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Evaluation of First-Order Actuator Dynamics and
Linear Controller for a Bio-Inspired Rotating
Empennage Fighter Aircraft

Benjamin C. Moulton*, Matthew W. Harris", Douglas F. Hunsaker?,
Utah State University, Logan, UT, 84321

and James J. Joo®
U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, 45433-7402

This paper considers the problem of stabilizing a bio-inspired fighter aircraft variant at
its Air Combat Maneuver Condition. The aircraft equations of motion are linearized, and an
infinite-horizon linear quadratic regulator design is conducted for this aircraft. Included in the
dynamics are first-order actuator models, which have the effect of slowing actuator responses.
This is particularly important for the bio-inspired variant because it requires rotation of the
empennage, which has relatively large inertia. The bio-inspired variant open-loop system is
unstable in the short period and Dutch roll modes, which is mitigated in the closed-loop system.
Monte Carlo simulation responses to initial condition dispersions, aerodynamic model errors,
and atmospheric turbulence are presented for the controlled aircraft system. These simulations
demonstrate the robust properties of the presented control design. Discussion is dedicated to
control designs neglecting input from throttle and the rotating tail, and corresponding successes.
Whereas the bio-inspired variant aircraft can be successfully controlled without rotating tail
input, effects from neglecting throttle input show throttle should be included, but perhaps in an
alternate loop such as a speed controller.

I. Introduction
EXT-GENERATION aircraft will use novel structural, control, aerodynamic, and avionic techniques. One such proposed
Ninnovative design is the bio-inspired rotating empennage (BIRE), in which the vertical tail is removed from a
statically-unstable baseline fighter aircraft similar to the F-16, and the empennage is allowed to rotate about the fuselage
axis. This design has various advantages and limitations, reported in previous and contemporary work on attainable
aerodynamic moments [1], structural design [2], static and dynamic stability [3, 4], static trim [5], and preliminary
control analyses [6].

The governing dynamics for aircraft flight-simulation are called the equations of motion (EOM). These equations
define the change over time of body-fixed velocities, body-fixed rotation rates, Earth-fixed position, and Earth-fixed
orientation. Each of these parameters have an x-, y-, or z-related component, resulting in 12 states for the second order
6 degree-of-freedom (DOF) aircraft. As the EOM do not incorporate actuator dynamics, this analysis will incorporate
additional equations describing the time rate-of-change of the first-order actuator response. Each actuator corresponds
to one of the four control effectors on each aircraft: ailerons, stabilators, rudder / BIRE mechanism, and throttle setting.
With feedback to these actuators the system can be controlled using optimal [7—11], nonlinear [12, 13], adaptive [14, 15],
or other control methodologies.

The basic control methodology used in the present work is the infinite horizon linear quadratic regulator (LQR)
method [16, 17]. This method entails minimizing quadratic costs based on weightings of the state and input incorporated
with linear system dynamics in the algebraic Riccati equation. LQR controllers are often used in aircraft controller
design [18-23], and have frequently been used to study the F-16 aircraft [24-33]. LQR techniques have also been used
to study the effect of actuator dynamics on aircraft control design [22, 32-35]. Many have specifically studied the F-16
aircraft using actuator dynamics [36], additionally using LQR techniques [33, 37], with the fully-coupled nonlinear
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EOM [38]. This work will differ from these works through inspection of the control implications of removing the
vertical tail from a statically unstable fighter aircraft and allowing the horizontal tail to rotate about the fuselage axis. A
drawing of the BIRE is shown in Fig. 1.

Fig. 1 Computer aided design drawing of the BIRE aircraft.

The simulation dynamics in the present work will use the aerodynamic models for the baseline and BIRE aircraft
established by Bolander et al. [5] which were developed using low-order aerodynamic tools on the aircraft geometry
reported by Nguyen et al. [39]. Previous control development in this body of work has focused on the development of a
linearized system and preliminary controllability and analyses of simulation response to gusts [6]. The purpose of the
present paper is to expand on previous control work, focusing on acceptable actuator design considering first-order
actuator dynamics and actuation-limiting rates. In this manuscript the aircraft dynamics and actuation limits are studied
through simulation using initial condition dispersions, aerodynamic model error, and atmospheric turbulence. The
controller performance is also examined in frequency domain analyses.

I1. Aircraft Dynamics Model Overview
The aircraft dynamics models for the baseline and BIRE aircraft depend on the aircraft states: velocity in body-fixed
coordinates (axial velocity Vy, , side velocity Vy, , and normal velocity V,, ), rotation rates in body-fixed coordinates
(roll rate p, pitch rate ¢, and yaw rate r), position in Earth-fixed coordinates (x¢, y s, zy), and orientation in Earth-fixed
coordinates (bank angle ¢, elevation angle 6, and heading angle ). These states are aggregated in the state vector

T
x=[be Vyy Voo D a1 xp yr 25 b O 1,0] (1

These models also depend on the aircraft control effectors, each of which have an actuator and commanded control
component. The control effectors are: ailerons (d,,), stabilators (6, for baseline / & f for BIRE), rudder / BIRE mechanism
(6, / ), and throttle setting (7). These components are aggregated in the actuator state and control input vectors for
the baseline aircraft as

'6a- —611 cmd
0 o
5= e . u= ecmd 2)
5r 6r cmd
[ T ] | Temd
and for the BIRE aircraft as - )
5a 6(1 cmd
B B
S = 66 U= 66 cmd 3)
63 6B cmd
L 7T | |l Temd

These equations also depend on the aerodynamic angles and total velocity

o = tan""! (g—) 4
ot [V
B = sin ( v ) (@)



V= ,/v)%b + V5, + V2, 6)

where « is the angle of attack, £ is the side-slip angle, and V is the total freestream velocity. Compressibility is accounted
for in the model via a correction factor, which is a function of mach number M. Mach number is the ratio of the total

velocity V and the freestream speed of sound a:

m=y %
a

Some terms on which the models depend and are referenced later are the freestream air density p, main wing area S,,,,
main-wing mean aerodynamic chord ¢,,, and main wing span b,,. The freestream air density and speed of sound are
determined using a standard atmosphere model [40].

These aircraft states, inputs, and aircraft and freestream properties will be the fundamental parameters of the aircraft
model. The aircraft models will be described in the order in which equations are applied. First, the incompressible
aerodynamics of each aircraft are determined from the aircraft and actuator state. Next, these dimensionless forces and
moments are corrected for stall and then compressibility. The corrected aerodynamic coefficients are then used along
with the aircraft propulsive force to determine the dimensional body-fixed forces and moments. The aircraft states are
finally used with the calculated body-fixed forces and moments to determine the aircraft state and actuator dynamics.

A. Incompressible Aerodynamic Models
The wind coordinates aerodynamic force and body-fixed aerodynamic moment coeflicients are determined using the
aerodynamic model for the baseline aircraft developed in [5]

CrL=CL, +CLg3+CL. 5,0 8)
Cs = Cs B+ (Cs.15Cr, +Cs.5)p+Cs 77 +Cs,5,0a + Cs.5,6r )
Cp = Cp, +Cp,.CL, + Cp 12C], +Cp 5:C5,

+Cp.spCs, B+ (CD,quczl +Cp.1sCr, + CD,q) g +Cp.s:Cs,F (10)

+Cp.ss,Cs,0a+ (Cp,L5,CL, +Cp.s,) e + Cpy 5202 + Cp_s6,Cs, 61
Coe=CrpB+Crpp+(CoLiCr, +Crr)F+Cr 5,00+ Crs,0r (11)
Cin = Cing + Cona@ + C G + Con 5,0 (12)
Cn = CupP+ (CaLpCL, + Cup)P + Co ¥ + (Cn.L.5,CL, + Cn.5,)8a + Cn.5,6; (13)

where

Cr, =Cr, +CL g0 (14)
Cs, = Cs pf8 (15)
p=lr g=lle po D (16)

from which are determined the incompressible coefficients for lift (éL), side-force (és), drag (éD), rolling moment
(é{), pitching moment (C"m), and yawing moment (C"n). Subscripts following a comma denote the force or moment
derivative with respect to a given variable. For example, the term C¢, s, indicates the change in C, with respect to 0,
and the term Cp, ;2 indicates the change in the quadratic Cp 5 term with respect to C124' Truncated values for these
coefficient derivatives are reported in Tables A.4 and A.5.
In the aerodynamic model for the BIRE aircraft each coefficient is a function of the BIRE angle and takes the form
[5]
C = Asin(wép + ¢) +2 (17)

where A is amplitude, w is frequency, ¢ is phase, and z is offset. The BIRE aerodynamic model is

éL = CL] +éL“3,3+éL’[3]5+éL’q-q+ CL’;V_+(§L,5Q5Q +CAVL‘5£5§ (18)

és = éso + CS,QCV + C\‘Sﬁﬁ + (CS,L,;CA'LI + és,ﬁ) p+ és,qq + és,ff + és,éaéa + 65,55?55 (19)



éD = éDo +CA‘D,LCA'Ll + CD,Lzél%l +C‘D,ségl +C,\‘D,Szé§]
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Cm = Cony + Cinoa@ + Con P+ Con P + Cin,gG + Con 77 + Cin 5,04 + C,, 5565 (22)

Co = Cuy+ Coa+ Cupf+ (CurpCry + Cop) 5+ Crgd + G+ (Cuns, Cry + G, ) 6+ G gz (23)
where

CLl = CLo + CL’(YCY (24)

Cs, =Cs, +Cs B (25)

where a ~ indicates the term follows the format specified in Eq. (17). Truncated values for these coefficients are reported
in Tables A.6 and A.7.

B. Simulation Stall Model

The incompressible aerodynamics for the baseline and BIRE aircraft are first corrected for stall. A simple longitudinal
flat-plate stall model is applied, where the stall-corrected lift, drag, and pitching moment coefficients are determined
over a sigmoid transition to a flat-plate stall model from the aircraft aerodynamic model given in Eqgs. (8)—(15) for
the baseline aircraft and in Eqgs. (18)—(25) for the BIRE aircraft. The flat plate coefficients for lift [41, 42], drag, and
pitching moment can be approximated as

CpLplae = 2signa sin’ @ cos @ (26)
Cp piae = 25in°/” |a| (27)
Ciplae = —0.8 sina (28)
The sigmoid blending function can be found as [42]
1+ e—M(a—nb) + eM(a+ab)

o= [1 +€_M(a_ab)] [1 +eM(a+ab)] (29)

where a value of 7 is used for the blending rate parameter M, and a value of 45° is used for the stall-transition angle .
These values were selected to best match the baseline aircraft lift coefficient wind tunnel data reported in [39]. The
blended values for the lift, drag, and pitching moment coefficients can be found as

Cr=(1-0)CpL+0CLplute (30)
Cp=(1-0)Cp+0Chplae (31)
Con = (1 =) Cop + T Crpplate (32)

Note, the stall model is not applied to the lateral force and moments (i.e. Cs = Cs, Cp = Cy, Gy = C,). This stall model
will be applied in the time domain simulations and neglected in the control design due to the minimal effect of the stall
model on the aircraft dynamics at the trim condition.

C. Compressibility
Next, compressibility is included in the aerodynamic model as a correction factor on the aerodynamic forces and
moments. The implemented correction was developed by Anderson [43], which for a force or moment coefficient C4 is

Cacos A,
Ca= et (33)
Ca cos Aep Ca cos Acpr
\/1—M20052AC/2+[ Ra) ] SNEI )

4



where A/, is the half-chord sweep angle and R4 the aspect ratio of the lifting surface primarily responsible for the
incompressible force or moment coefficient C4. Table 1 lists the values used in the correction factor for the baseline and
BIRE aircraft, respectively. Note the drag coefficient is not adjusted for compressibility (i.e. Cp = Cp).

Table 1 Compressibility correction values for each aircraft by force and moment, from Bolander [6].

baseline BIRE
Coefficient influencing surface A¢pp [°]  Ra influencing surface ~ A¢jo [°] Ra
CL main wing 23 3 main wing 23 3
Cs vertical stabilizer 38 1.29 horizontal stabilizer 22 2.116
Ce vertical stabilizer 38 1.29 main wing 23 3
Cn main wing 23 3 main wing 23 3
C, vertical stabilizer 38 1.29 horizontal stabilizer 22 2.116

D. Thrust Model
Both the baseline and BIRE aircraft share the propulsion model previously developed by Bolander [6]. The thrust
can be found using the engine percent power, given by Nguyen et al. [39] and Stevens and Lewis [7], as

64.94, 7<0.77
| = (34)
217.38t - 117.38, 7> 0.77
The percent power P; is converted to total thrust as [6, 7, 39]
Tiie + (Tit — Taie) 25, Py < 50
= P1-50 (35)
Tonit + (Tmax - Tmil)T’ Py 250
The idle-, mil-, and max-setting total thrust values can be found from the the thrust model
Aset
Tset = (%) (TsetO + Tset lV + TsetZVZ) (36)

where the coefficients dget, Tset0, Tset 1, and Tger2 can be found from the fits developed by Bolander [6] for each setting as
Tseti = Cset0 + Cser 1 H + CsetZHz (37)

and the individual fit coefficients are given in Table 2.

Table 2 Thrust model fit coefficients [6].

Coefficient Tidle Tmil Tmax
co 1.0104 1.0148 1.0225
a c; x10° 2.9484  3.1355 3.1984
¢y x 1010 -3.8270 -4.2106 -4.3617
co [1bf] 3145 11716 20341
To c1 [1bf ft] -0.4185 0.1156  0.1454
¢y % 10° [Ibf ft2] 1.8313  0.3474  0.9283
co [1bf ft / s] -4.3491  3.5689 1.9886

Ty | c; x10*[Ibfft®/s] | -4.9703 0.1409  6.3926
ca x 108 [Ibf ft3 /s] | 1.3557 -0.3982 -2.4428
co x 103 [Ibf ft2 /s?] | -0.2321 -3.9793  3.5201
T | ¢; x 107 [Ibf ft3 /s?] | 55629 2.6931 0.7574
ca x 101 [Ibf ft* /s%] | -2.0550 0.5281  2.6665




E. Body-Fixed Aerodynamic Forces and Moments
Assuming the thrust to be aligned with the x-axis and located at the center of gravity, the body-fixed aerodynamic

and thrust forces (Fy,,,Fy, ,F7,) and moments (M, ,My, ,M,,) can be found as

Fo| | CrSa —CsCaSg—CpCoCp | [T
Fy, | = spV2S, CsCg - CpSp +0 (38)
F,,

2
~CLCo — CsSaSp — CpSaCp| |0
My, b,,Cy
My, | =5 V28, |6wCm (39)
Mzb bwcn

F. Equations of Motion

The aircraft EOM are used to determine the time rate-of-change of the aircraft states. The differential equations
governing aircraft motion are given in Eq. (40). The EOM depend on the aircraft state and aerodynamic forces and
moments, as well as the moments and products of inertia (Ixx,,,lyy, ,Izz, and Iy, Iz, .Iyz, ), and angular momentum
(hx,,hy,,hz,). Note, C, and S, indicate the cosine or sine of an angle y, respectively.

be Fy, -So rVy, —qVy,

v, = 5 | Fu | + 8 [SaCa |+ | pVe, = Vs,

Va Fz, CyCo qVx, — pVy,
p Ixxb _Ixyb _Ixzb B be 0 _th h)’b p
q| =Ly Ly, —Iyz My, | +| hz, 0 —hx, | |9
F —Ixz, Ly, Iz, M, —hy,  hx, 0 r

(Lyyy, = Iz2,)qr + Lyz, (q% = %) + Ligy, pq = Ly, pr
+ | Iz, = Lo, ) pr + Legy, (2 = p?) + Loy, qr — Iyz, pq (40)
(Lexy = Iy, ) PG + Loy, (p? = ¢*) + Ly, pr — Lz, qr
ir] [CoCy S8SeCy—CySy CySaCy+SsSy] Vi,
Vil = CoSy  SuSeSy+CsCy  CySoSy —SeCyl|Vy,

Zf —-So S¢C9 C¢C9 Va
) 1 S4S¢/Co CySe/Co| |P
é =10 C¢ —S¢ q
l,b 0 S¢ /Cg C¢ /Cg r
Equations (4)—(40) can be summarized as
X = f(x,6) 41)
G. Actuator Dynamics
The implemented first-order actuator model is
6; = o (ui — 6;) (42)

for commanded input u; and actuator state §; with gain 0. The actuation rates model is thus applied as

ba os, O 0 0 Oa. cmd Oq

. |6 0 0 O0fffs s

5= % =Y (u-6) = s, e,cmd | |Oe (43)
0, 0 0 Ts, 0 Or, cmd Or
T 0 0 0 o; Temd T



or in the case of the BIRE,

Sa Js, 0 0 0 a cmd

. |68 0 0 0 63

§=12=Yu-06)= 7ot O, emd (44)
OB 0 0 T6sp 0 OB, cmd
‘I" 0 0 0 o \| toma

The first-order lag values reported by Nguyen et al. used in the actuator model are given in Table 3. Note, the values for
the BIRE actuator were estimated based on the first-order lag of the other control effectors and preliminary mechanical
analyses.

Table 3 Actuation rates and limits for control surfaces on the baseline and BIRE aircraft [39].

Input 04 Oe 0, OB T
1.0, 7<03
First-Order Lag [s] (1/07) 0.0495  0.0495 0.0495 0.0495 1/(235-4.57), 03<1t<0.5
10.0, 7>05
Input Limit (6; nax) +21.5° £25° + 30° +90° [01]

Actuation Rate Limit (6; mqx) =+ 80°/s +60°/s =+ 120°/s =+ 50°/s -

The system in Eq. (43) for the baseline or Eq. (44) for the BIRE can be summarized as

6 =g(6,u) (45)

H. Aggregate System
The aircraft and actuator states can be aggregated as

X
7= [ 6} (46)

and used to form the full aggregated nonlinear dynamics as

N EI N _|fx0)
Z= [J =h(z,u) = L’(‘S’ u)l 47)

I. Disturbances and Uncertainties

A disturbance model was implemented in the present work for introducing turbulence into the aircraft aerodynamic
model. This disturbance model is an implementation of the von Kdrmén atmospheric turbulence model. The model was
developed using the von Kdrman turbulence velocity spectra [44, 45] and Department of Defense recommended angular
rates spectra [44] using the sum-of-sines method outlined by Beal [45]. The disturbance in Vy,, Vy,, V., , p, g, and r
were each found as a sum of sines. For example, the body-fixed disturbance x;-velocity is computed as

n
be turb = Axb turb Z sin (wixk + ¢1) (48)
i=0

where w; represents the individual frequencies, ¢; represents the individual random phases, and Ay, ;. is the signal
amplitude. The spatial coordinate x; was determined as a x; = Vi1, where k denotes a discretized time in simulation.
These disturbances were combined with the state at time #; to determine aerodynamic forces and moments from Eqs.
(8)—(15) for the baseline and from Egs. (18)—(25) for the BIRE.

This sum-of-sines process assumes the turbulent flow field to be frozen in space. The method presented by Beal
entails dividing the velocity and angular rate spectral densities into equal area sections. The central frequency of each



area, with fixed amplitudes (determined from the area of each section) and uniformly random phase shifts for each sine
wave, is used to form the summed sine waves defining the atmospheric noise. This turbulence model primarily depends
on the aircraft altitude, an integer number of frequencies for the sum-of-sines method, and a turbulence intensity setting
(trim altitude, 100, and 1ight, respectively, unless otherwise specified).

In addition to a turbulence model, an uncertainty model was implemented to evaluate system response to uncertainty
in the aerodynamic forces and moments. This error was applied multiplicatively, shown on the lift coefficient as

CL= (1 + ECL) CL true (49)

where the dimensionless errors ec, were selected for each force or moment coefficient C4 from a random normal
distribution as a fixed value during each simulation. This error was applied to the aerodynamic forces and moments
coefficients immediately after they were corrected for compressibility. Note, an individual error could have been applied
to each of the coefficients in the aerodynamic models in Egs. (8)—-(15) and Eqgs. (18)—(25) as well as the weight, inertia,
gyroscopic terms, and center of gravity location. However, it would be extremely difficult to summarize or state much
about the resulting analyses, due to the expansiveness of the stochastic variables and the requisite number of simulation
runs. Simulations performed by the authors showed that similar responses of the forces and moments of the aircraft
compared to the application of individual coefficient errors could be achieved by simply adding the multiplicative error
presented. For these reasons the multiplicative error was chosen as the aerodynamic model error implementation. The
effects of turbulence and model error are discussed in the controller performance results presented later.

III. Linearized Model and Properties
The nonlinear system given in Eq. (47) is linearized as a first step in developing the linear controller. This
linearization is performed in Appendix B. Note that the actuator dynamics are excluded from the control design. Thus,
the controller is designed for the system

X = f(x,u) (50)

The use of the function f denotes the same dynamics as indicated in Eq. (41) with merely a change in the input to the
system (commanded control u replacing actuator states ).

A. Linearized System
In the control design of the linearized system only a portion of the state will be fed back, which is

(x=x1r) =C (x = x4r) (51)

g

1
SRS
cCcCo oo o oo~ o
cCcoooco o —~o0o o
cCcocoooco—~0oc oo
cC o oo —~0o 0o o
c oo —~0 00 oo
cCcocooococooc oo
cC o oo o oo oo
co—~ oo oo oo
o~ ocoo0c o oo oo
— o o0 o oo o o

=R -E-N-N-N-E---}

Au=u—uy,

The terms Ax and Au denote the difference in the linearized state and control from the trim state and control (x;,, and
u;,), respectively. The C matrix as we have defined it reduces the state, removing the x ¢, y 7, and ¢ states. These states
are removed because they have no effect on the trim condition of the aircraft (due to the flat-Earth EOM in Eq. (40)).
The system in Eq. (50) can be linearized following the process outlined in Appendix B to form the linear system

AX = Al(xtr,utr) Ax + B|(xthutr) Au (52)

where the state matrix A is given symbolically in (B.180) and control matrix B is given symbolically in (B.199). In
order to evaluate the linearized system matrices a trim state and control must be found such that

x=f(xi,uy) =0 (33)



In this work a trim algorithm is used to numerically determine x;, and u,, (note 6, = u,,) as outlined in [6] using the

Newton-Raphson method [46].

B. Numerical Models at the Air C

ombat Maneuver Condition Trim Point

The system given in (52) can be evaluated at the Air Combat Maneuver Condition [6, 47, 48] (15,000 ft altitude
above sea level, Mach number 0.6, steady level flight). The trim condition for the baseline at the Air Combat Maneuver

Condition is

Xtr =

633.7185]
0
29.6840

O s tr — O

-15000
0
0.0468
0

(54)

which results in the state and control matrices (recall the states x ¢, y ¢, and ¢ have been removed from this matrix, as

shown in Egs. (B.180) and (B.199))

[-0.0056 0 0.0548 0 -29.7176 0
0 —-0.1848 0 29.8499 0 -632.4144
—-0.1340 0 —-0.8499 0 629.2103 0
0 -0.0301 0 -1.9238  0.0003 0.4041
A = [-0.0003 0 0.0056 0 —-0.8753 -0.0029
0 0.0142 0 -0.0375  0.0025 —-0.1560
—-0.0468 0 0.9989 0 0 0
0 0 0 1 0 0.0468
0 0 0 0 1 0
0 -0.7212 0 21.1331]
8.3046 0 21.4957 0
0 -84.2119 0 0
—19.0435 0 6.2114 0
B = 0 -11.8963 0 0
-1.2933 0 -3.3559 0
0 0 0 0
0 0 0 0
0 0 0 0

S O O O O o o o o

0
32.0926
0

S O o O O O

-32.0926 |
0
-1.5033
0
0
0
—634.4133
0
0

(55)

(56)



The trim condition for the BIRE at the same condition (15,000 ft altitude above sea level, Mach number 0.6, steady level
flight) is

[633.7375]
0
29.2742

X = 0 6= 0.0007 o = 0.0007 57)
0 0.2732 0.2732

—-15000
0

0.0462
0

At this trim condition the BIRE requires slightly less throttle command, due ot the lack of drag produced by a vertical
tail. Evaluating the A and B matrices at the trim state and control in Eq. (57) results in the state and control matrices
(recall the states x ¢, y ¢, and ¢ have been removed from this matrix, as shown in Egs. (B.180) and (B.199))

[-0.0051 -0.0000 0.0529 0 -29.2933 0 0 0 -32.0936 |
0 —0.0458 0 29.4573 0 —633.7953 0 32.0936 0
-0.1347 -0.0000 —0.8463 0 629.1079 0 0 0 —-1.4825
0 -0.0135 -0.0000 -2.3097 -0.0000 0.2295 0 0 0
A =1-0.0002 -0.0000 0.0041 -0.0000 -0.8493  -0.0027 O 0 0 (58)
—-0.0000 —0.0027 0 —-0.0151  0.0004 0.0114 0 0 0
—-0.0461 0 0.9989 0 0 0 0 0 —634.4133
0 0 0 1 0 0.0462 0 0 0
| O 0 0 0 1 0 0 0 0
[ -0.0044  -0.9987 —0.0000 20.6299]
—-7.8524 0 -0.5816 0
0.0957 -84.6130 -0.0000 0
—29.8253 0 -0.0129 0
B=1-0.0104 -12.0443 0.0001 0 (59)
0.8468 -0.0294  0.0381 0
0 0 0 0
0 0 0 0
0 0 0 0

For small BIRE angles (as shown in Eq. (59)) the B matrix is lightly coupled between longitudinal and lateral dynamics.
This coupling increases significantly for larger BIRE angles (65 > 10°), prohibiting control design using traditional
uncoupled techniques. Note the ailerons are the main yaw control effector for the BIRE aircraft.

C. Controllability

The controllability of each aircraft system was evaluated at the Air Combat Maneuver Condition at various steady
coordinated turn trim bank angles (note for a steady coordinated non-climbing turn ¢, = 0 results in steady level
flight). The controllability matrix and corresponding rank were found for both the baseline and BIRE aircraft. Each
controllability matrix was full rank, and thus each linearized aircraft is controllable at the Air Combat Maneuver
Condition.
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D. Open-Loop Modes

The open-loop modes of each aircraft can be evaluated by finding the eigenvalues A,; of the baseline A matrix given

in Eq. (55), which are

which correspond to the eigenvectors

0+0/
0+05
0+0j5
0+0j
0+0j
1405
0+0j

Xol =

[0+0/]

10+ 0/

0+0j
—0.1758 + 3.1455;
—0.1758 — 3.1455;
—1.9170 + 0;
Aol = —2.7439 + 05
1.0300 + 0y
0.0040 + 05
—0.0085 + 0.1050;
|—0.0085 — 0.1050 |
—-0+0j —0 - 0.0000 [0.0006+0; | [0.0396+0;/ |
1.0000 + 0/ 1.0000 — 0j —0.0481 + 05| |—0.0003 +0;
0.0002 — 0.0006; 0.0002 + 0.0006 —0.0137+ 05| |—0.9932 +0j
—0.0045 +0.0071; | |-0.0045-0.0071;| [-0.8852+ 0/ —-0+0j
0+0j , 0 - 0.0000; , 0+0j ,| 0.0030+0; |,
—0.0001 — 0.0046| [—0.0001 +0.0046;| |-0.0185+0; —-0+0j
0-0.0001; 0+ 0.0001; 0.0031 + 05 0.1098 + 05
0.0023 +0.0013; 0.0023 — 0.0013; 0.4622 + 05 0+0j
0-0.0000; | | 0+0j ] -0+0;5 | |—0.0011+0j]
[0.0945+0; 1 [0.0252+0; | [0.0500+0.0062;] [0.0500 —0.0062;]
0.0003 + 05 —0.1142 + 05 —0 - 0.0000/ —-0+0j
—0.7774 + 05| |—-0.0040+0;| ]0.0049 +0.00115| ]0.0049 —0.0011;
—-0+0j —0.0003 +0j 0+0j 0 - 0.0000;
-0.0023+0j,| -0+05 |, 0+0j .| 0-0.0000/
-0+0j —0.0101 + 0y 0 - 0.0000/ 0+0j
0.6219 + 05 0.9730 + 05 0.9987 + 0j 0.9987 — 05
—-0+0j —0.1989 +0j 0 - 0.0000/ 0+0j
|—0.0022 + 0y | —-0+0j 0-0.0002; 0+ 0.0002;

(60)

(61)

The eigenvectors can be used to identify [49, 50] the dynamic modes of the aircraft, along with corresponding handling
qualities (HQ). The open-loop modes and corresponding HQ are given in Table 4. The HQ levels are assigned from the
limits established in MIL-F-8785C [51] and summarized by Hodgkinson [52] and Phillips [53] for class IV aircraft in
flight phase A (the constraining limits for this highly-maneuverable fighter and BIRE variant).
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Table 4 Baseline aircraft open-loop modes and HQ levels.

Aoli Mode o [1/s]  wy, [rad/s] 4 CAP [s72] tap [s] te [s] HQ
0+0j rigid-body  -0.000 - - - - - -

—0.1758 + 3.1455j  Dutch roll 0.176 3.150 0.056 - - - Level 2
—0.1758 — 3.1455j  Dutch roll 0.176 3.150 0.056 - - - Level 2
-1.9170+ 0j roll 1.917 - - - - 0.522 Level 1
-2.7439 +0j short period  2.744 - - - - 0.364 Level 4
1.0300 + 0j short period -1.030 - - - 0.673 - Level 4
0.0040 + 05 spiral -0.004 - - - 172.937 - Level 1
—0.0085 + 0.1050; phugoid 0.009 0.105 0.081 - - - Level 1
—0.0085 — 0.1050/ phugoid 0.009 0.105 0.081 - - - Level 1

The rigid-body mode is trivial, and denotes that the aircraft can be flown in steady level flight at different altitudes
[49], and will not be discussed further in the present paper. As shown in Table 4 the baseline has particularly poor
handling qualities for the Dutch roll and short period modes. The Dutch roll mode has insufficient damping, and the
short period mode is unstable.

The eigenvalues of the BIRE A matrix given in Eq. (58) are

which correspond to the eigenvectors

[0+07] [-0.0001 +0;]
0+0y 0.9898 + 0/
0+0y 0.0025 + 0y
0+0j] |-0.1297 +0j
Xol =110+0j]|, -0+0j ,

0+0y 0.0003 + 0y
1+0j]| |—-0.0004+0j
0+0y 0.0587 + 0y
10+ 0/ 0+0y

[ 0.0382+0; |
0.0008 + 0j
—-0.9899 + 0j
0.0001 +0j
0.0025+05 |,
0+0j
0.1367 +0j
-0+0j5

—0.0010 + 0

0+0j
—2.2074 + 05
—2.4526 + 05
-1.3113 + 05
1.1675 + 05
0.7722 + 05
0.0071 + 0y

~0.0101 +0.1093;
-0.0101 — 0.1093]

[—0.0001 + 0|
0.9999 + 0;
0.0032 + 0;
—0.0131 +0j
-0+0j5
0.0019 +0j
—-0.0016 +0j
0.0099 + 0;

[—0.0001 + 0/
—1.0000 + 05
0.0005 + 0/
0.0040 + 0/
0+0j
0.0023 + 0/
—0.0003 + 0j
0.0035 + 0/

0+0j5

12

0+0j

(62)



[-0.0947 +0;] [0.0347+0; 1 [0.0499 +0.0061;] [0.0499 — 0.0061;]
0.0050+0; | |-0.0115+0; 0+0;j 0 — 0.0000;
0.5773+0;j | |—0.0056+0/| [0.0060+0.0016;| [0.0060 —0.0016;

~0+0; -0.0010+0j| | —0-0.0000] —0+0;
0.0015+0j |.| -0+0j |, 0+0;) .| 0-0.0000/ (63)
~0+0; ~0.0107 +0; ~0+0; ~0 - 0.0000;
~0.8110+05| | 0.9769 +0; 0.9987 + 0 0.9987 — 0
—0+0; ~0.2101 +0; ~0+0; —0 - 0.0000;
| 0.0019+0j | | -0+0j 0 — 0.0002; 0 +0.0002;

The eigenvalues can be used to identify the dynamic modes of the aircraft, along with corresponding HQ. The open-loop
modes and corresponding HQ are given in Table 5 (using the same limits as evaluated on the baseline aircraft).

Table 5 BIRE aircraft open-loop modes and HQ levels.

Aol i Mode o [1/s]  w, [rad/s] 4 CAP [s72] tap [s] 2o [s] HQ
0+0y rigid-body  -0.000 - - - - - -

-2.2074 +0j roll 2.207 - - - - 0.453 Level 1
-2.4526 +0j short period  2.453 - - - - 0.408 Level 4
-1.3113+0yj Dutch roll 1.311 - - - - 0.763 Level 4
1.1675+ 05 Dutchroll  -1.168 - - - 0.594 - Level 4
0.7722 +0j5 short period -0.772 - - - 0.898 - Level 4
0.0071 + 0y spiral -0.007 - - - 98.088 - Level 1
—-0.0101 +0.1093 phugoid 0.010 0.110 0.092 - - - Level 1
—-0.0101 — 0.1093;5 phugoid 0.010 0.110 0.092 - - - Level 1

As shown in Table 5 the BIRE, like the baseline, has particularly poor handling qualities for the Dutch roll and
short period modes. Both the Dutch roll and the short period modes are unstable. Though the baseline and BIRE are
analyzed at near identical trim conditions, and (as the BIRE is undeflected) have near identical aerodynamics, significant
differences arise in the comparison of the corresponding dynamic modes of the two aircraft. As the BIRE does not have
a vertical tail, the spiral mode time to double and Dutch roll handling quality are worse than those of the baseline aircraft.
Also, the phugoid damping of the BIRE aircraft is slightly higher than that of the baseline aircraft. This effect may stem
from the lack of anhedral on the BIRE stabilators (and thus increased effective longitudinal stabilizing surface area).

The high instability in the baseline short period and BIRE short period and Dutch roll modes demonstrate the
need for a stabilizing controller. A stabilizing controller can augment the natural stability of the aircraft such that the
pilot is agnostic to the aircraft unstable modes. The short period and Dutch roll modes depend heavily on the aircraft
body-fixed rotation rates. Thus, a first step in the control design would be to heavily weight the relative importance of
these rotation rates. The aircraft orientation also plays a significant role in these modes, and should carry greater weight
in the control design. The control design for the baseline aircraft has been studied extensively [24-33, 36-38], and as
such is neglected in the present paper. Only the control design for the BIRE is presented with performance analysis.

IV. Control Design
A stabilizing controller can be designed to mitigate the handling deficiencies given in Table 5 for the BIRE. Such a
design should not only improve the aircraft HQ, but also be robust to error and disturbance.

A. LQR Design
The objective of the infinite-horizon LQR optimal-control problem is to minimize the cost function

J= / B (AxTQAx + AMTRAM) di (64)
0
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This is done by solving the algebraic Riccati equation
0=A"TP+PA+Q-PBR'BTP (65)
for the positive semidefinite matrix P to find an optimal control policy

Au=— (R—IBTP) Ax = —-KAx (66)

where K is the state feedback gain matrix. Inserting Eq. (51) and rearranging, the optimal control policy is
u=uy — KAx (67)

State and control weighting matrices that result in quality performance metrics for the BIRE aircraft are
[1¢79]
le™®
le™®

! 5
QO = diag 1 , R =diag 5 (68)
1

le™®

1
1

5¢72

which with the state and input matrices in Eqgs. (58)—(59) are used to calculate the state feedback gain matrix

—-0.0000 -0.0208 0 -0.2127 -0.0208 9.8456 0 -0.0607 —0.0363
_[-0.0002  0.0003  0.0001 -0.0029 -0.5341 -0.1542 0.0004 -0.0059 -1.0029 69)
~ |-0.0000 -0.0030 0 0.0275 -0.0029 1.3998 0 0.0545 —0.0051

0.0047  0.0001 -0.0004 -0.0010 0.0326 -0.0516 -0.0006 -0.0020 0.6508

For the BIRE aircraft, aileron command depends primarily on yaw and roll rates. The stabilator command depends
primarily on elevation angle, pitch rate, and yaw rate. The BIRE command depends primarily on yaw rate. Lastly, the
throttle setting commands depends primarily on the elevation angle.

B. Closed-loop Properties

The closed-loop properties of the BIRE aircraft are determined from the system dynamics including the state-feedback
matrix providing stability to the system.The eigenvalues of the BIRE closed-loop system matrix (A — BK) calculated
from the matrices presented in Eqs. (58), (59), and (69) are

~13.4586 + 0
~5.8018 +0;
~0.0995 + 0

~0.5214 + 0.3568;

Ao = |—0.5214 — 0.3568 (70)

~1.0108 +0;

~1.4351 +0;
~1.2847 +0;
~1.3391 +0;

which correspond to the eigenvectors
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[0.0003+0; ] [0.0435+0;7 ] [-0.9827+0;] [0.0360—0.0064j ] [ 0.0360 +0.0064; ]

~0.9446 + 07| | 0.0020 +0; ~0+0; ~0.0002 — 0.0000; ~0.0002 + 0
~0.0071 +0/| |-0.9989+0;| | 0.1428+0; | [-0.1549 +0.3854/| |-0.1549 — 0.3854;
0.3271 +0j ~0+0j ~0+0j 0+0; 0 — 0.0000;
Xer=1]0.0001+0j |.]0.0083+0; |.| -0+0j |.|-0.0003+0.0001]|,|-0.0003 —0.0001;|,
~0.0075 +0; 0+0; ~0+0; ~0+0j ~0 - 0.0000;
0.0001+0; | | 0.0161+0j | | 0.1178 +0; 0.9089 + 0 0.9089 — 0
~0.0243 +0; 0+0; 0+0; ~0 - 0.0000; ~0+0;
-0+0j | |-0.0014+0;] |0.0003+0; | | 0.0005+0.0001; | | 0.0005—0.0001; |
[-0.0019 +0;] [0.0101 +0; | [-0.0389+0;] [0.0292+0; ]
0.9981 +0j | |-0.9644+0j| |0.0011+0j | | 0.6567+0;
0.0361 +0j | |-0.2437+0j| | 0.8849+0j | |-0.6787+0;
~0.0274+0;| |-0.0043 +0; ~0+0; ~0.0066 + 0
~0+0; |.]0.0002+0;j |,]-0.0006+0j|,|0.0005+0j |{ (71)
0.0016 +0/ | |-0.0022+0; 0+0; 0.0013 +0;
-0.0305+0/| | 0.1021+0; | |-0.4641+0j| |0.3273+0;
0.0270+0; | | 0.0031 +0; 0+0;/ 0.0049 + 0
0+0j | [-0.0002+0j] |0.0005+0; | [-0.0004+ 0]

Some inference can be made on the control design by comparing Tables 5 and the eigenvalues in Eq. (70). All
eigenvalues for this system have been moved to the left half plane. The system is now stable. The solitary oscillatory
mode is attributed to the phugoid mode. Though the BIRE closed-loop short period, Dutch roll, and rigid-body modes
are stable, little more can be said regarding mode HQ. The spiral mode has become stable for the BIRE closed-loop
system. The closed-loop short period mode for the BIRE is non-oscillatory. The BIRE, lacking a vertical tail, has
a non-oscillatory closed-loop Dutch roll mode. In order to evaluate controller performance, the closed-loop system
response is studied in time-domain and frequency-domain analyses as the modes in Eq. (70) are not traditional HQ
modes.

V. Control Performance
While some dynamic modes for the closed-loop aircraft systems could be assigned HQ levels, the BIRE has
closed-loop modes which cannot be characterized using traditional dynamic mode properties. Thus alternate techniques
must be used to determine robustness of the BIRE aircraft control design. Analyses in the time and frequency domains
can verify the robust properties of the control design.

A. Initial Condition Dispersion

First, response was simulated with initial condition dispersion for the BIRE with nonlinear dynamics and stabilizing
state feedback. While the control design was performed on the Euler angle EOM formulation given in Eq. (40), the
nonlinear simulations were performed using a quaternion dynamics formulation and a variable step integrator. For
description and justification of the use of quaternions, the reader is directed to the work of Phillips where these themes
are treated [54].

In simulation the aircraft was initialized at the trim condition. The rotation rates of the BIRE aircraft were then
offset from the steady-level flight trim condition by each axis (Ap = 90°/s, Ag = 10°/s, Ar = 2.5°/s), and simulated for
15 seconds. The stabilizing controller response to this initial condition is shown in Fig. 2 for the BIRE aircraft. The
blue lines in the control and control rate plots indicate the limits, as given in Table 3; on the control plot the black lines
indicate the commanded control and the gray lines indicate the actuator state response.
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Fig. 2 BIRE response to initial condition dispersion.

Figure 2 shows the response of the BIRE aircraft to an initial condition dispersion. The states which are fed back
return to zero within the 15 second simulation (excluding the body-fixed velocity V, , which takes slightly longer).
Those states which do not return to zero do not factor in the trim condition for the flat-Earth equations of motion (recall:
Xy, ¥y, ¥). This stabilization takes place within nearly 8 seconds, with the control near zero at 0.5 seconds. Though
the controls are mostly actuated for only a short length of time, the aircraft takes longer to stabilize. Saturation of the
control rates can be seen more clearly in Fig. 3.
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Fig.3 BIRE control and control rate zoomed in response to initial condition dispersion.

The BIRE control response shown in Fig. 3 saturates in the rate limits on BIRE mechanism and stabilators. The
BIRE throttle setting is not visibly actuated throughout the simulation. The BIRE controller achieves successful
stabilization within the 15 second simulation.

B. Single Axis Angular Rate Dispersions and Region of Attraction

Monte Carlo simulations were run with normal random distributions of initial dispersions in p, g, and r. Each
aircraft was simulated with single axis 1-sigma dispersions of o , = 120°/s, o 4 = 40°/s, and o1, = 5°/s. The results
for these simulations are shown in Fig. 4. Each case is represented by a marker, with the color of the marker indicating
the level of convergence. Shades from green toward yellow denote increasing time to convergence, with red denoting
unconverged cases at the end of simulation (15 seconds). Convergence was determined as

AYTEAy < 1 (72)
where
AV, mac ]\ 10 fi/s]\
AVy, max 15 ft/s
AV, max 15 ft/s
Apmax 20°/s
E =diag| | Agmax = diag| | 10°/s (73)
AFmax 10°/s
AZf max 50 ft
Admax 25°
| ABmax | | 10° |

The values in Eq. (73) were selected as 1-axis maximums for each state such that results for the Monte Carlo simulations
with turbulence and error (presented in Fig. 6d) would have greater than or equal to 90% convergence success. Thus,
greater attention should be paid to the convergence criterion than the convergence percentage successes.
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Fig. 4 BIRE single axis dispersions.

As shown in Fig. 4 the BIRE can stabilize with dispersions up to Ap = £360°/s, Aqg = £75°/s, and Ar = £10°/s.
The BIRE is strongest in roll control and weakest in yaw control. A single ellipsoidal region of attraction was selected
for continued analysis. This was selected so the success rate of the BIRE aircraft controller between sets of Monte Carlo
simulations were comparable. This region is

o1 p = 100°/s
o1y =127 (74)
Oy = 3°/s

Though such plots as in Fig. 4c appear to show severe limitations on the control design, the bounds given in Eq. (74)
are large, and typical aircraft rate dispersions lie well within this region of attraction. Such large bounds are used in the
present paper to demonstrate the limits of the presented control designs. The Monte Carlo initial condition dispersion
simulation results and success rate for the BIRE are given in Fig. 6a.

C. Aerodynamic Model Error Dispersions

A similar single axis process was used to determine bounds on the acceptable aerodynamic forces and moments
error. Monte Carlo simulations were run with the 1-sigma p, ¢, and r initial dispersions, as well as 1-sigma dispersions
of ec, = 0.25 (1-sigma 25% normal random error in each force or moment coeflicient C4, applied as shown in Eq.
(49)). The results for these simulations are shown in Fig. 5 for the BIRE, with convergence determined and marked as
discussed for the single axis p, g, and r dispersions (see Eq. (72)).
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Fig. 5 BIRE single force or moment error dispersions.

Based on Fig. 5, the aerodynamic error bounds for the BIRE aircraft to be used in further Monte Carlo analysis are

prescribed to be
-0.24 < ec, < 0.50

ecs = +0.75
ec, = +£0.40
ec, = £0.75
ec,, = £0.75
ec, = £0.75

The 1-sigma values for the implemented force and moment errors are thus

(75)

gicy = 0.07
O1cs = 0.25
oic,, =0.12
o1c, =0.25
oic, =025
oic, =0.25

(76)

The BIRE aircraft is sensitive to error in lift coefficient. This is because the amount and direction of lift on the BIRE
tail can significantly affect stability. Notably, though the BIRE is sensitive to yaw rate r dispersions, the BIRE is not
sensitive to error in the aircraft yawing moment coefficient C,,. The BIRE is also sensitive to error in the drag coefficient
Cp.

D. Monte Carlo Simulations with Perturbations

Aerodynamic model error and turbulence were applied to the Monte Carlo dispersions to determine the robust
properties of the BIRE controller. Monte Carlo simulations are shown in Fig. 6. In each case the aircraft is initialized at
trim with a random normal dispersion in p, g, and r, and simulated 1000 times for 15 seconds with and without random
normal aerodynamic forces and moment error (as in Eq. (76)) and 1ight turbulence. The convergence criterion was
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the same as discussed for the single axis p, g, and r dispersions, given in Eq. (72). Note, the turbulence signal was
pre-computed and linearly interpolated in between time steps to speed up case run time.
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Fig. 6 BIRE simulations with various disturbance types.

Figure 6 shows the effect of turbulence and model error on the BIRE aircraft. The majority of the simulations
converge within 3 seconds, with some in each case converging between 3 and 15 seconds. Light turbulence caused a
1.6% decrease in controller success, with error also causing a 1.6% decrease in success. The additive case of error
and turbulence had a greater effect (7.6%). The BIRE cases which take greater time to converge tend to occur on the
largest combined dispersions in the yaw rate and pitch rate of the same sign (i.e. +p+r and -p-r). With such large initial
condition dispersions, these results are acceptable for the BIRE aircraft controller. The unconverged cases generally lie
on or near the border of the region of attraction.

E. Frequency Domain

A key aspect of the control design are the controller properties in the frequency domain. One fundamental metric of
the control design are the input singular values. For multiple-input multiple output systems, desireable singular values
are (for the minimum singular value) large at low frequencies and (for the maximum singular value) small at high
frequencies [7]. The input singular values for the BIRE aircraft are shown in Fig. 7.
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Fig.7 BIRE controller input singular values.

The singular value curves for the throttle and BIRE actuator are poorly shaped. Inspection of time-domain results
suggests these actuators are little used, and these facts motivate the following question: how does the BIRE aircraft
perform if BIRE and throttle setting are excluded from the control design?

F. Controller Performance Excluding 65, 7

Neglecting inputs for a control design involves removing columns from the control matrix B and columns and rows
from the input weightings matrix R. Note that the system remains controllable with these two columns removed. The
closed-loop system eigenvalues for the BIRE control design neglecting 6, 7, and 6 g and T are

~13.4586 + 0 ~13.4586 + 0 ~13.4586 + 0/
~5.8018 +0; ~5.8018 + 0; ~5.8018 + 0;
~0.0995 + 0 —0.0031 +0; —0.0031 +0;

~0.5214 + 0.3568; ~0.5218 + 0.3564; ~0.5218 + 0.3564;

Ay sy = |-0.5214 03568 | . Aoy = [-0.5218 =03564j |, Ao 50 7= |-05218 03564  (77)
~1.0108 + 0/ ~1.0108 +0; ~1.0108 +0;
~1.4346 + 0 ~1.4351+0; ~1.4346 + 0/
~1.2847 +0; ~1.2847 +0; ~1.2847 +0;
~1.3396 + 0/ ~1.3391 +0; ~1.3396 +0;

The closed-loop dynamics are minimally effected by neglecting either or both of the BIRE and throttle inputs. Comparing
to the full input closed-loop eigenvalues in Eq. (70) shows the effect of neglecting control effectors from the control
design. Neglecting the BIRE mechanism has minor effect on certain modes and neglecting the throttle setting has minor
effects on other modes. Notably neglecting the BIRE most only affects lateral handling qualities and neglecting the
throttle most only affect longitudinal handling qualities.

Convergence success rates for each type of control design are presented in Table 6. Each case with error is run with
the same error 1-sigma values shown in Eq. (76), and each case with turbulence is run on a 1ight setting, with all
cases having initial condition dispersions as in Eq. (74).
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Error Turbulence 6,7 68,7 6. ¥ 66,7
98.7% 97.5% 98.4% 96.9%

v 97.1% 96.5% 97.1% 93.7%
v 97.1% 96.4% 87.7% 86.8%
v v 91.1% 91.7% 79.5% 76.7%

Table 6 Monte Carlo simulations convergence success for controllers excluding 6, 7.

Neglecting only the BIRE actuator results in at most a 1.2% decrease in success, and neglecting only the throttle
command results in a decrease of at most 11.6%. Excluding both control effectors results in at most a 14.6% decrease
in convergence success. This suggests the BIRE and throttle could be neglected from the control design with minor
consequence. A final justification for this decision is given in Fig. 8.
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Fig. 8 BIRE controller excluding 3, T input singular values.

Neglecting both the BIRE mechanism and throttle setting from the control design results in acceptable controller
performance input properties. As shown in Fig. 8 it would be preferable to neglect the BIRE actuator from the control
design. Though the throttle input singular values in Fig. 8a are more desirable than those for the BIRE in Fig. 8b, these
results show the throttle setting may be better incorporated in a different control design. Similarly, the convergence
successes in Table 6 suggest the BIRE actuator can be dropped with no consequence, and throttle should be removed
from the stabilizing control law and included as input to a different control loop (i.e. a speed controller). Whether
the BIRE control design includes or excludes the BIRE and throttle inputs, each controller is robust in time-domain
analyses, with greater success when only neglecting the BIRE actuator.

VI. Conclusion

A stabilizing controller was built for the bio-inspired variant of a statically-unstable baseline fighter aircraft. Because
actuator capabilities form a crucial component of control performance, the present paper outlined the control design for
the BIRE aircraft with first-order actuator dynamics, deflection limits, and rate limits. The EOM Euler angle formulation
was presented. First-order actuator dynamics were then incorporated into the aircraft dynamics. The linearized EOM
were given and the linearized system was calculated for each aircraft trimmed in steady level flight at the Air Combat
Maneuver Condition.

Analyses were performed to evaluate the BIRE controller, with the aircraft Earth-fixed x- and y-positions and heading
angle ¢ states removed from the state feedback control design. An LQR controller was designed and presented for the
BIRE aircraft. Weightings were chosen for quality performance as determined in time-domain and frequency-domain
analyses. While the BIRE aircraft has instabilities in the uncontrolled system, the closed-loop system has stable
eigenvalues with acceptable response characteristics.

Time-domain performance of the controller was assessed based on Monte Carlo simulations with initial condition
dispersions, atmospheric turbulence, and aerodynamic force and moment errors. Frequency-domain performance
was assessed based on input singular values. The BIRE mechanism and throttle setting are not used significantly in
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simulation of the BIRE aircraft. As shown in time-domain and frequency-domain analyses, the BIRE control input can
be neglected from the control design with minimal effect.

Further control development for this bio-inspired fighter is recommended, particularly using nonlinear techniques
which may be more suited for the BIRE system. In further control development it may be more appropriate to feedback
total velocity and aerodynamic angles rather than the body-fixed aircraft velocities. Further work should examine
controller performance at multiple trim conditions by varying altitude, airspeed, as well as steady-coordinated turns. In
such analyses it would be prudent to examine whether the BIRE and throttle inputs can also be neglected in control
design at these conditions. Further work should study implementation of a tracking control design for the BIRE aircraft.

A. Aircraft Properties
A. Aircraft Geometric and Mass Properties

Table A.1 Baseline and BIRE shared geometric and angular momentum characteristics.

Property Value
Sy [ft] 300
b,y [ft] 30
Cw [ft] 11.32

hy, [slugs-ft*/sec] 160
hy, [slugs-ftzlsec] 0
hy, [slugs-ft*/sec] 0

Table A.2 Baseline weight and inertia characteristics.

W [Ibf] 20500
Ly, [slugs-ft’] 9496
Iyy, [slugs-ft*’] 55814
Iz, [slugs-ft’] 63100
Ly, [slugs-ft*] 0
I, [slugs-ft’] 982
Iyz, [slugs—ftz] 0

Table A.3 BIRE weight and inertia characteristics.

W [Ibf] 21000

A [slugs—ftz] w 1) z [slugs-ftz]
Iy, 0 0 0 9280
Ly, -160.8070 2 1.5708 58287.8610
L.z, 160.8350 2 15708 65605.6027
Iyy, 0 0 0 0
Iy, 0 0 0 -5
Iyz, -160.5850 2 0 160.5850
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B. Aircraft Aerodynamic Model Coefficients

Table A.4 Baseline aerodynamic model force coefficients.

Coefficient  Value
Cr, 0.0456
CL.a 3.5791
Crg 3.3916

CLs. 05652
Csp  -0.9009
Csp  -0.0153

Cs.p 03318
Cs.7 0.4357

Cs.s,  0.0656
Cs.s, 0.1698
Cpy 0.0218

Cpr  -0.0340
Cpp2  0.1834
Cps:  0.6081
Cpsp 00768
Cpg 0.0368
Cpig 07750
Cprzg 01844
Cpsr  -0.7239
Cp.s,  -0.0032
Cprs. 01775
Cps 02854
Cpss, 01118
Cp.ss,  0.1604
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Table A.5 Baseline aerodynamic model moment coefficients.

Coefficient  Value

Crp  -0.0786
Crp  -0.3182
Cr.r 0.0469

Crrr 0.1067
Crs,  -0.0741

Cr.s, 0.0257
Cumo -0.0097
Cma  0.1766
Cmg 48503

Cm.s, -0.5881
Cnp 0.2426
Cnp 0.0131
Cu.Lp -0.1005
Cn.7 -0.1787
Cu,s, -0.0276
Cnrs, 00077
Cn,s, -0.0899
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Table A.6 BIRE aerodynamic model force coefficients.

Coeflicient A w ¢ z
Cr, -0.0144 2 15708 0.0621
CrLa 0.1091 2 1.5708 3.5469
Crp 0.7216 2 0 0
Crp 0 0 0 0
Crg 20262 2 15708 1.5469
Cri 0.6798 2 0 0
Crs, 0 0 0 -0.0007
Cp.om 0.7646 1 1.5708 -0.1822
Cs, -0.0106 2 0 0
Cs.a 0.1834 2 0 0
Csp 0.6805 2 1.5708 -0.8493
Cs.p 0 0 0 -0.0022
Cs.Lp 0.0192 2 15708 0.2233
Csg 1.9916 2 0 0
Cs.r -0.6134 2 1.5708 0.5976
Cs.s, 0.0015 2 1.5708 -0.0524
Cs. 55 0.7352 1 0 0
Cp, 0 0 0 0.0209
Cp.r 0 0 0 -0.0332
Cp 12 0.0047 4 15708 0.1767
Cp.s 0.0255 2 0 -0.0000
Cp.s 03082 2 1.5708 0.6364
Cp.p 0 0 0 0
Cp.sp 0 0 0 0.0013
Cp.g 0 0 0 0.0261
Cp.rg 0.3883 2 1.5708 0.3700
Cp.12g 0 0 0 -0.0303
Cp.r 0 0 0 0
Cp.sr 0 0 0 -0.1146
Cp.s, -0.0079 2 0 0.0000
Cpss, 00492 2 15708 -0.0381
Cpsr 00061 1 15708 0.0015
Cprse 01830 1 15708 0
Cpsp2  -0.0950 1 15708 0.4244
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Table A.7 BIRE aerodynamic model moment coefficients.

Coeflicient A w ¢ z
C, 0.0002 2 0 0
Cr.a -0.0023 4 0 0
Crp 0.0017 2 1.5708 -0.0283
Cr.p 0.0040 2 1.5708 -0.3069
Ceg 0 0 0 0
Cer 0 0 0 0.0062
Crrr 0 0 0 0.1104
Cr.s, 0.0140 2 1.5708 -0.1065
Cr o5 0.0017 1 0 0
Cony 0.0164 2 1.5708 -0.0218
Con.a -0.1381 2 15708 0.2720
Conp 0.8299 2 0 0
Con.j 0.0102 2 0 0
Cng 23551 2 1.5708 -2.5457
Con.r -0.7667 2 0 0
Co.s, 0.0008 2 0 -0.0007
Cmos 09115 1 15708 0.2914
Cro 0.0048 2 0 0
Cra -0.0929 2 0 0
Cup 03176 2 15708 0.2804
Cup 0 0 0 0.0010
CuLp 00074 2 1.5708 -0.0621
Cug -0.9205 2 0 0
Coi 0.2894 2 1.5708 -0.2789
Cn.s. 0 0 0 0.0131
CnLs, 00169 2 15708 0.0411
C,os  -03527 1 0 0

B. Dynamics Linearization

Here is given the linearization for the system given in Eq. (50). As with the system description in Section II,
the linearization will be developed first from state and control derivatives of the incompressible acrodynamic model.
These will then be incorporated into the compressibility correction derivatives. With the propulsive derivatives, the
aerodynamic derivatives will then be included in the derivatives of the dimensional body-fixed forces and moments with
respect to aircraft state and input. A final formulated A and B matrix are then presented. Though this linearization is
performed with respect to the control input u, the subscript .4 is excluded from the nomenclature for brevity.

For convenience in the linearization process, note the following partial derivatives of the aerodynamic angles and
dimensionless rotation rates with respect to body-fixed velocity:

Vi Vi

Q’VX == > O/’VZ = (Bl)
b Vi, +V2 bVE + V2
Vo Vs V V/%b + VZZh Vyo Vo
By, =——F— Bv,=——5 — Bv,="—F—— (B.2)

’ > 2 b
V2 V2 4 V2 4 V2 V2 4 V2
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p,be =-p V2 s p,V_yb =-p V2 s p,VZb - - W
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A. Baseline Aerodynamic Force and Moment Derivatives with respect to State

(B.3)
(B.4)

(B.5)

The aerodynamic force and moment derivatives with respect to state will first be determined for the baseline aircraft.

The derivatives of lift coefficient with respect to state are

Crv,, =Croayv,, +Crqqv,,

CL ’ Vyb

= CL’qq_,Vyb
éL,VZb =Croayv, +CLgd.v,,
éL,q = CL,quon
The derivatives of side-force coefficient with respect to state are
Cs.v,, = CspBuv,, +Cs.LpCLay,, P+ (Cs.LpCL, +Cs.p)pv,, +Csifv,,
éS,Vy,, = CS,B:B,Vyh +(Cs,15Cr, + CS,ﬁ)ﬁ,Vyb + CS,?’:,Vyb
COS,VZ,, =CspBv., +Cs,1pCrav,, P+ (Cs,L5CrL, +Cs,5)P,v., +Csl v,
Cs.p = (Cs.15CL, +Cs.5)Rias
és,r = CS,FRlat

The derivatives of drag coefficient with respect to state are

C0‘1),\/xb = (CD,L +2Cp 12Cp, + (ZCD,quCLl + CD,Lq) q+ CD,L&,ﬁe) Cray,,
+(2Cp 52Cs, + Cp spp + Cp si7 + Cp 55,60 + Cp,s5,0r) Cs.pB.v,,
+CpspCs P, + (CD,quC]z_1 +Cp,LgCL, + CD,q) q.v,, +CpsiCs v,

éD,Vyb = (2Cp,52Cs, +Cp spp + Cp,si7 + Cp 56,64 + Cp,s6,6r) Cs pBv,,
+CpspCs Py, + (CD,L%;Cil +Cp,1gCr, + CD,q) 4.vy, +CpsiCsTv,,

Cowv, = (CD,L +2Cp 12Cp, + (2CD,L2qCLl + CDM) g+ CD,L(;C(;@) Crawv,,
+(2Cp 52Cs, + Cp spp + Cp si7 + Cp 55,60 + Cp,s5, 6r) Cs.pB.v,,
+CpspCs, P, + (CD,quCil +Cp,gCL, + CD,q) q.v., +CpsiCs T v,

Cp.p = Cp,s5Cs, Riar
Cpg= (CD,L%;CZ] +Cp,gCL, + CD,q) Rion
Cp.r = Cp,siCs, Riar
The derivatives of rolling moment coefficient with respect to state are
éf,vxb =CepByv,, +CepPv,, +CeriCrLay, I+ (CeL7CL +Cef)iy,,
Cev,, = CrpBuv,, +Cepp.v,, +(Co.LiCr, +Cr )y,

Cev,, =CepByv, +CepPv,, +CorrCrav, 7+ (CeiCrL +Ce i)y,
Cep=CepRiar
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(B.17)
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Cer = (Co,17Cr, + Cr7)Riar (B.25)

The derivatives of pitching moment coefficient with respect to state are

o

Cm,v,, = Cma,v,, +Cm,gq.v,, (B.26)
Cnvy, = Cmgd.v,, (B.27)
“m ey = Cma®y,, +Cngd.v., (B.28)

Cimg = Cm.gRion (B.29)

The derivatives of yawing moment coefficient with respect to state are

CQ'n,Vx,, = (Cn.LpP + Cn,L6,04) Crov,, +CupByv,, +(CorpCL, +Cnp)D,v,, +Cnilv,, (B.30)

Co‘n,vyb = Cn,ﬁﬁ,Vyh +(CppCr, + Cn,ﬁ)P_,Vyb + Cn,ff,Vyb (B.31)

én,Vz[) = (Cu,LpP +Cn,L5,64) Croa,v,, +CnpBv., +(CorpCL +Cnp)Pv,, +Cnilyv, (B.32)

Cp = (Cu15Cr,y + Cop) Riar (B.33)

én,r = Cn,leat (B34)

where
Rion = 2 (B.35)
lon = v .
by
Riar = 5 (B.36)

Note the following negligible derivatives for the baseline

Crp=Cr,=Cs3=Crg=Cnp=Cnr=Cnyg=0 (B.37)

B. Baseline Aerodynamic Force and Moment Derivatives with respect to Input
Next, the aerodynamic force and moment derivatives with respect to input for the baseline aircraft will be determined.
The derivatives of drag coefficient with respect to input are

Cp.s, = Cp,s5,Cs, (B.38)
éD,ée = CD,L&_,CLI + CD,(Se + 2CD,536e (B.39)
Cp.s, = Cp,ss,Cs, (B.40)

The derivatives of yawing moment coefficient with respect to input are
Cn.5, = Cn,Ls,CL +Cn,s, (B.41)

The following coefficients are equivalent to those shown in the aerodynamic model given in Egs. (8) — (15) (i.e.
Crs. =CLs,) . . . . . . .
Cr,5,-Cs,5,.Cs,5,.Cr,6,.Ce,5,»Cm,5.>Cn,s, (B.42)

Note the following negligible derivatives for the baseline

Cr.s,=Crs, =Cs.s,=Crs,=Cms,=Cms, =Cns, =0 (B.43)

C. BIRE Aerodynamic Force and Moment Derivatives with respect to State
The aerodynamic force and moment derivatives with respect to state will now be found for the BIRE. The derivatives
of lift coefficient with respect to state are

CLv,, =CLayv,, +CLpByv,, +CLpPv,, +CLGq.v,, +CLiT vV, (B.44)
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Crv,, =CLpBv,, +CL PV, +CLqqv, +CLiT v,

Cryv,, =Croayv, +CLpByv,, +CrLppv, +CLiq.v,, +CLiT Vv,

The derivatives of side-force coefficient with respect to state are

Cs.v,, = Cs.a,v,, +CspByv,, +Cs,.pCLa v, P+ (Cs,LﬁcLl + CS,ﬁ) Py, +Cs.qd.v,, +Csily,
Cs.v,, =CspByv,, + (CS,LﬁCLl + CS,ﬁ) Py, +Cs.qd.v,, +Csrly,
Cs,v., =Csayv, +CspPByv, +Cs1pCLav, P+ (Cs,LpCm + Cs,p) pv, +Csqdv, +Csrlyv,
Csp= (CS,LﬁCL1 + CS,ﬁ) Riar
CS,q = CS,quon
Cs.r =Cs #Riar

The derivatives of drag coefficient with respect to state are
CD»be = (CD,L + 2CD,L2CL1 + (ZCD,quCLl + CD,Lq') q + CD,L(Se(Se) CL,Ua»be

+ (CD,S +2Cp 52:Cs, + Cpospp+ Co.siF + C.ss, 5a) Cs.pBv,,

+ ( S,,Csl + CD p) p Va, + (CD L2 CL +CD LqCL1 + CD q) q Vi + (CD SrCSl +CD r) -VXb
Cp Vy, = ( p.s +2Cp 2Cs, +Cp spp + Cp 577 + Cp 55, 5a) éS,Bﬁ,Vyb
+ ( p.s5Cs, +Cp p) Py, (éD,qu'éil +CprgCr, + C'D,q) q.vy, + (CD,Sfésl + éD,f) vy,

D L+ 2CD,L2CL1 + (ZCD,qucLl + CD,Lq) q+ CD,Lﬁe(Se) CL,QCK,VZI)

+ ( D.S +2CD SzCS1 +Cp SpP + CD Srr+CD 5640 ) CA‘S,ﬁﬂ,vzb

+

"p.spCs, + CD,p) P, + (CD,quCLl +CpraCu, +CD,q) dv., + (CD,sts, +CD,f) Fv.,
Cp,p = DSﬁCSI"'CD,ﬁ)Rlat
Cpg=

(
(€

Cp,= (CD,SféSI + éD,F) Riar

Cp.r2aC2 +Cp1gCr +Co q) Rion

The derivatives of rolling moment coefficient with respect to state are
Cev,, =Cea,yv,, +CepByv, +Ceppv,, +Ceqqyv,, +CeLiCLay, T+ (Cf,LfCLl + Cé’,f) F Ve,

b

éé’,Vyb =CepBuv,, +Coppv,, +Cradv,, (Cé’ LrCr, +Ce r) vy

Cev,, =Craay, +CepByv, +Ceppyv, +Crqdv., +CoriCLoayv, T+ (CK,LFCLl + Ct’,f) v,

Cf,quon
Cor=(CoriCr,+Cor) Rian
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The derivatives of pitching moment coefficient with respect to state are

Ve, = Cma@.v,, +CnpBv,, +Cmpbve, +Cmgd.v,, + Cmifv,, (B.68)
Cmvy, = CnpBov,, +Cnpb vy, + Cimgd.vy, +Cmifvy, (B.69)
Cmv,, = Cma.v,, +CmpBuyv., +Cnpbv., +Cmigdv., +Cnifyv, (B.70)
Cimp = ConpRiar (B.71)
Cing = CmgRion (B.72)
Conr = Co7Riar (B.73)

The derivatives of yawing moment coefficient with respect to state are

Cuv,, = [(Cn,Lpﬁ +C.Ls, 5a) Cra+ Cn,a] ay,, +CupBy,, + (Cn,LpCLl + Cn,p) P, * Cngq.v,, +Cnil v,
(B.74)

én,vyb = én,ﬁﬂ,vyb + (én,LﬁéLl + én,ﬁ) Py, * én,qivyb +C ity (B.75)

Yb

Cuyv, = [(Cn,Lpﬁ + Cn,L6a5a) Cro+ Cn,(t] ay, +CupByv, + (Cn,LﬁCLI + Cn,ﬁ) pv., +Cngqyv, +Cnilyv,

(B.76)
én,p = (én,Lﬁéh + én,ﬁ) Ria B.77)
én,q = C,;n,q'Rlan (B.78)
Cur =CriRias (B.79)

D. BIRE Aerodynamic Force and Moment Derivatives with respect to Input
The aerodynamic force and moment derivatives with respect to input will now be found for the BIRE. The coefficient
derivatives with respect to BIRE angle will be denoted as

C = Awcos (wég + ¢) (B.80)
The derivatives of lift coefficient with respect to input are
éL,(SB = éLo + éL,Qa’ + éL,ﬁﬂ + éL,ﬁﬁ + éL,ch + C\;L,,:f + éL,éaéa + éL’(;éa(sf (B.81)

The derivatives of side-force coefficient with respect to input are

v 9

65,53 = CSO + és,aa’ + ég"gﬁ + (CS,LpéL] + éS,LpéL] + és’p) p+ Cs,qq + Cs 77 + éS,éaéa + (:15,5555 (B.82)
The derivatives of drag coefficient with respect to input are
COD,da = éD,s(saéS] + éD,éia (B.83)
Cp.s. =Cp s =Cp 1s8CL, +Cpy 55 +2Cp 58267 (B.84)
éD,53 = éDo + CD,LCLI + CA'D,LC‘Ll + éD,LZC%I + ZC\‘D’LzéL] éL]
+ éD,SéSI + éD,SéS] + éD,SZ éél + ZCA‘D,SZ éS] ésl

+ (CD Sﬁésl +éD,SﬁéSI + CD,ﬁ) P

+ (C‘D 124C3, +2Cp 124C1,Cr, + Cp,13Cry + Cp1gCry + Cp )
+(Cp.seCs, + Cp s7Cs, + C ) 7
+ (é D,Sé4 CSI +CD SSa CSI +CD Sa )5a + (CJ‘D’L(;ECA‘LI +CD,L5§éL1 +éD,6f)6f +éD,6§25fz

(B.85)
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The derivatives of rolling moment coefficient with respect to input are
Crion=Cuy+ Co.at+ Co g+ Copp+ Cogd+ (ConrCry + ConrCry + Cop) F 4+ Coos 00+ Coop6t  (BS6)
The derivatives of pitching moment coeflicient with respect to input are
Cm.os = Cmg + Conoa@ + CrupB+ Con P + Cin.gq + Con 77 + Cin6, 04 + C,py 5505 (B.87)

The derivatives of yawing moment coefficient with respect to input are

Cn.s, = Cn.Ls,Cr, +Cn.s, (B.88)
Coon = Cog + Cona+ CupB+ (CapCry + CopCry + Cop) P
+Cpgd + Co 7 + (én,Léa Cr +Cnrs,Cr, + én,éa) Oa+ Cv’n,(;g 658 (B.89)
where
Cr, =Cr,+CpL.oa (B.90)
Cs, = Cs, +Cs pf8 (B.91)

The following coefficients are equivalent to the BIRE-angle dependant coefficients shown in the aerodynamic model
given in Egs. (18) — (25) (i.e. Cr,s, = CL’(;(@ = CL,ch)

Cr,6.-Cr,6,-Cs,6,-Cs,6,:Ct,5,5Ct,6.- Cm, 50> Cm, 50> Cn, s, (B.92)

E. Stall Derivatives
As the evaluated trim condition of the aircraft is in steady level flight, well within the linear region of lift, the stall
derivatives are neglected from this formulation (i.e. Ca,, = Ca,y).

F. Compressibility Derivatives

Each of the incompressible derivatives given previously can be corrected for compressibility. The derivative
of an incompressible force or moment C4 with respect to a given state or input component v can be corrected for
compressibility using the chain rule as

Caw=Cye,Can+CamM, (B.93)
where
C”AcosA(‘/z 2 4
cos Acja [TRa[1 — M2 cos? Acjr + [W] —CacosAcpn
Cac, = , - - - (B.94)
Ca cosAC/z\/l - M?cos? Acjr + [%] + 7R, (1 - M?cos? Acpr + [%] )
Cacos A
Cam = 4 2/ 2 - (B.95)
C4 cos Ac C4 cos Ac Ca cos Ae
A(TA)/Z\/l — M2 COS2 Ac/z + [A(TA)/Z] +1- ]W2 COS2 Ac/Z + [W]
and
2Vy, 2Vy, 2v,,
M = , M = , M = B.96
Y, Va Vi Va Vap Va ( )
M,=M,=M,=Ms, =Ms,=Ms. =Mgs, =M,=0 (B.97)
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G. Propulsion Force Derivatives with respect to State
The state derivatives of the thrust model are

Ty = Tie.v + (Tmit,v = Taie.v) 58, P1 <50 (B.98)
' it v + (Tmax.v — Tmit V) 25520, Py > 50
Aset
Tset,V = (pﬁo) (Tset1 + 2Ter2V) (B.99)

Note, the effect of Earth-fixed altitude state (z ¢) on freestream air density and thrust model parameters was assumed to
be minor, and is neglected in this formulation.

H. Propulsion Force Derivatives with respect to Input
The input derivatives of the thrust model are

Pl T
T4 =T —==, <0.77
T, = (Tmit = Tidie) }§1OT T (B.100)
(Tmax — Tmil)ﬁ’ T>0.77
64.94, 1<0.77
. T (B.101)
217.38, 7v>0.77

I. Body-Fixed Force and Moment Derivatives with respect to State

The body-fixed force and moment derivatives with respect to state will be found using the defined aerodynamic
force and moment derivatives with respect to state given previously for the baseline or BIRE. Note, these equations
apply to either aircraft. The derivatives of the body-fixed x-force with respect to state are

Fxh,be = pSWbe (CLSQ - CgCaSﬁ - CDCQC[;)

1
+3 oV2S, (CL,vX,,Sa +C1Cay,, — Cs.v,, CaSp+CsSaSpay,, — CsCaCpPy,, (B.102)
1%
~Cp.v,, CaCp+ CpSaCpay,, + CDC(,S/;ﬁ,vxb) Ty
Fxb,Vy,, = pSWVyb (CLSQ - CSC(,S[; - CDCQCﬁ)
1 2
+ 2PV S (CL.V,V,, Sa = Cs.vy, CaSp ~ CsCaCpBLy,, (B.103)
VYb
—CD’Vyb C(yCB + CDCaSﬁ,B,Vyb) + TV7
FxbsVzb = PSszb (CLSQ - CSC[,S,; - CDC(,C/g)
1
+ szZSW (CLszb Sa + CLCaa/,VZb — CS»Vzb CQS/g + CssaS/ga’,VZb - CSCaC,Bﬁ,VZb (B.104)
1%
~Cp.v., CaCp + CpSaCpay,, +CpCaSpby., ) +T, v
1
Fopp = 5pvzsw (CL.pSa = Cs.pCaSp — Cp.pCaCp) (B.105)
1
Frpg = Epvzsw (CL.gSa = Cs.4CaSp — Cp.4CaCp) (B.106)
1
Fypr= EpVZSW (CLrSa = Cs.,CaSp — Cp.rCaCg) (B.107)

The derivatives of the body-fixed y-force with respect to state are
1
Fypv,, = PSuVa, (CsCp = CoSp) + 5pV*Su (Cs,vx,, Cp — CsSpBuv,, — Co.v,, Sp CDcﬁﬁ,vxb) (B.108)
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1
Fyntiy, = PSwVy, (CsCp = CoSp) + 3pVS,, (CS,Vyb Cp - CsSpB.v,, — Cp.v,, Sp — chﬁﬁ,vyh) (B.109)

1
Fy,.v., = PSwVz, (CsCp = CoSp) + 5pVS\ (CS,V% Cp - CsSpB.v., - Cp.v., Sp — CDC,;ﬁ,VZb) (B.110)

1

Fy,.p = 5PV*Sw (Cs.pCp = Cp,pSp) (B.111)
1

Fy,.q = 5PV2Sw (Cs.4Cp = Cp.qSp) (B.112)
1

Fyr = EszSW (Cs.rCs = Cp,rSg) (B.113)

The derivatives of the body-fixed z-force with respect to state are
sz,be = pSWbe (—CLC(, - CSS(,SB - CDSQCB)

1
+ EpVZSW (—CL’be Ca + CLSQO/’VXb - CS,be SaSﬁ - CSCaS,Ba',VXb - CSS(YCBﬂ,be (B.l ]4)

~Cp.v,, SaCp — CpCaCpary,, + CDSQSBB,V%)
Fg, vy, = pSwVy, (~CLCa = CsSaSp — CpSaCp)
+ %szSW (~Crv, Ca = Cs.1,, SaSp = CsSaCublvy, (B.115)
~Cb,v,, SaCp + CpSaSphv,,
Fyv., = PSwVe, (<CLCa = CsSaSp — CDSaCp)
+ %pvzsw (—CL,VZb Ca+CLSat v, —Csyv, SaSp—CsCaSpa,y, —CsSaCpP,v,, (B.116)

_CD,Vzb S(,Cﬁ - CDC(zC,Ba',Vzb + CDSa/Sﬁﬁ,VZb)

1

Fop= 5,ovzsw (~Cr.pCq = Cs.pSaSp — Cp.pSaCp) (B.117)
1

Foy= EpvQSw (~C1L.4Ca = Cs,4SaSs — Cp.4SaCp) (B.118)
1

Fy,= Eszsw (~Cr.,Co — Cs.+SaSp — Cp.rSaCp) (B.119)

The moment derivatives are performed on equations formulated to include an offset in the center of gravity, as

My, b,,Cy Fy, Axcgq
My, | = =pV2Sw |GwCin | + | Fy, | X |Ayeq

2
M b, Cy F, AZcg

b

The derivatives of the body-fixed x-moment with respect to state are

1

My, v,, = pSwbwVe,Co+ Eszwang,VXb + Fy, vy, Dzeg = Fop vy, Ayeg (B.120)
1

My, v, = pSwbwVy,Ce+ Epvzswbwcg,vyb + Fy, vy, Azeg = Fzp vy, Ayeg (B.121)
1

My, v, =pSwbwVo,Cr+ Epv2swbwcg,v% + Fy,v., Azeg = Foy v, Ayeg (B.122)

1
My, p = EpVZSWchg,p +Fy, pAzeg — Fop pAYeg (B.123)
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1
My, q = EszSwaCg,q +Fy,q0%cq = Fz, gAY eg

1
Mxl,,r = EPVZSWbWC&r + Fyb,rAch - th,rAycg

The derivatives of the body-fixed y-moment with respect to state are
_ 1 -
My, v, = pSwiwVi,Cn + Epvzswcwcm,vxb + Fyy vy, Axeg = Fu, vy, Azeg
_ 1 _
Mybvvyb = PSwCwVy, Cm + EpVZSWCWCm’Vyb + FZb,Vyb Axcg = Fxb’Vyb Azeg

_ 1 _
MYb»Vzb = pSwaVzbcm + EPVZSwaCm,VZb + sz,VZb Axcg - Fxb,VZb Ach

My, p = %pvzswawcm,p +Fyp pAxcg — Fx,, pAZeg
My, .q = %pszwc‘ow,q + Fyy Mg = Fr, qDZcg
My, , = %szch‘ow,r + Fyp rAxeq — Fr, rAZeg
The derivatives of the body-fixed z-moment with respect to state are
My, v,, = PSwbwVy,Cp + %szwaan,vxb + Fu, v, Aeg = Fy vy, Ateg

1
M, v, = pSwbyVy, Cn+ Epv2swbwc,,,vyh + Frpvy, Ayeg = Fyp.v,, Axeg

1
MZh,Vzb = pSWbWVZh Cﬂ + EpVZSWbWC"aVzb + Fxb’vzb Aycg - F)’havzb Ang

1
My,.p = Epvzswbwcn,p + Fy, pAycg — Fy, pAxcg

P
1
Mz, q = Eszwaan,q + Fr, qAycg = Fy,.qAxcg
1
le,,r = Epvzswbwcn,r + Fxb,rAycg - Fyb,rAxcg

J. Body-Fixed Force and Moment Derivatives with respect to Input

(B.124)

(B.125)

(B.126)
(B.127)

(B.128)

(B.129)
(B.130)

(B.131)

(B.132)
(B.133)

(B.134)

(B.135)
(B.136)

(B.137)

The body-fixed force and moment derivatives with respect to input will now be determined. Note, these equations

also apply to either aircraft. The derivatives of the body-fixed x-force with respect to input are
Fy,.6, = %pVZSW (CL.5,8a = Cs,5,CaSp — Cp,5,CaCp)
Fap5,=Fy, o8 = %pVZSW (Cr.6.8a — Cs.5,CaSp — Cp.5,CaCp)
Fy.6, = %PVzSW (CL.6,Sa = Cs.5,CaSp = Cp.5,CaCp)

1
Fyy o5 = Epvzsw (Cr.65Sa = Cs,65CaSg — Cp.55CaCp)
Fx;,,'r = T,T

The derivatives of the body-fixed y-force with respect to input are

1
Fy,.s, = EPVZSW (Cs.5,Cp — Cp.5,5p)
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(B.139)
(B.140)

(B.141)
(B.142)

(B.143)



Fy,.s, =

F

1
.68 = szZSW (CS,(SeCﬁ - CD,(SC,S[%)

1
Fy,.5, = 5pV>Sw (Cs.6,Cp — Cp.5,5p)

2

1
Fy,.65 = 5PV>Sw (Cs.65Cs — Cp.555p)

2

The derivatives of the body-fixed z-force with respect to input are

sz"sa -

FZb,‘Se = sz,éf =

1
EszSW (~C1,5,Ca = Cs,5,8a58 = Cp,5,54Cp)

1
EPV2SW (-Cr,6,Ca — Cs,5,5458 = Cp,5,54Cp)

1
Fstgr = EpszW (—CL,(S,_C(, - CS’(eraSg - CD,5rSQCB)

1
Fay65 = 5PVSw (=CL.53 Ca = Cs,55SaSp = .55 SaCp)

The derivatives of the body-fixed x-moment with respect to input are

My, s,
Alxh’ée = Ale,éf

be,(sr

beﬁB

1
= EpVZSwaCg,(su +Fy,,6,0%cq = Fzy,5,8Ycq

1
= Epvzswbwcfﬁe + Fyb,6eAch - sz,éeAycg

1
= Epvzswbwcf,ér + Fyb,érAch - sz,érAycg

1
= Epvzswbwct’,élg + Fyb,ésAch - sz,égAycg

The derivatives of the body-fixed y-moment with respect to input are

MYb ,0a

My, 5. =M

yb.68
MYb,ér

My,

b,OB

M

Yb,T

1 _

= Epvzswcwcm,éa + sz,éancg - Fxb,éaAch
1 -

= Epvzswcwcm,ée + sz,(SeAxcg - Fxb,éeAch
1 -

= ipv2swcwcm,6r + sz,érAxcg - Fx;,,é,-Ach

1 _
= EpVQSWcWCm,éB + Fypy 550%cq — Fx,, 5502cg

= _Fxb,TAch

The derivatives of the body-fixed z-moment with respect to input are

M,

b>0a

M s, =M

25,68

MZb»6r

M,

b>0B

MZb,T

1

= Epv2swbwcn.6a + Fyy 6,8V cq = Fyy,5,0%cq
1

= Epvzswbwcn,éie + Fxb,éeAycg - Fyb,éeAxcg
1

= Epvzswbwcn,6r + Fxb,(srAycg - Fyb,érAxcg

1
= Epvzswbwcn,ég + Fxb,(SBAycg - Fyb,(SBAxcg

= Fxb,TAycg
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(B.144)
(B.145)

(B.146)

(B.147)
(B.148)
(B.149)

(B.150)

(B.151)
(B.152)
(B.153)

(B.154)

(B.155)
(B.156)
(B.157)

(B.158)
(B.159)

(B.160)
(B.161)
(B.162)

(B.163)
(B.164)



K. Linearized Formulation
The resulting linearized state dynamics matrix is

Avyv Avw Z Ay
A A zZ Z
Ay = |-V T (B.165)
Axv Z Z Ay,
4 Acw Z Acpe
where the body-fixed acceleration matrix components are
%Fxh,vxb %Fx;,,vyb +r %Fxh’vzb -q
AV’V = ‘Z;_VFyb»be -r %Fyb’vyb %Fyl”vzb +tp (B.166)
_%sz,vxb +q %sz,vyb -pP %sz,VZb
%Fxb,ﬁ %Fxb,q - VZb %Fxb rt Vyb
Av.w = %F)’b,P +Vz, %Fyh,q %Fyb r=Vx, (B.167)
_\%FZb,P - Vyb %FZb,q + be %FZbJ’
0 -Cy O
Av,g =g C¢C0 —S¢Sg 0 (B168)
=54Co —CySe O
the body-fixed angular-acceleration matrix components are
—be ’be be s‘/yb be szb
Aoy =M" My, v, Myv, My, (B.169)
_MZh,Vx,, Mzh»‘/yb MstVzb
[ besp MXb-q MXb,r 0 _th hyb
Aww=1"" My, p My,q My, |+| b, 0 —hy,
L Mzb,P Mzb,q MZb»r _hyb hxb 0
Liz,q = Ixy,r (Iyyb - Izz;,)r +21y7,q + Ixz,p (Iyyb - Izzb)q =2lyz, 1 = Iy, p
+ (Isz - IXxb)r = 2Lz, p — Iyz,q Ly, r = Iyz,p (Izzb - Ixxb)p + 25,1 + Ixy,q
(Ixxb - Iyyb)q + leybp + Iyzbr (Ixxb - Iyyb)p - 21xybq - Ixzbr Iysz - Ixzbq
(B.170)

In order to simplify the numerical computation, the analytic inverse of the inertia tensor will be defined, as

Ixxb _IXYb _Ixzb 1 Iyyb [ZZb - [,%Zb IxybIZZb + IXZnyZb IX)’nyZb + IXZbI)’Yb
-1
= = —lxy, Lyy, —lyg = m Loy, Loz, + Inz Iyzy, Lixy L2z, — I;zczb L, Iyz, + Ly, Ixz,
_Ibe _IyZb IZZb IxynyZb + Ibe Iyyb Ixxb Iyz;) + Ixyb Ixz:; IXXnyyb - I)zcyl,
(B.171)
where the determinant of the inertia tensor is
| = Ly, (Iyyhlzz;, - I?zh) - 2IX)’bIXZthZb - (I)zcyl,lzz;, + IJZ(ZI;IYYI)) (B.172)
the Earth-fixed velocity matrix components are
C(;Cw S¢SeC¢—C¢S¢, C¢S(~)C¢+S¢S¢,
Ax,v = |CoSy  S¢SeSy +CysCy  CySeSy — SsCy (B.173)

~So S4Co CyCo
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VnyQCl/, + szSl//

Axe = VnygSl(, - VZfC¢ szCHSl// -
vy, Co ~CoVs,
Vy, =CyVy, =SV,

Vep =SgVy, +CyVo,

S6SyVa,

- VZfSH

and the Earth-fixed orientation-rates matrix components are

(1 $484/Co
Ao =0 Cy
0 S4/Co

with the zero matrix

C¢SQ/C9
_S¢
Cy/Co

[C3Sa/Coq—S4Sa/Cor
—Spq - Cyr
(Copq —Sgr) [Co

1l
S O O

S O O
(=]

Ve CoCy = SaCyVe, —Vy;Cy = (VeySo+ CaVay, ) Sy

Vi, Sy + (Ve So + CoVi, ) Cy

0

(Seq+Cyr) /C5 O
0

(S¢6]+C¢V) Sg/Cé 0

(B.174)

(B.175)
(B.176)

(B.177)

(B.178)

(B.179)

Where some states are neglected (see Eq. (51)) from the feedback control design, the linearized state dynamics matrix is

Avyv  Ave zcyt Ay.Cl
A A zcT zcT
A= CApCT = | 7Y @ X - (B.180)
CxAx,V CxZ CXZCX CxAx,ng
CeZ CoAew Co.ZCT C.A..CT
where
C, = 100 (B.181)
‘1010 '
ci=lo o 1 (B.182)
The resulting linearized input dynamics matrix is
BV,u
BU) u
Brul = ’ (B.183)
Z4
Z4
where, for the baseline aircraft, the body-fixed acceleration and angular-acceleration matrix components are
g Fxb,éu Fxb,ée Fxb,ér Fxb,‘r
By, = W Fy, 6. Fyo.o. Fyy.o, 0 (B.184)
Fosa Faps. Fus, 0
be’da bevée beaér 0
Bou= [I]il Myhﬁa Myb,ée Myh,5r MYI;,T (B.185)
My,.s, Mz.s. Mz, Mz <
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and for the BIRE, the body-fixed acceleration and angular-acceleration matrix components are

g Fxbséa Fx,,,éf Fxba(sB Fxb,‘r
BV’M = W Fybséu Fyb,éf Fyb’(SB 0 (B'186)

Fr.5, sz,éf Fz,.68 0

Mxh,tsa Mxl,,éf P.sp 0

Byu= [i] My1;,5u Myb,5f 4.8 Myb,T + [i]

M., s, Mzb,éf Fsg Mz.x

-1

0
0 (B.187)
0

oS O O
SR
o O O

in which

e

D.,sg be,(SB (iyyb Zzb)qr + iyzb (612 - r2) + ixszq — dxy, pr

-1
4,55 | = || My,,65| + | Uzz — ixxb)pr + ibe (r2 - pz) + fxybqr -1y, pq (B.188)
_i, i

f,&g Mzb,(53 (ixxb yb)pq + ixyb (p2 - qZ) + iyszr — Ixz, qr

and (from Eq. (40))

P M,, 0 —hy, hy, - p (iyyb - izzb)qr + iyzb (q2 - ’"2) + fxszq - Axybpr
gl =My, | +]| hzy O —hy||q|+| ey = Lex,)Pr + Lxz, (P2 = p) + Ly, qr — Iy, Pq (B.189)
F M, _hyl, hx,, 0 1 L7 (fxxh - iyyb)Pq + fxyh (P2 - qz) + iyz;,Pr - ixthr
where the BIRE-angle derivative of the inverted inertia tensor is
01" = = adj (1) - il (B.190)
I I
Ly, oy, + Ly, L2z, = 2Ly, Iy, Iy Ip
adj (Iil) = I, ixXbiZZb + iXXhiZZb - 2ixz;;ixz1; I
Iy I Lixy Iy, + L Iy, = 20y, Ly,
(B.191)
Lo = Loy, oy + Loy, Logy + Ty Lyey, + Eg, Iy, (B.192)
I, = iXyb A)’Zb +jXYbiy2b +Ibeibe + Abeiyyb (B.193)
Lo = Loy Iyzy + Ly Iyzy + Loy, Lz, + Dy Iz, (B.194)

< PO o N RN PN PO NN A v oA
|I| - IXXb (I)’YbIZZb - Iyzb) + Ixxb (Iyyblzzz; + IyybIZZb - 21)’Zb1yzb) - 21xybIXZnyZb - 2Ixyb1x2b1yzz;

= 2Ly, Iz Iy = ey Ly, Iz + 13y, Lz + 20z, Lz, By, + 13, Iyy,) (BL195)

or for the specific case of the BIRE aircraft (fxyb = fxyb =l =1L =0)

o1 Lyy, Iz, + AX)/b vfzzg =2ly3, 1y, :xz;, :)’Zb :XZb :)’Yb i
(] = m {XZb{)’Zb Lxxp {ZZb XX YD = [1] m (B.196)
XZb Iyyb XXp Iyzb xxblyyb
|i| = Axxb(vyyb iZZb + Ayyb VZZb - 2iy2b iyzb) - A)Zczb iyyb (B.197)
and the zero matrix
00 00
Z;,=(0 0 0 O (B.198)
00 0 O

Where some states are neglected (see Eq. (51)) from the feedback control design, the linearized input dynamics matrix is

B BV,u
B=CBui=|_“""|=|Bwu (B.199)
CyZ,
Zq
C.Z



The inertia tensor components Iy, , Iyy,, I77,, Ixy,, and I, follow the format given in Eq. (17). I, however,
does not and follows the form
Iyz, = Alsin (wép + )| +2 (B.200)

thus having the BIRE-angle derivative

¢ sin (wdg + @) cos (wWdg + @)
lyz, = Aw sin (wdg + )] (.20

As noted by Bolander, this derivative is undefined when the BIRE angle 65 = 0°, £180°, and as stated by Bolander,
this derivative will be set to zero at these conditions [6]. The limit of this derivative as 6 g approaches zero is —1
approached from negative infinity and +1 approached from positive infinity. Taking both directions into account, and
when viewing the form of I vz, graphically, it can be readily seen that a value of zero is most appropriate for the cases of
op =0°,£180°.
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