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An axial time-of-flight mass spectrometer for upper atmospheric measurements
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Challenges to taking mass spectrometer measurements in the MLT include:

•Pressure: Pressures in the mesosphere/lower thermosphere can reach into the 10’s of 

mtorr.  This is a challenge for two reasons (1) a sufficiently long mean free path must be 

maintained inside the instrument and (2) pressure must be low enough to ensure 

successful MCP operation.

•Bow shock: High speed rocket flight causes a bow shock to form (see figures, below and 

right).  Bow shock causes enhanced densities and pressures at the instrument entrance 

aperture. Bow shock heating can also cause dissociation of ambient molecules, thus 

making difficult the accurate measurement of ambient species.

•Resolution of thin layers: Certain atmospheric species form thin layers with 

thicknesses of up to several km. High instrument duty cycle and mass range are 

necessary to resolve these layers.

•Wide variety of particles: Particles of interest include both neutrals and ions. Particles 

range in mass from individual atoms (several amu) to smoke and dust particles 

(thousands of amu)

•Background: Sources of background include UV photons, detector dark counts and 

scattering of molecules from the interior walls of the detector.

•Reactive species: The largest contributor is O, which can react with contaminants on the 

walls of the instrument and subsequently be detected, leading to inaccurate 

interpretation of ambient species and number densities.

•High pressure MCP performance characteristics were demonstrated for N2, O2, Ar, He, and ambient lab air.

•Background count rates as a function of pressure show favorable MCP performance, even into the 10 mtorr range

•The pressures at which the MCP discharged for various gases was recorded.  Note that all discharges occurred at 

pressures above the expected operating pressures of the instrument.

•Pre- and post-scrub pulse amplitudes were recorded for our MCP, at a potential of -2000V.

Simulated instrument performance for number densities found at ~120km altitude.  At 120km, ambient 

temperature is ~500K, however the above simulations were conducted assuming temperatures of 200K and 

800K to show the peak spreading that results from higher KE of particles at high temperatures.

•Reflectron TOFMS drift lengths were

-20cm before and after the reflectron

-10cm penetration depth in the reflectron

•Linear TOFMS drift length was 50cm.

•Rocket velocity = 900m/s

•Aperture diameter = 1.5mm for neutral measurements and 25µm for ion measurements

Several factors affect the uncertainty and hence, 

sensitivity, of the instrument.  Among them are:

•Detector background

•Stray UV photons

•Dissociation of molecules

The simulations and experiments presented in this poster show the possibility of operating a simple TOF mass 

spectrometer as part of an instrument suite on a sounding rocket mission to the mesosphere/lower thermosphere.  

A compact time-of-flight instrument such as the instrument presented can be employed to make fast, accurate 

measurements of atmospheric species of interest.  Specifically, these results show that:

•An MCP detector can be successfully operated at the pressures encountered on a sounding rocket flight to the MLT

•Mass resolution in our instrument is greatly improved by employing a reflectron

•Instrument sensitivity will allow accurate measurement of atmospheric species

Predicted performance

The uncertainty in the number density of NO is given as an 

example of uncertainty analysis:

Begin with the variance for NO,  which depends on:

•the uncertainty in the m = 30 peak,

•the uncertainty due to N2(30)

•the uncertainty due to counts from stray UV

For a function,                , the variance of f is given by

.

For               , the variance is 

where the factor of 0.0037 is the isotopic abundance of 15N.

The uncertainty in a number of counts, NA, is given by

which leads to

Dividing by NNO gives the relative standard deviation (%)

Introduction

Mass spectrometry in the upper atmosphere

As the “shoreline” of the Earth’s atmosphere, the mesosphere/lower thermosphere (MLT) region is home to many interesting and 

important phenomena, the most visible of which are the auroras.  Geomagnetic storms, in addition to causing very intense auroral

activity, also deposit large amounts of energy into the earth’s ionosphere.  Recent analysis of data from the Sounding of the Atmosphere 

using Broadband Emission Radiometry (SABER) instrument aboard the Thermosphere-Ionosphere-Mesosphere Energetics and 

Dynamics (TIMED) satellite suggests that 5.3µm emission from vibrationally excited NO is the main method of energy dissipation from 

energy deposited by geomagnetic storms.  Additionally, NO+ has been shown to be the major contributor to geomagnetic storm 

induced 4.3µm nighttime emission.

In order to better physically understand these two large sources of geomagnetic storm energy dissipation, a sounding rocket mission, 

ROCKet-borne Storm Energetics of Auroral Dosing in the E-region (ROCK-STEADE) is being proposed.  The ROCK-STEADE

instrument suite consists of several photometers, an interferometer, an IR spectrometer, and two time-of-flight mass spectrometers 

(TOFMS).  The TOFMS will measure the ion and neutral compositions in the atmosphere as the sounding rocket travels through the 

MLT.

Due to the use of microchannel plate (MCP) detectors in TOFMS, one of the major challenges to making measurements in the MLT is 

the high ambient pressure.  Other challenges and sources of error and background include stray UV photons, scattering of gas 

molecules from the interior surfaces of the instrument, dissociation of molecules in the bow shock caused by the supersonic rocket 

flight, and reactive recombination at the surfaces of the instrument.  Methods of dealing with these challenges include:

• Recent advances in MCP technology allowing MCP operation into the mtorr range

• Cooling the front surface of the TOFMS using liquid He to eliminate the bow shock (thus making possible the direct sampling of the 

ambient atmosphere)

• Cryogenically cooling the interior of the instrument to eliminate scattering of gas from instrument walls and therefore also reducing 

the contribution of reactive recombination

• Rigorous error analysis to account for the background contribution of stray UV

• Design a time-of-flight mass spectrometer (TOFMS) for accurate measurements of charged and neutral particles in the 

Mesoshpere/Lower thermosphere (MLT)

• Test microchannel plate (MCP) detectors in the laboratory to determine high pressure operating characteristics

•Achieve unit mass resolution of atmospheric species of interest with TOFMS

• Model instrument sensitivity and performance for a typical sounding rocket flight to the MLT

ROCK-STEADE mass spectrometer

Mass 
spectrometersPhotometers

Mass spec electronics: send start pulses 
to BNG, as well as process pulses.  
Amplifies, digitizes, and counts MCP 
pulses with high temporal precision 
(100ps) at high count rates (up to 1 GHz)

FWIR 
interferometer

Interferometer  
dewar

LN2 tank

Reflectron: temporally 
focus ions at the 
detector

Drift 
Region

MCP detector(Photonis):
high gain(107) and 
narrow pulse width

Pinhole aperture: size tailored to maximize TOFMS 
sensitivity while minimizing atmospheric gas load

Instrument arrangement

Mass spectrometer

Entrance aperture and ionizer

Acceleration mesh:
accelerates ions to 
~200eV, generates focused 
ion beam

Bradbury-Nielsen 
gate: modulates ion 
beam (>25ns pulse 
width, <5ns rise time 
at <±20V)

Ionizer(neutral TOFMS only):
convert incoming neutrals to 
ions via electron impact

Cryogenically cooled 
front plate and interior 
walls: eliminate bow 
shock and provide 
pumping to instrument 
interior
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Images from Direct Simulation Monte Carlo modeling (below) show the number density enhancement that forms on the 

ram side of an instrument on a sounding rocket. ROCK-STEADE will use liquid He to cool the front plates of the mass 

spectrometers, as well as the interior walls of the instruments. This application of cryogen will effectively eliminate the 

bow shock while also pumping the instrument and adsorbing any stray gas molecules that impact the interior walls.  

Well defined ion pulses are required for successful TOFMS in the MLT.   

This can be accomplished with a Bradbury-Nielsen gate (BNG) 

directly behind the ion acceleration region.  A BNG consists of two 

inter-leaved sets of wires which, when set to the same potential as the 

acceleration mesh, allow uninhibited passage of charged particles. 

The ion beam is modulated by applying ±V to each set of wires, which 

serves to deflect the ion beam. The microscope image to the left shows 

a BNG fabricated “in house.”

•Two interleaved sets of 10 µm diameter gold-plated tungsten wire, 

electrically isolated from each other

•75 µm spacing between wires

•Very well defined, short pulses (>25ns pulse width, <5ns rise time)
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