } i} \\
C_{ij}^{\text{normalized}} = (C_{ij} - C_{avg}) / \sigma
\]

IV. Results

Single Arcs Most arcs were observed as localized (see Fig. 4) random events which occurred when the built up charge created a strong enough electric field to break down the insulating material. An average arc rate of 1-3 arcs per min were observed, with the rate exhibiting a small exponential decrease with increasing incident energy [4].

Correlated Arcs Correlation studies were performed on data for incident energies of 12-40 keV and fluxes of 0.71 and 5.82 nA/cm². Dependence of arc correlation on separation distance was also studied. These studies showed:
- Little arc correlation for ≤25 keV incident electron energies [see Figs. 5(a) and (b)]. Perhaps for lower energies, insufficient charge could be stored in samples to have a triggered discharge.
- For 40 keV data some temporal and spatial correlation was observed [see Figs. 5(c)].
- For 40 keV data showed an inverse power law relation between the correlation and the separation distance, with an \(n \approx 1.06 \pm 0.09 \), consistent with a 1/R² fall off.

Igraph discharge in one “glue dot” may cause sudden E-field spikes in neighbouring “glue dots”, which could trigger premature arcing. Such stimulated arc rates might be expected to scale with E-field. If confined to a 2D surface (i.e., discharged current spreading out on the conductive substrate), the field—and hence correlation rate—would fall off inversely with separation.

No Spatial Dependence of Correlated Arcs at Low Incidence Energies

Positive Spatial Dependence of Correlated Arcs at High Incidence Energies

References

Figure 1. (a) 41x41 cm conductive substrate mounted in vacuum chamber. (b) 36 samples on the periphery of the sample substrate luminescing under electron beam irradiation.

Figure 2. (a) Typical curve of absolute spectral radiance versus exposure time for a single “glue dot”. The average spectral radiance and levels on 1, 2, 3 and 4 standard deviations above this are indicated. (b) Histogram of absolute spectral radiance for a single analysis region over prolonged beam exposure. Comparison to a Gaussian fit shows the intensity distribution is decidedly asymmetric.

Figure 3. Correlation matrices for “glue dot” arcs for 40 keV incident electron energies. Diagonal is self-correlation, and white stripes are samples with no arcs.

Figure 4. (a) Various arc events appear in different locations around the sample. (b) Higher magnification image of the glue dot shown in part (a).

Figure 5. Normalized correlation matrices for “glue dot” arcs. Correlation values for (a) 25 keV and (c) 40 keV incident electron energies. Correlation vs. Distance curves for (b) 25 keV and (d) 40 keV incident energies. Only the 40 keV run showed dependence on distance.