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Evaluation of First-Order Actuator Dynamics and
Linear Controller for a Bio-Inspired Rotating

Empennage Fighter Aircraft

Benjamin C. Moulton∗, Matthew W. Harris†, Douglas F. Hunsaker‡,
Utah State University, Logan, UT, 84321

and James J. Joo§

U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, 45433-7402

This paper considers the problem of stabilizing a bio-inspired fighter aircraft variant at
its Air Combat Maneuver Condition. The aircraft equations of motion are linearized, and an
infinite-horizon linear quadratic regulator design is conducted for this aircraft. Included in the
dynamics are first-order actuator models, which have the effect of slowing actuator responses.
This is particularly important for the bio-inspired variant because it requires rotation of the
empennage, which has relatively large inertia. The bio-inspired variant open-loop system is
unstable in the short period and Dutch roll modes, which is mitigated in the closed-loop system.
Monte Carlo simulation responses to initial condition dispersions, aerodynamic model errors,
and atmospheric turbulence are presented for the controlled aircraft system. These simulations
demonstrate the robust properties of the presented control design. Discussion is dedicated to
control designs neglecting input from throttle and the rotating tail, and corresponding successes.
Whereas the bio-inspired variant aircraft can be successfully controlled without rotating tail
input, effects from neglecting throttle input show throttle should be included, but perhaps in an
alternate loop such as a speed controller.

I. Introduction

Next-generation aircraft will use novel structural, control, aerodynamic, and avionic techniques. One such proposed
innovative design is the bio-inspired rotating empennage (BIRE), in which the vertical tail is removed from a

statically-unstable baseline fighter aircraft similar to the F-16, and the empennage is allowed to rotate about the fuselage
axis. This design has various advantages and limitations, reported in previous and contemporary work on attainable
aerodynamic moments [1], structural design [2], static and dynamic stability [3, 4], static trim [5], and preliminary
control analyses [6].

The governing dynamics for aircraft flight-simulation are called the equations of motion (EOM). These equations
define the change over time of body-fixed velocities, body-fixed rotation rates, Earth-fixed position, and Earth-fixed
orientation. Each of these parameters have an 𝑥-, 𝑦-, or 𝑧-related component, resulting in 12 states for the second order
6 degree-of-freedom (DOF) aircraft. As the EOM do not incorporate actuator dynamics, this analysis will incorporate
additional equations describing the time rate-of-change of the first-order actuator response. Each actuator corresponds
to one of the four control effectors on each aircraft: ailerons, stabilators, rudder / BIRE mechanism, and throttle setting.
With feedback to these actuators the system can be controlled using optimal [7–11], nonlinear [12, 13], adaptive [14, 15],
or other control methodologies.

The basic control methodology used in the present work is the infinite horizon linear quadratic regulator (LQR)
method [16, 17]. This method entails minimizing quadratic costs based on weightings of the state and input incorporated
with linear system dynamics in the algebraic Riccati equation. LQR controllers are often used in aircraft controller
design [18–23], and have frequently been used to study the F-16 aircraft [24–33]. LQR techniques have also been used
to study the effect of actuator dynamics on aircraft control design [22, 32–35]. Many have specifically studied the F-16
aircraft using actuator dynamics [36], additionally using LQR techniques [33, 37], with the fully-coupled nonlinear
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EOM [38]. This work will differ from these works through inspection of the control implications of removing the
vertical tail from a statically unstable fighter aircraft and allowing the horizontal tail to rotate about the fuselage axis. A
drawing of the BIRE is shown in Fig. 1.

Fig. 1 Computer aided design drawing of the BIRE aircraft.

The simulation dynamics in the present work will use the aerodynamic models for the baseline and BIRE aircraft
established by Bolander et al. [5] which were developed using low-order aerodynamic tools on the aircraft geometry
reported by Nguyen et al. [39]. Previous control development in this body of work has focused on the development of a
linearized system and preliminary controllability and analyses of simulation response to gusts [6]. The purpose of the
present paper is to expand on previous control work, focusing on acceptable actuator design considering first-order
actuator dynamics and actuation-limiting rates. In this manuscript the aircraft dynamics and actuation limits are studied
through simulation using initial condition dispersions, aerodynamic model error, and atmospheric turbulence. The
controller performance is also examined in frequency domain analyses.

II. Aircraft Dynamics Model Overview
The aircraft dynamics models for the baseline and BIRE aircraft depend on the aircraft states: velocity in body-fixed

coordinates (axial velocity 𝑉𝑥𝑏 , side velocity 𝑉𝑦𝑏 , and normal velocity 𝑉𝑧𝑏 ), rotation rates in body-fixed coordinates
(roll rate 𝑝, pitch rate 𝑞, and yaw rate 𝑟), position in Earth-fixed coordinates (𝑥 𝑓 , 𝑦 𝑓 , 𝑧 𝑓 ), and orientation in Earth-fixed
coordinates (bank angle 𝜙, elevation angle 𝜃, and heading angle 𝜓). These states are aggregated in the state vector

𝑥 =

[
𝑉𝑥𝑏 𝑉𝑦𝑏 𝑉𝑧𝑏 𝑝 𝑞 𝑟 𝑥 𝑓 𝑦 𝑓 𝑧 𝑓 𝜙 𝜃 𝜓

]𝑇
(1)

These models also depend on the aircraft control effectors, each of which have an actuator and commanded control
component. The control effectors are: ailerons (𝛿𝑎), stabilators (𝛿𝑒 for baseline / 𝛿𝐵𝑒 for BIRE), rudder / BIRE mechanism
(𝛿𝑟 / 𝛿𝐵), and throttle setting (𝜏). These components are aggregated in the actuator state and control input vectors for
the baseline aircraft as

𝛿 =


𝛿𝑎

𝛿𝑒

𝛿𝑟

𝜏


, 𝑢 =


𝛿𝑎 𝑐𝑚𝑑

𝛿𝑒 𝑐𝑚𝑑

𝛿𝑟 𝑐𝑚𝑑

𝜏𝑐𝑚𝑑


(2)

and for the BIRE aircraft as

𝛿 =


𝛿𝑎

𝛿𝐵𝑒

𝛿𝐵

𝜏


, 𝑢 =


𝛿𝑎 𝑐𝑚𝑑

𝛿𝐵
𝑒 𝑐𝑚𝑑

𝛿𝐵 𝑐𝑚𝑑

𝜏𝑐𝑚𝑑


(3)

These equations also depend on the aerodynamic angles and total velocity

𝛼 = tan−1
(
𝑉𝑧𝑏

𝑉𝑥𝑏

)
(4)

𝛽 = sin−1
(
𝑉𝑦𝑏

𝑉

)
(5)
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𝑉 =

√︃
𝑉2
𝑥𝑏 +𝑉2

𝑦𝑏 +𝑉2
𝑧𝑏 (6)

where 𝛼 is the angle of attack, 𝛽 is the side-slip angle, and𝑉 is the total freestream velocity. Compressibility is accounted
for in the model via a correction factor, which is a function of mach number 𝑀 . Mach number is the ratio of the total
velocity 𝑉 and the freestream speed of sound 𝑎:

𝑀 =
𝑉

𝑎
(7)

Some terms on which the models depend and are referenced later are the freestream air density 𝜌, main wing area 𝑆𝑤 ,
main-wing mean aerodynamic chord 𝑐𝑤 , and main wing span 𝑏𝑤 . The freestream air density and speed of sound are
determined using a standard atmosphere model [40].

These aircraft states, inputs, and aircraft and freestream properties will be the fundamental parameters of the aircraft
model. The aircraft models will be described in the order in which equations are applied. First, the incompressible
aerodynamics of each aircraft are determined from the aircraft and actuator state. Next, these dimensionless forces and
moments are corrected for stall and then compressibility. The corrected aerodynamic coefficients are then used along
with the aircraft propulsive force to determine the dimensional body-fixed forces and moments. The aircraft states are
finally used with the calculated body-fixed forces and moments to determine the aircraft state and actuator dynamics.

A. Incompressible Aerodynamic Models
The wind coordinates aerodynamic force and body-fixed aerodynamic moment coefficients are determined using the

aerodynamic model for the baseline aircraft developed in [5]

𝐶̊𝐿 = 𝐶𝐿1 + 𝐶𝐿,𝑞̄𝑞 + 𝐶𝐿, 𝛿𝑒𝛿𝑒 (8)

𝐶̊𝑆 = 𝐶𝑆,𝛽𝛽 + (𝐶𝑆,𝐿 𝑝̄𝐶𝐿1 + 𝐶𝑆, 𝑝̄)𝑝 + 𝐶𝑆,𝑟𝑟 + 𝐶𝑆, 𝛿𝑎𝛿𝑎 + 𝐶𝑆, 𝛿𝑟 𝛿𝑟 (9)

𝐶̊𝐷 = 𝐶𝐷0 + 𝐶𝐷,𝐿𝐶𝐿1 + 𝐶𝐷,𝐿2𝐶2
𝐿1

+ 𝐶𝐷,𝑆2𝐶2
𝑆1

+ 𝐶𝐷,𝑆 𝑝̄𝐶𝑆1 𝑝 +
(
𝐶𝐷,𝐿2𝑞̄𝐶

2
𝐿1

+ 𝐶𝐷,𝐿𝑞̄𝐶𝐿1 + 𝐶𝐷,𝑞̄

)
𝑞 + 𝐶𝐷,𝑆𝑟𝐶𝑆1𝑟

+ 𝐶𝐷,𝑆𝛿𝑎𝐶𝑆1𝛿𝑎 +
(
𝐶𝐷,𝐿𝛿𝑒𝐶𝐿1 + 𝐶𝐷,𝛿𝑒

)
𝛿𝑒 + 𝐶𝐷,𝛿2

𝑒
𝛿2
𝑒 + 𝐶𝐷,𝑆𝛿𝑟𝐶𝑆1𝛿𝑟

(10)

𝐶̊ℓ = 𝐶ℓ,𝛽𝛽 + 𝐶ℓ, 𝑝̄𝑝 + (𝐶ℓ,𝐿𝑟𝐶𝐿1 + 𝐶ℓ,𝑟 )𝑟 + 𝐶ℓ, 𝛿𝑎𝛿𝑎 + 𝐶ℓ, 𝛿𝑟 𝛿𝑟 (11)

𝐶̊𝑚 = 𝐶𝑚0 + 𝐶𝑚,𝛼𝛼 + 𝐶𝑚,𝑞̄𝑞 + 𝐶𝑚,𝛿𝑒𝛿𝑒 (12)

𝐶̊𝑛 = 𝐶𝑛,𝛽𝛽 + (𝐶𝑛,𝐿 𝑝̄𝐶𝐿1 + 𝐶𝑛, 𝑝̄)𝑝 + 𝐶𝑛,𝑟𝑟 + (𝐶𝑛,𝐿𝛿𝑎𝐶𝐿1 + 𝐶𝑛, 𝛿𝑎 )𝛿𝑎 + 𝐶𝑛, 𝛿𝑟 𝛿𝑟 (13)

where
𝐶𝐿1 ≡ 𝐶𝐿0 + 𝐶𝐿,𝛼𝛼 (14)

𝐶𝑆1 ≡ 𝐶𝑆,𝛽𝛽 (15)

𝑝 ≡ 𝑝𝑏𝑤

2𝑉
, 𝑞 ≡ 𝑞𝑐𝑤

2𝑉
, 𝑟 ≡ 𝑟𝑏𝑤

2𝑉
(16)

from which are determined the incompressible coefficients for lift (𝐶̊𝐿), side-force (𝐶̊𝑆), drag (𝐶̊𝐷), rolling moment
(𝐶̊ℓ), pitching moment (𝐶̊𝑚), and yawing moment (𝐶̊𝑛). Subscripts following a comma denote the force or moment
derivative with respect to a given variable. For example, the term 𝐶ℓ, 𝛿𝑎 indicates the change in 𝐶ℓ with respect to 𝛿𝑎,
and the term 𝐶𝐷,𝐿2𝑞̄ indicates the change in the quadratic 𝐶𝐷,𝑞̄ term with respect to 𝐶2

𝐿1
. Truncated values for these

coefficient derivatives are reported in Tables A.4 and A.5.
In the aerodynamic model for the BIRE aircraft each coefficient is a function of the BIRE angle and takes the form

[5]
𝐶̂ = 𝐴 sin (𝜔𝛿𝐵 + 𝜙) + 𝑧 (17)

where 𝐴 is amplitude, 𝜔 is frequency, 𝜙 is phase, and 𝑧 is offset. The BIRE aerodynamic model is

𝐶̊𝐿 = 𝐶̂𝐿1 + 𝐶̂𝐿,𝛽𝛽 + 𝐶̂𝐿, 𝑝̄𝑝 + 𝐶̂𝐿,𝑞̄𝑞 + 𝐶̂𝐿,𝑟𝑟 + 𝐶̂𝐿, 𝛿𝑎𝛿𝑎 + 𝐶̂𝐿, 𝛿𝐵
𝑒
𝛿𝐵𝑒 (18)

𝐶̊𝑆 = 𝐶̂𝑆0 + 𝐶̂𝑆,𝛼𝛼 + 𝐶̂𝑆,𝛽𝛽 +
(
𝐶̂𝑆,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑆, 𝑝̄

)
𝑝 + 𝐶̂𝑆,𝑞̄𝑞 + 𝐶̂𝑆,𝑟𝑟 + 𝐶̂𝑆, 𝛿𝑎𝛿𝑎 + 𝐶̂𝑆, 𝛿𝐵

𝑒
𝛿𝐵𝑒 (19)
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𝐶̊𝐷 = 𝐶̂𝐷0 + 𝐶̂𝐷,𝐿𝐶̂𝐿1 + 𝐶̂𝐷,𝐿2𝐶̂2
𝐿1

+ 𝐶̂𝐷,𝑆𝐶̂𝑆1 + 𝐶̂𝐷,𝑆2𝐶̂2
𝑆1

+
(
𝐶̂𝐷,𝑆 𝑝̄𝐶̂𝑆1 + 𝐶̂𝐷, 𝑝̄

)
𝑝 +

(
𝐶̂𝐷,𝐿2𝑞̄𝐶̂

2
𝐿1

+ 𝐶̂𝐷,𝐿𝑞̄𝐶̂𝐿1 + 𝐶̂𝐷,𝑞̄

)
𝑞 +

(
𝐶̂𝐷,𝑆𝑟 𝐶̂𝑆1 + 𝐶̂𝐷,𝑟

)
𝑟

+
(
𝐶̂𝐷,𝑆𝛿𝑎𝐶̂𝑆1 + 𝐶̂𝐷,𝛿𝑎

)
𝛿𝑎 +

(
𝐶̂𝐷,𝐿𝛿𝐵

𝑒
𝐶̂𝐿1 + 𝐶̂𝐷,𝛿𝐵

𝑒

)
𝛿𝐵𝑒 + 𝐶̂𝐷,𝛿𝐵 2

𝑒
𝛿𝐵 2
𝑒

(20)

𝐶̊ℓ = 𝐶̂ℓ0 + 𝐶̂ℓ,𝛼𝛼 + 𝐶̂ℓ,𝛽𝛽 + 𝐶̂ℓ, 𝑝̄𝑝 + 𝐶̂ℓ,𝑞̄𝑞 +
(
𝐶̂ℓ,𝐿𝑟 𝐶̂𝐿1 + 𝐶̂ℓ,𝑟

)
𝑟 + 𝐶̂ℓ, 𝛿𝑎𝛿𝑎 + 𝐶̂ℓ, 𝛿𝐵

𝑒
𝛿𝐵𝑒 (21)

𝐶̊𝑚 = 𝐶̂𝑚0 + 𝐶̂𝑚,𝛼𝛼 + 𝐶̂𝑚,𝛽𝛽 + 𝐶̂𝑚, 𝑝̄𝑝 + 𝐶̂𝑚,𝑞̄𝑞 + 𝐶̂𝑚,𝑟𝑟 + 𝐶̂𝑚,𝛿𝑎𝛿𝑎 + 𝐶̂𝑚,𝛿𝐵
𝑒
𝛿𝐵𝑒 (22)

𝐶̊𝑛 = 𝐶̂𝑛0 + 𝐶̂𝑛,𝛼𝛼 + 𝐶̂𝑛,𝛽𝛽 +
(
𝐶̂𝑛,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑛, 𝑝̄

)
𝑝 + 𝐶̂𝑛,𝑞̄𝑞 + 𝐶̂𝑛,𝑟𝑟 +

(
𝐶̂𝑛,𝐿𝛿𝑎𝐶̂𝐿1 + 𝐶̂𝑛, 𝛿𝑎

)
𝛿𝑎 + 𝐶̂𝑛, 𝛿𝐵

𝑒
𝛿𝐵𝑒 (23)

where
𝐶̂𝐿1 ≡ 𝐶̂𝐿0 + 𝐶̂𝐿,𝛼𝛼 (24)

𝐶̂𝑆1 ≡ 𝐶̂𝑆0 + 𝐶̂𝑆,𝛽𝛽 (25)

where a ˆ indicates the term follows the format specified in Eq. (17). Truncated values for these coefficients are reported
in Tables A.6 and A.7.

B. Simulation Stall Model
The incompressible aerodynamics for the baseline and BIRE aircraft are first corrected for stall. A simple longitudinal

flat-plate stall model is applied, where the stall-corrected lift, drag, and pitching moment coefficients are determined
over a sigmoid transition to a flat-plate stall model from the aircraft aerodynamic model given in Eqs. (8)–(15) for
the baseline aircraft and in Eqs. (18)–(25) for the BIRE aircraft. The flat plate coefficients for lift [41, 42], drag, and
pitching moment can be approximated as

𝐶𝐿 plate = 2 sign𝛼 sin2 𝛼 cos𝛼 (26)

𝐶𝐷 plate = 2 sin3/2 |𝛼 | (27)
𝐶𝑚 plate = −0.8 sin𝛼 (28)

The sigmoid blending function can be found as [42]

𝜎 =
1 + 𝑒−𝑀 (𝛼−𝛼𝑏 ) + 𝑒𝑀 (𝛼+𝛼𝑏 )[

1 + 𝑒−𝑀 (𝛼−𝛼𝑏 )
] [

1 + 𝑒𝑀 (𝛼+𝛼𝑏 )
] (29)

where a value of 7 is used for the blending rate parameter 𝑀 , and a value of 45◦ is used for the stall-transition angle 𝛼𝑏.
These values were selected to best match the baseline aircraft lift coefficient wind tunnel data reported in [39]. The
blended values for the lift, drag, and pitching moment coefficients can be found as

𝐶́𝐿 = (1 − 𝜎)𝐶̊𝐿 + 𝜎𝐶𝐿 plate (30)

𝐶́𝐷 = (1 − 𝜎)𝐶̊𝐷 + 𝜎𝐶𝐷 plate (31)

𝐶́𝑚 = (1 − 𝜎)𝐶̊𝑚 + 𝜎𝐶𝑚 plate (32)

Note, the stall model is not applied to the lateral force and moments (i.e. 𝐶́𝑆 = 𝐶̊𝑆 , 𝐶́ℓ = 𝐶̊ℓ , 𝐶́𝑛 = 𝐶̊𝑛). This stall model
will be applied in the time domain simulations and neglected in the control design due to the minimal effect of the stall
model on the aircraft dynamics at the trim condition.

C. Compressibility
Next, compressibility is included in the aerodynamic model as a correction factor on the aerodynamic forces and

moments. The implemented correction was developed by Anderson [43], which for a force or moment coefficient 𝐶́𝐴 is

𝐶𝐴 =
𝐶́𝐴 cosΛ𝑐/2√︂

1 − 𝑀2 cos2 Λ𝑐/2 +
[
𝐶́𝐴 cosΛ𝑐/2

(𝜋𝑅𝐴)

]2
+ 𝐶́𝐴 cosΛ𝑐/2

(𝜋𝑅𝐴)

(33)
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where Λ𝑐/2 is the half-chord sweep angle and 𝑅𝐴 the aspect ratio of the lifting surface primarily responsible for the
incompressible force or moment coefficient 𝐶̊𝐴. Table 1 lists the values used in the correction factor for the baseline and
BIRE aircraft, respectively. Note the drag coefficient is not adjusted for compressibility (i.e. 𝐶𝐷 = 𝐶́𝐷).

Table 1 Compressibility correction values for each aircraft by force and moment, from Bolander [6].

baseline BIRE
Coefficient influencing surface Λ𝑐/2 [◦] 𝑅𝐴 influencing surface Λ𝑐/2 [◦] 𝑅𝐴

𝐶𝐿 main wing 23 3 main wing 23 3
𝐶𝑆 vertical stabilizer 38 1.29 horizontal stabilizer 22 2.116
𝐶ℓ vertical stabilizer 38 1.29 main wing 23 3
𝐶𝑚 main wing 23 3 main wing 23 3
𝐶𝑛 vertical stabilizer 38 1.29 horizontal stabilizer 22 2.116

D. Thrust Model
Both the baseline and BIRE aircraft share the propulsion model previously developed by Bolander [6]. The thrust

can be found using the engine percent power, given by Nguyen et al. [39] and Stevens and Lewis [7], as

𝑃1 =

{
64.94𝜏, 𝜏 ≤ 0.77

217.38𝜏 − 117.38, 𝜏 > 0.77
(34)

The percent power 𝑃1 is converted to total thrust as [6, 7, 39]

𝑇 =

{
𝑇idle + (𝑇mil − 𝑇idle) 𝑃1

50 , 𝑃1 < 50
𝑇mil + (𝑇max − 𝑇mil) 𝑃1−50

50 , 𝑃1 ≥ 50
(35)

The idle-, mil-, and max-setting total thrust values can be found from the the thrust model

𝑇set =

(
𝜌

𝜌0

)𝑎set (
𝑇set 0 + 𝑇set 1𝑉 + 𝑇set 2𝑉

2
)

(36)

where the coefficients 𝑎set, 𝑇set 0, 𝑇set 1, and 𝑇set 2 can be found from the fits developed by Bolander [6] for each setting as

𝑇set 𝑖 = 𝑐set 0 + 𝑐set 1𝐻 + 𝑐set 2𝐻
2 (37)

and the individual fit coefficients are given in Table 2.

Table 2 Thrust model fit coefficients [6].

Coefficient 𝑇idle 𝑇mil 𝑇max

𝑎

𝑐0 1.0104 1.0148 1.0225
𝑐1 × 105 2.9484 3.1355 3.1984
𝑐2 × 1010 -3.8270 -4.2106 -4.3617

𝑇0

𝑐0 [lbf] 3145 11716 20341
𝑐1 [lbf ft] -0.4185 0.1156 0.1454

𝑐2 × 105 [lbf ft2] 1.8313 0.3474 0.9283

𝑇1

𝑐0 [lbf ft / s] -4.3491 3.5689 1.9886
𝑐1 × 104 [lbf ft2 / s] -4.9703 0.1409 6.3926
𝑐2 × 108 [lbf ft3 / s] 1.3557 -0.3982 -2.4428

𝑇2

𝑐0 × 103 [lbf ft2 / s2] -0.2321 -3.9793 3.5201
𝑐1 × 107 [lbf ft3 / s2] 5.5629 2.6931 0.7574
𝑐2 × 1011 [lbf ft4 / s2] -2.0550 0.5281 2.6665
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E. Body-Fixed Aerodynamic Forces and Moments
Assuming the thrust to be aligned with the 𝑥-axis and located at the center of gravity, the body-fixed aerodynamic

and thrust forces (𝐹𝑥𝑏 ,𝐹𝑦𝑏 ,𝐹𝑧𝑏 ) and moments (𝑀𝑥𝑏 ,𝑀𝑦𝑏 ,𝑀𝑧𝑏 ) can be found as
𝐹𝑥𝑏

𝐹𝑦𝑏

𝐹𝑧𝑏

 =
1
2
𝜌𝑉2𝑆𝑤


𝐶𝐿𝑆𝛼 − 𝐶𝑆𝐶𝛼𝑆𝛽 − 𝐶𝐷𝐶𝛼𝐶𝛽

𝐶𝑆𝐶𝛽 − 𝐶𝐷𝑆𝛽

−𝐶𝐿𝐶𝛼 − 𝐶𝑆𝑆𝛼𝑆𝛽 − 𝐶𝐷𝑆𝛼𝐶𝛽

 +

𝑇

0
0

 (38)


𝑀𝑥𝑏

𝑀𝑦𝑏

𝑀𝑧𝑏

 =
1
2
𝜌𝑉2𝑆𝑤


𝑏𝑤𝐶ℓ

𝑐𝑤𝐶𝑚

𝑏𝑤𝐶𝑛

 (39)

F. Equations of Motion
The aircraft EOM are used to determine the time rate-of-change of the aircraft states. The differential equations

governing aircraft motion are given in Eq. (40). The EOM depend on the aircraft state and aerodynamic forces and
moments, as well as the moments and products of inertia (𝐼𝑥𝑥𝑏 ,𝐼𝑦𝑦𝑏 ,𝐼𝑧𝑧𝑏 and 𝐼𝑥𝑦𝑏 ,𝐼𝑥𝑧𝑏 ,𝐼𝑦𝑧𝑏 ), and angular momentum
(ℎ𝑥𝑏 ,ℎ𝑦𝑏 ,ℎ𝑧𝑏 ). Note, 𝐶𝜒 and 𝑆𝜒 indicate the cosine or sine of an angle 𝜒, respectively.

¤𝑉𝑥𝑏

¤𝑉𝑦𝑏
¤𝑉𝑧𝑏

 =
𝑔

𝑊


𝐹𝑥𝑏

𝐹𝑦𝑏

𝐹𝑧𝑏

 + 𝑔

−𝑆𝜃
𝑆𝜙𝐶𝜃

𝐶𝜙𝐶𝜃

 +

𝑟𝑉𝑦𝑏 − 𝑞𝑉𝑧𝑏
𝑝𝑉𝑧𝑏 − 𝑟𝑉𝑥𝑏

𝑞𝑉𝑥𝑏 − 𝑝𝑉𝑦𝑏


¤𝑝
¤𝑞
¤𝑟

 =


𝐼𝑥𝑥𝑏 −𝐼𝑥𝑦𝑏 −𝐼𝑥𝑧𝑏
−𝐼𝑥𝑦𝑏 𝐼𝑦𝑦𝑏 −𝐼𝑦𝑧𝑏
−𝐼𝑥𝑧𝑏 −𝐼𝑦𝑧𝑏 𝐼𝑧𝑧𝑏


−1 


𝑀𝑥𝑏

𝑀𝑦𝑏

𝑀𝑧𝑏

 +


0 −ℎ𝑧𝑏 ℎ𝑦𝑏

ℎ𝑧𝑏 0 −ℎ𝑥𝑏
−ℎ𝑦𝑏 ℎ𝑥𝑏 0



𝑝

𝑞

𝑟


+


(𝐼𝑦𝑦𝑏 − 𝐼𝑧𝑧𝑏 )𝑞𝑟 + 𝐼𝑦𝑧𝑏 (𝑞2 − 𝑟2) + 𝐼𝑥𝑧𝑏 𝑝𝑞 − 𝐼𝑥𝑦𝑏 𝑝𝑟
(𝐼𝑧𝑧𝑏 − 𝐼𝑥𝑥𝑏 )𝑝𝑟 + 𝐼𝑥𝑧𝑏 (𝑟2 − 𝑝2) + 𝐼𝑥𝑦𝑏𝑞𝑟 − 𝐼𝑦𝑧𝑏 𝑝𝑞
(𝐼𝑥𝑥𝑏 − 𝐼𝑦𝑦𝑏 )𝑝𝑞 + 𝐼𝑥𝑦𝑏 (𝑝2 − 𝑞2) + 𝐼𝑦𝑧𝑏 𝑝𝑟 − 𝐼𝑥𝑧𝑏𝑞𝑟




¤𝑥 𝑓
¤𝑦 𝑓
¤𝑧 𝑓

 =


𝐶𝜃𝐶𝜓 𝑆𝜙𝑆𝜃𝐶𝜓 − 𝐶𝜙𝑆𝜓 𝐶𝜙𝑆𝜃𝐶𝜓 + 𝑆𝜙𝑆𝜓
𝐶𝜃𝑆𝜓 𝑆𝜙𝑆𝜃𝑆𝜓 + 𝐶𝜙𝐶𝜓 𝐶𝜙𝑆𝜃𝑆𝜓 − 𝑆𝜙𝐶𝜓

−𝑆𝜃 𝑆𝜙𝐶𝜃 𝐶𝜙𝐶𝜃



𝑉𝑥𝑏

𝑉𝑦𝑏

𝑉𝑧𝑏


¤𝜙
¤𝜃
¤𝜓

 =


1 𝑆𝜙𝑆𝜃/𝐶𝜃 𝐶𝜙𝑆𝜃/𝐶𝜃

0 𝐶𝜙 −𝑆𝜙
0 𝑆𝜙/𝐶𝜃 𝐶𝜙/𝐶𝜃



𝑝

𝑞

𝑟



(40)

Equations (4)–(40) can be summarized as
¤𝑥 = 𝑓 (𝑥, 𝛿) (41)

G. Actuator Dynamics
The implemented first-order actuator model is

¤𝛿𝑖 = 𝜎𝑖 (𝑢𝑖 − 𝛿𝑖) (42)

for commanded input 𝑢𝑖 and actuator state 𝛿𝑖 with gain 𝜎𝑖 . The actuation rates model is thus applied as

¤𝛿 =


¤𝛿𝑎
¤𝛿𝑒
¤𝛿𝑟
¤𝜏


= Υ (𝑢 − 𝛿) =


𝜎𝛿𝑎 0 0 0

0 𝜎𝛿𝑒 0 0
0 0 𝜎𝛿𝑟 0
0 0 0 𝜎𝜏


©­­­­«

𝛿𝑎, 𝑐𝑚𝑑

𝛿𝑒, 𝑐𝑚𝑑

𝛿𝑟 , 𝑐𝑚𝑑

𝜏𝑐𝑚𝑑


−


𝛿𝑎

𝛿𝑒

𝛿𝑟

𝜏


ª®®®®¬

(43)
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or in the case of the BIRE,

¤𝛿 =


¤𝛿𝑎
¤𝛿𝐵𝑒
¤𝛿𝐵
¤𝜏


= Υ (𝑢 − 𝛿) =


𝜎𝛿𝑎 0 0 0

0 𝜎𝛿𝐵
𝑒

0 0
0 0 𝜎𝛿𝐵 0
0 0 0 𝜎𝜏


©­­­­«

𝛿𝑎, 𝑐𝑚𝑑

𝛿𝐵
𝑒, 𝑐𝑚𝑑

𝛿𝐵, 𝑐𝑚𝑑

𝜏𝑐𝑚𝑑


−


𝛿𝑎

𝛿𝐵𝑒

𝛿𝐵

𝜏


ª®®®®¬

(44)

The first-order lag values reported by Nguyen et al. used in the actuator model are given in Table 3. Note, the values for
the BIRE actuator were estimated based on the first-order lag of the other control effectors and preliminary mechanical
analyses.

Table 3 Actuation rates and limits for control surfaces on the baseline and BIRE aircraft [39].

Input 𝛿𝑎 𝛿𝑒 𝛿𝑟 𝛿𝐵 𝜏

First-Order Lag [s] (1/𝜎𝑖) 0.0495 0.0495 0.0495 0.0495


1.0, 𝜏 < 0.3

1 /(2.35 − 4.5𝜏) , 0.3 ≤ 𝜏 < 0.5
10.0, 𝜏 ≥ 0.5

Input Limit (𝛿𝑖 𝑚𝑎𝑥) ± 21.5◦ ± 25◦ ± 30◦ ± 90◦ [0 1]
Actuation Rate Limit ( ¤𝛿𝑖 𝑚𝑎𝑥) ± 80◦/s ± 60◦/s ± 120◦/s ± 50◦/s -

The system in Eq. (43) for the baseline or Eq. (44) for the BIRE can be summarized as

¤𝛿 = 𝑔(𝛿, 𝑢) (45)

H. Aggregate System
The aircraft and actuator states can be aggregated as

𝑧 =

[
𝑥

𝛿

]
(46)

and used to form the full aggregated nonlinear dynamics as

¤𝑧 =
[
¤𝑥
¤𝛿

]
= ℎ(𝑧, 𝑢) =

[
𝑓 (𝑥, 𝛿)
𝑔(𝛿, 𝑢)

]
(47)

I. Disturbances and Uncertainties
A disturbance model was implemented in the present work for introducing turbulence into the aircraft aerodynamic

model. This disturbance model is an implementation of the von Kármán atmospheric turbulence model. The model was
developed using the von Kármán turbulence velocity spectra [44, 45] and Department of Defense recommended angular
rates spectra [44] using the sum-of-sines method outlined by Beal [45]. The disturbance in 𝑉𝑥𝑏 , 𝑉𝑦𝑏 , 𝑉𝑧𝑏 , 𝑝, 𝑞, and 𝑟
were each found as a sum of sines. For example, the body-fixed disturbance 𝑥𝑏-velocity is computed as

𝑉𝑥𝑏 𝑡𝑢𝑟𝑏 = 𝐴𝑥𝑏 𝑡𝑢𝑟𝑏

𝑛∑︁
𝑖=0

sin (𝜔𝑖𝑥𝑘 + 𝜙𝑖) (48)

where 𝜔𝑖 represents the individual frequencies, 𝜙𝑖 represents the individual random phases, and 𝐴𝑥𝑏 𝑡𝑢𝑟𝑏 is the signal
amplitude. The spatial coordinate 𝑥𝑘 was determined as a 𝑥𝑘 = 𝑉𝑘 𝑡𝑘 , where 𝑘 denotes a discretized time in simulation.
These disturbances were combined with the state at time 𝑡𝑘 to determine aerodynamic forces and moments from Eqs.
(8)–(15) for the baseline and from Eqs. (18)–(25) for the BIRE.

This sum-of-sines process assumes the turbulent flow field to be frozen in space. The method presented by Beal
entails dividing the velocity and angular rate spectral densities into equal area sections. The central frequency of each
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area, with fixed amplitudes (determined from the area of each section) and uniformly random phase shifts for each sine
wave, is used to form the summed sine waves defining the atmospheric noise. This turbulence model primarily depends
on the aircraft altitude, an integer number of frequencies for the sum-of-sines method, and a turbulence intensity setting
(trim altitude, 100, and light, respectively, unless otherwise specified).

In addition to a turbulence model, an uncertainty model was implemented to evaluate system response to uncertainty
in the aerodynamic forces and moments. This error was applied multiplicatively, shown on the lift coefficient as

𝐶𝐿 =
(
1 + 𝜖𝐶𝐿

)
𝐶𝐿 true (49)

where the dimensionless errors 𝜖𝐶𝐴
were selected for each force or moment coefficient 𝐶𝐴 from a random normal

distribution as a fixed value during each simulation. This error was applied to the aerodynamic forces and moments
coefficients immediately after they were corrected for compressibility. Note, an individual error could have been applied
to each of the coefficients in the aerodynamic models in Eqs. (8)–(15) and Eqs. (18)–(25) as well as the weight, inertia,
gyroscopic terms, and center of gravity location. However, it would be extremely difficult to summarize or state much
about the resulting analyses, due to the expansiveness of the stochastic variables and the requisite number of simulation
runs. Simulations performed by the authors showed that similar responses of the forces and moments of the aircraft
compared to the application of individual coefficient errors could be achieved by simply adding the multiplicative error
presented. For these reasons the multiplicative error was chosen as the aerodynamic model error implementation. The
effects of turbulence and model error are discussed in the controller performance results presented later.

III. Linearized Model and Properties
The nonlinear system given in Eq. (47) is linearized as a first step in developing the linear controller. This

linearization is performed in Appendix B. Note that the actuator dynamics are excluded from the control design. Thus,
the controller is designed for the system

¤𝑥 = 𝑓 (𝑥, 𝑢) (50)

The use of the function 𝑓 denotes the same dynamics as indicated in Eq. (41) with merely a change in the input to the
system (commanded control 𝑢 replacing actuator states 𝛿).

A. Linearized System
In the control design of the linearized system only a portion of the state will be fed back, which is

Δ𝑥 =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0



(𝑥 − 𝑥𝑡𝑟 ) = 𝐶 (𝑥 − 𝑥𝑡𝑟 )

Δ𝑢 = 𝑢 − 𝑢𝑡𝑟

(51)

The terms Δ𝑥 and Δ𝑢 denote the difference in the linearized state and control from the trim state and control (𝑥𝑡𝑟 , and
𝑢𝑡𝑟 ), respectively. The 𝐶 matrix as we have defined it reduces the state, removing the 𝑥 𝑓 , 𝑦 𝑓 , and 𝜓 states. These states
are removed because they have no effect on the trim condition of the aircraft (due to the flat-Earth EOM in Eq. (40)).
The system in Eq. (50) can be linearized following the process outlined in Appendix B to form the linear system

Δ ¤𝑥 = 𝐴| (𝑥𝑡𝑟 ,𝑢𝑡𝑟 ) Δ𝑥 + 𝐵| (𝑥𝑡𝑟 ,𝑢𝑡𝑟 ) Δ𝑢 (52)

where the state matrix 𝐴 is given symbolically in (B.180) and control matrix 𝐵 is given symbolically in (B.199). In
order to evaluate the linearized system matrices a trim state and control must be found such that

¤𝑥 = 𝑓 (𝑥𝑡𝑟 , 𝑢𝑡𝑟 ) = 0 (53)
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In this work a trim algorithm is used to numerically determine 𝑥𝑡𝑟 and 𝑢𝑡𝑟 (note 𝛿𝑡𝑟 = 𝑢𝑡𝑟 ) as outlined in [6] using the
Newton-Raphson method [46].

B. Numerical Models at the Air Combat Maneuver Condition Trim Point
The system given in (52) can be evaluated at the Air Combat Maneuver Condition [6, 47, 48] (15,000 ft altitude

above sea level, Mach number 0.6, steady level flight). The trim condition for the baseline at the Air Combat Maneuver
Condition is

𝑥𝑡𝑟 =



633.7185
0

29.6840
−0
0
0
0
0

−15000
0

0.0468
0



, 𝛿𝑡𝑟 =


0

−0.0030
0

0.2772


, 𝑢𝑡𝑟 =


0

−0.0030
0

0.2772


(54)

which results in the state and control matrices (recall the states 𝑥 𝑓 , 𝑦 𝑓 , and 𝜓 have been removed from this matrix, as
shown in Eqs. (B.180) and (B.199))

𝐴 =



−0.0056 0 0.0548 0 −29.7176 0 0 0 −32.0926
0 −0.1848 0 29.8499 0 −632.4144 0 32.0926 0

−0.1340 0 −0.8499 0 629.2103 0 0 0 −1.5033
0 −0.0301 0 −1.9238 0.0003 0.4041 0 0 0

−0.0003 0 0.0056 0 −0.8753 −0.0029 0 0 0
0 0.0142 0 −0.0375 0.0025 −0.1560 0 0 0

−0.0468 0 0.9989 0 0 0 0 0 −634.4133
0 0 0 1 0 0.0468 0 0 0
0 0 0 0 1 0 0 0 0



(55)

𝐵 =



0 −0.7212 0 21.1331
8.3046 0 21.4957 0

0 −84.2119 0 0
−19.0435 0 6.2114 0

0 −11.8963 0 0
−1.2933 0 −3.3559 0

0 0 0 0
0 0 0 0
0 0 0 0



(56)
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The trim condition for the BIRE at the same condition (15,000 ft altitude above sea level, Mach number 0.6, steady level
flight) is

𝑥𝑡𝑟 =



633.7375
0

29.2742
−0
0
0
0
0

−15000
0

0.0462
0



, 𝛿𝑡𝑟 =


0

0.0007
0

0.2732


, 𝑢𝑡𝑟 =


0

0.0007
0

0.2732


(57)

At this trim condition the BIRE requires slightly less throttle command, due ot the lack of drag produced by a vertical
tail. Evaluating the 𝐴 and 𝐵 matrices at the trim state and control in Eq. (57) results in the state and control matrices
(recall the states 𝑥 𝑓 , 𝑦 𝑓 , and 𝜓 have been removed from this matrix, as shown in Eqs. (B.180) and (B.199))

𝐴 =



−0.0051 −0.0000 0.0529 0 −29.2933 0 0 0 −32.0936
0 −0.0458 0 29.4573 0 −633.7953 0 32.0936 0

−0.1347 −0.0000 −0.8463 0 629.1079 0 0 0 −1.4825
0 −0.0135 −0.0000 −2.3097 −0.0000 0.2295 0 0 0

−0.0002 −0.0000 0.0041 −0.0000 −0.8493 −0.0027 0 0 0
−0.0000 −0.0027 0 −0.0151 0.0004 0.0114 0 0 0
−0.0461 0 0.9989 0 0 0 0 0 −634.4133

0 0 0 1 0 0.0462 0 0 0
0 0 0 0 1 0 0 0 0



(58)

𝐵 =



−0.0044 −0.9987 −0.0000 20.6299
−7.8524 0 −0.5816 0
0.0957 −84.6130 −0.0000 0

−29.8253 0 −0.0129 0
−0.0104 −12.0443 0.0001 0
0.8468 −0.0294 0.0381 0

0 0 0 0
0 0 0 0
0 0 0 0



(59)

For small BIRE angles (as shown in Eq. (59)) the 𝐵 matrix is lightly coupled between longitudinal and lateral dynamics.
This coupling increases significantly for larger BIRE angles (𝛿𝐵 > 10◦), prohibiting control design using traditional
uncoupled techniques. Note the ailerons are the main yaw control effector for the BIRE aircraft.

C. Controllability
The controllability of each aircraft system was evaluated at the Air Combat Maneuver Condition at various steady

coordinated turn trim bank angles (note for a steady coordinated non-climbing turn 𝜙𝑡𝑟 = 0 results in steady level
flight). The controllability matrix and corresponding rank were found for both the baseline and BIRE aircraft. Each
controllability matrix was full rank, and thus each linearized aircraft is controllable at the Air Combat Maneuver
Condition.
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D. Open-Loop Modes
The open-loop modes of each aircraft can be evaluated by finding the eigenvalues 𝜆𝑜𝑙 of the baseline 𝐴 matrix given

in Eq. (55), which are

𝜆𝑜𝑙 =



0 + 0 𝑗
−0.1758 + 3.1455 𝑗
−0.1758 − 3.1455 𝑗

−1.9170 + 0 𝑗
−2.7439 + 0 𝑗
1.0300 + 0 𝑗
0.0040 + 0 𝑗

−0.0085 + 0.1050 𝑗
−0.0085 − 0.1050 𝑗



(60)

which correspond to the eigenvectors

𝜒𝑜𝑙 =





0 + 0 𝑗
0 + 0 𝑗
0 + 0 𝑗
0 + 0 𝑗
0 + 0 𝑗
0 + 0 𝑗
1 + 0 𝑗
0 + 0 𝑗
0 + 0 𝑗



,



−0 + 0 𝑗
1.0000 + 0 𝑗

0.0002 − 0.0006 𝑗
−0.0045 + 0.0071 𝑗

0 + 0 𝑗
−0.0001 − 0.0046 𝑗

0 − 0.0001 𝑗
0.0023 + 0.0013 𝑗

0 − 0.0000 𝑗



,



−0 − 0.0000 𝑗
1.0000 − 0 𝑗

0.0002 + 0.0006 𝑗
−0.0045 − 0.0071 𝑗

0 − 0.0000 𝑗
−0.0001 + 0.0046 𝑗

0 + 0.0001 𝑗
0.0023 − 0.0013 𝑗

0 + 0 𝑗



,



0.0006 + 0 𝑗
−0.0481 + 0 𝑗
−0.0137 + 0 𝑗
−0.8852 + 0 𝑗

0 + 0 𝑗
−0.0185 + 0 𝑗
0.0031 + 0 𝑗
0.4622 + 0 𝑗
−0 + 0 𝑗



,



0.0396 + 0 𝑗
−0.0003 + 0 𝑗
−0.9932 + 0 𝑗

−0 + 0 𝑗
0.0030 + 0 𝑗
−0 + 0 𝑗

0.1098 + 0 𝑗
0 + 0 𝑗

−0.0011 + 0 𝑗



,



0.0945 + 0 𝑗
0.0003 + 0 𝑗
−0.7774 + 0 𝑗

−0 + 0 𝑗
−0.0023 + 0 𝑗

−0 + 0 𝑗
0.6219 + 0 𝑗
−0 + 0 𝑗

−0.0022 + 0 𝑗



,



0.0252 + 0 𝑗
−0.1142 + 0 𝑗
−0.0040 + 0 𝑗
−0.0003 + 0 𝑗

−0 + 0 𝑗
−0.0101 + 0 𝑗
0.9730 + 0 𝑗
−0.1989 + 0 𝑗

−0 + 0 𝑗



,



0.0500 + 0.0062 𝑗
−0 − 0.0000 𝑗

0.0049 + 0.0011 𝑗
0 + 0 𝑗
0 + 0 𝑗

0 − 0.0000 𝑗
0.9987 + 0 𝑗
0 − 0.0000 𝑗
0 − 0.0002 𝑗



,



0.0500 − 0.0062 𝑗
−0 + 0 𝑗

0.0049 − 0.0011 𝑗
0 − 0.0000 𝑗
0 − 0.0000 𝑗

0 + 0 𝑗
0.9987 − 0 𝑗

0 + 0 𝑗
0 + 0.0002 𝑗





(61)

The eigenvectors can be used to identify [49, 50] the dynamic modes of the aircraft, along with corresponding handling
qualities (HQ). The open-loop modes and corresponding HQ are given in Table 4. The HQ levels are assigned from the
limits established in MIL-F-8785C [51] and summarized by Hodgkinson [52] and Phillips [53] for class IV aircraft in
flight phase A (the constraining limits for this highly-maneuverable fighter and BIRE variant).

11



Table 4 Baseline aircraft open-loop modes and HQ levels.

𝜆𝑜𝑙 𝑖 Mode 𝜎 [1/s] 𝜔𝑛 [rad/s] 𝜁 CAP [s−2] 𝑡𝑑𝑏 [s] 𝑡𝑐 [s] HQ
0 + 0 𝑗 rigid-body -0.000 - - - - - -

−0.1758 + 3.1455 𝑗 Dutch roll 0.176 3.150 0.056 - - - Level 2
−0.1758 − 3.1455 𝑗 Dutch roll 0.176 3.150 0.056 - - - Level 2

−1.9170 + 0 𝑗 roll 1.917 - - - - 0.522 Level 1
−2.7439 + 0 𝑗 short period 2.744 - - - - 0.364 Level 4
1.0300 + 0 𝑗 short period -1.030 - - - 0.673 - Level 4
0.0040 + 0 𝑗 spiral -0.004 - - - 172.937 - Level 1

−0.0085 + 0.1050 𝑗 phugoid 0.009 0.105 0.081 - - - Level 1
−0.0085 − 0.1050 𝑗 phugoid 0.009 0.105 0.081 - - - Level 1

The rigid-body mode is trivial, and denotes that the aircraft can be flown in steady level flight at different altitudes
[49], and will not be discussed further in the present paper. As shown in Table 4 the baseline has particularly poor
handling qualities for the Dutch roll and short period modes. The Dutch roll mode has insufficient damping, and the
short period mode is unstable.

The eigenvalues of the BIRE 𝐴 matrix given in Eq. (58) are

𝜆𝑜𝑙 =



0 + 0 𝑗
−2.2074 + 0 𝑗
−2.4526 + 0 𝑗
−1.3113 + 0 𝑗
1.1675 + 0 𝑗
0.7722 + 0 𝑗
0.0071 + 0 𝑗

−0.0101 + 0.1093 𝑗
−0.0101 − 0.1093 𝑗



(62)

which correspond to the eigenvectors

𝜒𝑜𝑙 =





0 + 0 𝑗
0 + 0 𝑗
0 + 0 𝑗
0 + 0 𝑗
0 + 0 𝑗
0 + 0 𝑗
1 + 0 𝑗
0 + 0 𝑗
0 + 0 𝑗



,



−0.0001 + 0 𝑗
0.9898 + 0 𝑗
0.0025 + 0 𝑗
−0.1297 + 0 𝑗

−0 + 0 𝑗
0.0003 + 0 𝑗
−0.0004 + 0 𝑗
0.0587 + 0 𝑗

0 + 0 𝑗



,



0.0382 + 0 𝑗
0.0008 + 0 𝑗
−0.9899 + 0 𝑗
0.0001 + 0 𝑗
0.0025 + 0 𝑗

0 + 0 𝑗
0.1367 + 0 𝑗
−0 + 0 𝑗

−0.0010 + 0 𝑗



,



−0.0001 + 0 𝑗
0.9999 + 0 𝑗
0.0032 + 0 𝑗
−0.0131 + 0 𝑗

−0 + 0 𝑗
0.0019 + 0 𝑗
−0.0016 + 0 𝑗
0.0099 + 0 𝑗

0 + 0 𝑗



,



−0.0001 + 0 𝑗
−1.0000 + 0 𝑗
0.0005 + 0 𝑗
0.0040 + 0 𝑗

0 + 0 𝑗
0.0023 + 0 𝑗
−0.0003 + 0 𝑗
0.0035 + 0 𝑗

0 + 0 𝑗



,
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

−0.0947 + 0 𝑗
0.0050 + 0 𝑗
0.5773 + 0 𝑗
−0 + 0 𝑗

0.0015 + 0 𝑗
−0 + 0 𝑗

−0.8110 + 0 𝑗
−0 + 0 𝑗

0.0019 + 0 𝑗



,



0.0347 + 0 𝑗
−0.0115 + 0 𝑗
−0.0056 + 0 𝑗
−0.0010 + 0 𝑗

−0 + 0 𝑗
−0.0107 + 0 𝑗
0.9769 + 0 𝑗
−0.2101 + 0 𝑗

−0 + 0 𝑗



,



0.0499 + 0.0061 𝑗
0 + 0 𝑗

0.0060 + 0.0016 𝑗
−0 − 0.0000 𝑗

0 + 0 𝑗
−0 + 0 𝑗

0.9987 + 0 𝑗
−0 + 0 𝑗

0 − 0.0002 𝑗



,



0.0499 − 0.0061 𝑗
0 − 0.0000 𝑗

0.0060 − 0.0016 𝑗
−0 + 0 𝑗

0 − 0.0000 𝑗
−0 − 0.0000 𝑗
0.9987 − 0 𝑗
−0 − 0.0000 𝑗
0 + 0.0002 𝑗





(63)

The eigenvalues can be used to identify the dynamic modes of the aircraft, along with corresponding HQ. The open-loop
modes and corresponding HQ are given in Table 5 (using the same limits as evaluated on the baseline aircraft).

Table 5 BIRE aircraft open-loop modes and HQ levels.

𝜆𝑜𝑙 𝑖 Mode 𝜎 [1/s] 𝜔𝑛 [rad/s] 𝜁 CAP [s−2] 𝑡𝑑𝑏 [s] 𝑡𝑐 [s] HQ
0 + 0 𝑗 rigid-body -0.000 - - - - - -

−2.2074 + 0 𝑗 roll 2.207 - - - - 0.453 Level 1
−2.4526 + 0 𝑗 short period 2.453 - - - - 0.408 Level 4
−1.3113 + 0 𝑗 Dutch roll 1.311 - - - - 0.763 Level 4
1.1675 + 0 𝑗 Dutch roll -1.168 - - - 0.594 - Level 4
0.7722 + 0 𝑗 short period -0.772 - - - 0.898 - Level 4
0.0071 + 0 𝑗 spiral -0.007 - - - 98.088 - Level 1

−0.0101 + 0.1093 𝑗 phugoid 0.010 0.110 0.092 - - - Level 1
−0.0101 − 0.1093 𝑗 phugoid 0.010 0.110 0.092 - - - Level 1

As shown in Table 5 the BIRE, like the baseline, has particularly poor handling qualities for the Dutch roll and
short period modes. Both the Dutch roll and the short period modes are unstable. Though the baseline and BIRE are
analyzed at near identical trim conditions, and (as the BIRE is undeflected) have near identical aerodynamics, significant
differences arise in the comparison of the corresponding dynamic modes of the two aircraft. As the BIRE does not have
a vertical tail, the spiral mode time to double and Dutch roll handling quality are worse than those of the baseline aircraft.
Also, the phugoid damping of the BIRE aircraft is slightly higher than that of the baseline aircraft. This effect may stem
from the lack of anhedral on the BIRE stabilators (and thus increased effective longitudinal stabilizing surface area).

The high instability in the baseline short period and BIRE short period and Dutch roll modes demonstrate the
need for a stabilizing controller. A stabilizing controller can augment the natural stability of the aircraft such that the
pilot is agnostic to the aircraft unstable modes. The short period and Dutch roll modes depend heavily on the aircraft
body-fixed rotation rates. Thus, a first step in the control design would be to heavily weight the relative importance of
these rotation rates. The aircraft orientation also plays a significant role in these modes, and should carry greater weight
in the control design. The control design for the baseline aircraft has been studied extensively [24–33, 36–38], and as
such is neglected in the present paper. Only the control design for the BIRE is presented with performance analysis.

IV. Control Design
A stabilizing controller can be designed to mitigate the handling deficiencies given in Table 5 for the BIRE. Such a

design should not only improve the aircraft HQ, but also be robust to error and disturbance.

A. LQR Design
The objective of the infinite-horizon LQR optimal-control problem is to minimize the cost function

𝐽 =

∫ ∞

0

(
Δ𝑥𝑇𝑄Δ𝑥 + Δ𝑢𝑇𝑅Δ𝑢

)
𝑑𝑡 (64)

13



This is done by solving the algebraic Riccati equation

0 = 𝐴𝑇𝑃 + 𝑃𝐴 +𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 (65)

for the positive semidefinite matrix 𝑃 to find an optimal control policy

Δ𝑢 = −
(
𝑅−1𝐵𝑇𝑃

)
Δ𝑥 = −𝐾Δ𝑥 (66)

where 𝐾 is the state feedback gain matrix. Inserting Eq. (51) and rearranging, the optimal control policy is

𝑢 = 𝑢𝑡𝑟 − 𝐾Δ𝑥 (67)

State and control weighting matrices that result in quality performance metrics for the BIRE aircraft are

𝑄 = diag

©­­­­­­­­­­­­­­­­«



1𝑒−6

1𝑒−6

1𝑒−6

1
1
1

1𝑒−6

1
1



ª®®®®®®®®®®®®®®®®¬

, 𝑅 = diag
©­­­­«


5
5
5

5𝑒−2


ª®®®®¬

(68)

which with the state and input matrices in Eqs. (58)–(59) are used to calculate the state feedback gain matrix

𝐾 =


−0.0000 −0.0208 0 −0.2127 −0.0208 9.8456 0 −0.0607 −0.0363
−0.0002 0.0003 0.0001 −0.0029 −0.5341 −0.1542 0.0004 −0.0059 −1.0029
−0.0000 −0.0030 0 0.0275 −0.0029 1.3998 0 0.0545 −0.0051
0.0047 0.0001 −0.0004 −0.0010 0.0326 −0.0516 −0.0006 −0.0020 0.6508


(69)

For the BIRE aircraft, aileron command depends primarily on yaw and roll rates. The stabilator command depends
primarily on elevation angle, pitch rate, and yaw rate. The BIRE command depends primarily on yaw rate. Lastly, the
throttle setting commands depends primarily on the elevation angle.

B. Closed-loop Properties
The closed-loop properties of the BIRE aircraft are determined from the system dynamics including the state-feedback

matrix providing stability to the system.The eigenvalues of the BIRE closed-loop system matrix (𝐴 − 𝐵𝐾) calculated
from the matrices presented in Eqs. (58), (59), and (69) are

𝜆𝑐𝑙 =



−13.4586 + 0 𝑗
−5.8018 + 0 𝑗
−0.0995 + 0 𝑗

−0.5214 + 0.3568 𝑗
−0.5214 − 0.3568 𝑗

−1.0108 + 0 𝑗
−1.4351 + 0 𝑗
−1.2847 + 0 𝑗
−1.3391 + 0 𝑗



(70)

which correspond to the eigenvectors
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𝜒𝑐𝑙 =





0.0003 + 0 𝑗
−0.9446 + 0 𝑗
−0.0071 + 0 𝑗
0.3271 + 0 𝑗
0.0001 + 0 𝑗
−0.0075 + 0 𝑗
0.0001 + 0 𝑗
−0.0243 + 0 𝑗

−0 + 0 𝑗



,



0.0435 + 0 𝑗
0.0020 + 0 𝑗
−0.9989 + 0 𝑗

−0 + 0 𝑗
0.0083 + 0 𝑗

0 + 0 𝑗
0.0161 + 0 𝑗

0 + 0 𝑗
−0.0014 + 0 𝑗



,



−0.9827 + 0 𝑗
−0 + 0 𝑗

0.1428 + 0 𝑗
−0 + 0 𝑗
−0 + 0 𝑗
−0 + 0 𝑗

0.1178 + 0 𝑗
0 + 0 𝑗

0.0003 + 0 𝑗



,



0.0360 − 0.0064 𝑗
−0.0002 − 0.0000 𝑗
−0.1549 + 0.3854 𝑗

0 + 0 𝑗
−0.0003 + 0.0001 𝑗

−0 + 0 𝑗
0.9089 + 0 𝑗
−0 − 0.0000 𝑗

0.0005 + 0.0001 𝑗



,



0.0360 + 0.0064 𝑗
−0.0002 + 0 𝑗

−0.1549 − 0.3854 𝑗
0 − 0.0000 𝑗

−0.0003 − 0.0001 𝑗
−0 − 0.0000 𝑗
0.9089 − 0 𝑗
−0 + 0 𝑗

0.0005 − 0.0001 𝑗



,



−0.0019 + 0 𝑗
0.9981 + 0 𝑗
0.0361 + 0 𝑗
−0.0274 + 0 𝑗

−0 + 0 𝑗
0.0016 + 0 𝑗
−0.0305 + 0 𝑗
0.0270 + 0 𝑗

0 + 0 𝑗



,



0.0101 + 0 𝑗
−0.9644 + 0 𝑗
−0.2437 + 0 𝑗
−0.0043 + 0 𝑗
0.0002 + 0 𝑗
−0.0022 + 0 𝑗
0.1021 + 0 𝑗
0.0031 + 0 𝑗
−0.0002 + 0 𝑗



,



−0.0389 + 0 𝑗
0.0011 + 0 𝑗
0.8849 + 0 𝑗
−0 + 0 𝑗

−0.0006 + 0 𝑗
0 + 0 𝑗

−0.4641 + 0 𝑗
0 + 0 𝑗

0.0005 + 0 𝑗



,



0.0292 + 0 𝑗
0.6567 + 0 𝑗
−0.6787 + 0 𝑗
−0.0066 + 0 𝑗
0.0005 + 0 𝑗
0.0013 + 0 𝑗
0.3273 + 0 𝑗
0.0049 + 0 𝑗
−0.0004 + 0 𝑗





(71)

Some inference can be made on the control design by comparing Tables 5 and the eigenvalues in Eq. (70). All
eigenvalues for this system have been moved to the left half plane. The system is now stable. The solitary oscillatory
mode is attributed to the phugoid mode. Though the BIRE closed-loop short period, Dutch roll, and rigid-body modes
are stable, little more can be said regarding mode HQ. The spiral mode has become stable for the BIRE closed-loop
system. The closed-loop short period mode for the BIRE is non-oscillatory. The BIRE, lacking a vertical tail, has
a non-oscillatory closed-loop Dutch roll mode. In order to evaluate controller performance, the closed-loop system
response is studied in time-domain and frequency-domain analyses as the modes in Eq. (70) are not traditional HQ
modes.

V. Control Performance
While some dynamic modes for the closed-loop aircraft systems could be assigned HQ levels, the BIRE has

closed-loop modes which cannot be characterized using traditional dynamic mode properties. Thus alternate techniques
must be used to determine robustness of the BIRE aircraft control design. Analyses in the time and frequency domains
can verify the robust properties of the control design.

A. Initial Condition Dispersion
First, response was simulated with initial condition dispersion for the BIRE with nonlinear dynamics and stabilizing

state feedback. While the control design was performed on the Euler angle EOM formulation given in Eq. (40), the
nonlinear simulations were performed using a quaternion dynamics formulation and a variable step integrator. For
description and justification of the use of quaternions, the reader is directed to the work of Phillips where these themes
are treated [54].

In simulation the aircraft was initialized at the trim condition. The rotation rates of the BIRE aircraft were then
offset from the steady-level flight trim condition by each axis (Δ𝑝 = 90◦/s, Δ𝑞 = 10◦/s, Δ𝑟 = 2.5◦/s), and simulated for
15 seconds. The stabilizing controller response to this initial condition is shown in Fig. 2 for the BIRE aircraft. The
blue lines in the control and control rate plots indicate the limits, as given in Table 3; on the control plot the black lines
indicate the commanded control and the gray lines indicate the actuator state response.
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Fig. 2 BIRE response to initial condition dispersion.

Figure 2 shows the response of the BIRE aircraft to an initial condition dispersion. The states which are fed back
return to zero within the 15 second simulation (excluding the body-fixed velocity 𝑉𝑥𝑏 , which takes slightly longer).
Those states which do not return to zero do not factor in the trim condition for the flat-Earth equations of motion (recall:
𝑥 𝑓 , 𝑦 𝑓 , 𝜓). This stabilization takes place within nearly 8 seconds, with the control near zero at 0.5 seconds. Though
the controls are mostly actuated for only a short length of time, the aircraft takes longer to stabilize. Saturation of the
control rates can be seen more clearly in Fig. 3.
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Fig. 3 BIRE control and control rate zoomed in response to initial condition dispersion.

The BIRE control response shown in Fig. 3 saturates in the rate limits on BIRE mechanism and stabilators. The
BIRE throttle setting is not visibly actuated throughout the simulation. The BIRE controller achieves successful
stabilization within the 15 second simulation.

B. Single Axis Angular Rate Dispersions and Region of Attraction
Monte Carlo simulations were run with normal random distributions of initial dispersions in 𝑝, 𝑞, and 𝑟. Each

aircraft was simulated with single axis 1-sigma dispersions of 𝜎1 𝑝 = 120◦/s, 𝜎1 𝑞 = 40◦/s, and 𝜎1 𝑟 = 5◦/s. The results
for these simulations are shown in Fig. 4. Each case is represented by a marker, with the color of the marker indicating
the level of convergence. Shades from green toward yellow denote increasing time to convergence, with red denoting
unconverged cases at the end of simulation (15 seconds). Convergence was determined as

Δ𝑦𝑇𝐸Δ𝑦 ≤ 1 (72)

where

𝐸 = diag

©­­­­­­­­­­­­­­­­«



Δ𝑉𝑥𝑏 max

Δ𝑉𝑦𝑏 max

Δ𝑉𝑧𝑏 max

Δ𝑝max

Δ𝑞max

Δ𝑟max

Δ𝑧 𝑓 max

Δ𝜙max

Δ𝜃max



ª®®®®®®®®®®®®®®®®¬

−2

= diag

©­­­­­­­­­­­­­­­­«



10 ft/s
15 ft/s
15 ft/s
20◦/s
10◦/s
10◦/s
50 ft
25◦

10◦



ª®®®®®®®®®®®®®®®®¬

−2

(73)

The values in Eq. (73) were selected as 1-axis maximums for each state such that results for the Monte Carlo simulations
with turbulence and error (presented in Fig. 6d) would have greater than or equal to 90% convergence success. Thus,
greater attention should be paid to the convergence criterion than the convergence percentage successes.
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Fig. 4 BIRE single axis dispersions.

As shown in Fig. 4 the BIRE can stabilize with dispersions up to Δ𝑝 = ±360◦/s, Δ𝑞 = ±75◦/s, and Δ𝑟 = ±10◦/s.
The BIRE is strongest in roll control and weakest in yaw control. A single ellipsoidal region of attraction was selected
for continued analysis. This was selected so the success rate of the BIRE aircraft controller between sets of Monte Carlo
simulations were comparable. This region is

𝜎1 𝑝 = 100◦/s
𝜎1 𝑞 = 12◦/s
𝜎1 𝑟 = 3◦/s

(74)

Though such plots as in Fig. 4c appear to show severe limitations on the control design, the bounds given in Eq. (74)
are large, and typical aircraft rate dispersions lie well within this region of attraction. Such large bounds are used in the
present paper to demonstrate the limits of the presented control designs. The Monte Carlo initial condition dispersion
simulation results and success rate for the BIRE are given in Fig. 6a.

C. Aerodynamic Model Error Dispersions
A similar single axis process was used to determine bounds on the acceptable aerodynamic forces and moments

error. Monte Carlo simulations were run with the 1-sigma 𝑝, 𝑞, and 𝑟 initial dispersions, as well as 1-sigma dispersions
of 𝜖𝐶𝐴

= 0.25 (1-sigma 25% normal random error in each force or moment coefficient 𝐶𝐴, applied as shown in Eq.
(49)). The results for these simulations are shown in Fig. 5 for the BIRE, with convergence determined and marked as
discussed for the single axis 𝑝, 𝑞, and 𝑟 dispersions (see Eq. (72)).
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Fig. 5 BIRE single force or moment error dispersions.

Based on Fig. 5, the aerodynamic error bounds for the BIRE aircraft to be used in further Monte Carlo analysis are
prescribed to be

−0.24 < 𝜖𝐶𝐿
< 0.50

𝜖𝐶𝑆
= ±0.75

𝜖𝐶𝐷
= ±0.40

𝜖𝐶ℓ
= ±0.75

𝜖𝐶𝑚
= ±0.75

𝜖𝐶𝑛
= ±0.75

(75)

The 1-sigma values for the implemented force and moment errors are thus

𝜎1𝐶𝐿
= 0.07

𝜎1𝐶𝑆
= 0.25

𝜎1𝐶𝐷
= 0.12

𝜎1𝐶ℓ
= 0.25

𝜎1𝐶𝑚
= 0.25

𝜎1𝐶𝑛
= 0.25

(76)

The BIRE aircraft is sensitive to error in lift coefficient. This is because the amount and direction of lift on the BIRE
tail can significantly affect stability. Notably, though the BIRE is sensitive to yaw rate 𝑟 dispersions, the BIRE is not
sensitive to error in the aircraft yawing moment coefficient 𝐶𝑛. The BIRE is also sensitive to error in the drag coefficient
𝐶𝐷 .

D. Monte Carlo Simulations with Perturbations
Aerodynamic model error and turbulence were applied to the Monte Carlo dispersions to determine the robust

properties of the BIRE controller. Monte Carlo simulations are shown in Fig. 6. In each case the aircraft is initialized at
trim with a random normal dispersion in 𝑝, 𝑞, and 𝑟 , and simulated 1000 times for 15 seconds with and without random
normal aerodynamic forces and moment error (as in Eq. (76)) and light turbulence. The convergence criterion was
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the same as discussed for the single axis 𝑝, 𝑞, and 𝑟 dispersions, given in Eq. (72). Note, the turbulence signal was
pre-computed and linearly interpolated in between time steps to speed up case run time.
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(a) No error, no turbulence; 98.7% success.
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(b) No error, with turbulence; 97.1% success.
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Fig. 6 BIRE simulations with various disturbance types.

Figure 6 shows the effect of turbulence and model error on the BIRE aircraft. The majority of the simulations
converge within 3 seconds, with some in each case converging between 3 and 15 seconds. Light turbulence caused a
1.6% decrease in controller success, with error also causing a 1.6% decrease in success. The additive case of error
and turbulence had a greater effect (7.6%). The BIRE cases which take greater time to converge tend to occur on the
largest combined dispersions in the yaw rate and pitch rate of the same sign (i.e. +𝑝+𝑟 and -𝑝-𝑟). With such large initial
condition dispersions, these results are acceptable for the BIRE aircraft controller. The unconverged cases generally lie
on or near the border of the region of attraction.

E. Frequency Domain
A key aspect of the control design are the controller properties in the frequency domain. One fundamental metric of

the control design are the input singular values. For multiple-input multiple output systems, desireable singular values
are (for the minimum singular value) large at low frequencies and (for the maximum singular value) small at high
frequencies [7]. The input singular values for the BIRE aircraft are shown in Fig. 7.
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Fig. 7 BIRE controller input singular values.

The singular value curves for the throttle and BIRE actuator are poorly shaped. Inspection of time-domain results
suggests these actuators are little used, and these facts motivate the following question: how does the BIRE aircraft
perform if BIRE and throttle setting are excluded from the control design?

F. Controller Performance Excluding 𝛿𝐵, 𝜏
Neglecting inputs for a control design involves removing columns from the control matrix 𝐵 and columns and rows

from the input weightings matrix 𝑅. Note that the system remains controllable with these two columns removed. The
closed-loop system eigenvalues for the BIRE control design neglecting 𝛿𝐵, 𝜏, and 𝛿𝐵 and 𝜏 are

𝜆𝑐𝑙��𝛿𝐵
=



−13.4586 + 0 𝑗
−5.8018 + 0 𝑗
−0.0995 + 0 𝑗

−0.5214 + 0.3568 𝑗
−0.5214 − 0.3568 𝑗

−1.0108 + 0 𝑗
−1.4346 + 0 𝑗
−1.2847 + 0 𝑗
−1.3396 + 0 𝑗



, 𝜆𝑐𝑙�𝜏
=



−13.4586 + 0 𝑗
−5.8018 + 0 𝑗
−0.0031 + 0 𝑗

−0.5218 + 0.3564 𝑗
−0.5218 − 0.3564 𝑗

−1.0108 + 0 𝑗
−1.4351 + 0 𝑗
−1.2847 + 0 𝑗
−1.3391 + 0 𝑗



, 𝜆𝑐𝑙��𝛿𝐵 ,�𝜏
=



−13.4586 + 0 𝑗
−5.8018 + 0 𝑗
−0.0031 + 0 𝑗

−0.5218 + 0.3564 𝑗
−0.5218 − 0.3564 𝑗

−1.0108 + 0 𝑗
−1.4346 + 0 𝑗
−1.2847 + 0 𝑗
−1.3396 + 0 𝑗



(77)

The closed-loop dynamics are minimally effected by neglecting either or both of the BIRE and throttle inputs. Comparing
to the full input closed-loop eigenvalues in Eq. (70) shows the effect of neglecting control effectors from the control
design. Neglecting the BIRE mechanism has minor effect on certain modes and neglecting the throttle setting has minor
effects on other modes. Notably neglecting the BIRE most only affects lateral handling qualities and neglecting the
throttle most only affect longitudinal handling qualities.

Convergence success rates for each type of control design are presented in Table 6. Each case with error is run with
the same error 1-sigma values shown in Eq. (76), and each case with turbulence is run on a light setting, with all
cases having initial condition dispersions as in Eq. (74).
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Error Turbulence 𝛿𝐵, 𝜏 ��𝛿𝐵, 𝜏 𝛿𝐵, �𝜏 ��𝛿𝐵, �𝜏
98.7% 97.5% 98.4% 96.9%

✓ 97.1% 96.5% 97.1% 93.7%
✓ 97.1% 96.4% 87.7% 86.8%
✓ ✓ 91.1% 91.7% 79.5% 76.7%

Table 6 Monte Carlo simulations convergence success for controllers excluding 𝛿𝐵, 𝜏.

Neglecting only the BIRE actuator results in at most a 1.2% decrease in success, and neglecting only the throttle
command results in a decrease of at most 11.6%. Excluding both control effectors results in at most a 14.6% decrease
in convergence success. This suggests the BIRE and throttle could be neglected from the control design with minor
consequence. A final justification for this decision is given in Fig. 8.
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Fig. 8 BIRE controller excluding 𝛿𝐵, 𝜏 input singular values.

Neglecting both the BIRE mechanism and throttle setting from the control design results in acceptable controller
performance input properties. As shown in Fig. 8 it would be preferable to neglect the BIRE actuator from the control
design. Though the throttle input singular values in Fig. 8a are more desirable than those for the BIRE in Fig. 8b, these
results show the throttle setting may be better incorporated in a different control design. Similarly, the convergence
successes in Table 6 suggest the BIRE actuator can be dropped with no consequence, and throttle should be removed
from the stabilizing control law and included as input to a different control loop (i.e. a speed controller). Whether
the BIRE control design includes or excludes the BIRE and throttle inputs, each controller is robust in time-domain
analyses, with greater success when only neglecting the BIRE actuator.

VI. Conclusion
A stabilizing controller was built for the bio-inspired variant of a statically-unstable baseline fighter aircraft. Because

actuator capabilities form a crucial component of control performance, the present paper outlined the control design for
the BIRE aircraft with first-order actuator dynamics, deflection limits, and rate limits. The EOM Euler angle formulation
was presented. First-order actuator dynamics were then incorporated into the aircraft dynamics. The linearized EOM
were given and the linearized system was calculated for each aircraft trimmed in steady level flight at the Air Combat
Maneuver Condition.

Analyses were performed to evaluate the BIRE controller, with the aircraft Earth-fixed 𝑥- and 𝑦-positions and heading
angle 𝜓 states removed from the state feedback control design. An LQR controller was designed and presented for the
BIRE aircraft. Weightings were chosen for quality performance as determined in time-domain and frequency-domain
analyses. While the BIRE aircraft has instabilities in the uncontrolled system, the closed-loop system has stable
eigenvalues with acceptable response characteristics.

Time-domain performance of the controller was assessed based on Monte Carlo simulations with initial condition
dispersions, atmospheric turbulence, and aerodynamic force and moment errors. Frequency-domain performance
was assessed based on input singular values. The BIRE mechanism and throttle setting are not used significantly in
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simulation of the BIRE aircraft. As shown in time-domain and frequency-domain analyses, the BIRE control input can
be neglected from the control design with minimal effect.

Further control development for this bio-inspired fighter is recommended, particularly using nonlinear techniques
which may be more suited for the BIRE system. In further control development it may be more appropriate to feedback
total velocity and aerodynamic angles rather than the body-fixed aircraft velocities. Further work should examine
controller performance at multiple trim conditions by varying altitude, airspeed, as well as steady-coordinated turns. In
such analyses it would be prudent to examine whether the BIRE and throttle inputs can also be neglected in control
design at these conditions. Further work should study implementation of a tracking control design for the BIRE aircraft.

A. Aircraft Properties

A. Aircraft Geometric and Mass Properties

Table A.1 Baseline and BIRE shared geometric and angular momentum characteristics.

Property Value
𝑆𝑤 [ft] 300
𝑏𝑤 [ft] 30
𝑐𝑤 [ft] 11.32

ℎ𝑥𝑏 [slugs-ft2/sec] 160
ℎ𝑦𝑏 [slugs-ft2/sec] 0
ℎ𝑧𝑏 [slugs-ft2/sec] 0

Table A.2 Baseline weight and inertia characteristics.

𝑊 [lbf] 20500
𝐼𝑥𝑥𝑏 [slugs-ft2] 9496
𝐼𝑦𝑦𝑏 [slugs-ft2] 55814
𝐼𝑧𝑧𝑏 [slugs-ft2] 63100
𝐼𝑥𝑦𝑏 [slugs-ft2] 0
𝐼𝑥𝑧𝑏 [slugs-ft2] 982
𝐼𝑦𝑧𝑏 [slugs-ft2] 0

Table A.3 BIRE weight and inertia characteristics.

𝑊 [lbf] 21000
A [slugs-ft2] 𝜔 𝜙 𝑧 [slugs-ft2]

𝐼𝑥𝑥𝑏 0 0 0 9280
𝐼𝑦𝑦𝑏 -160.8070 2 1.5708 58287.8610
𝐼𝑧𝑧𝑏 160.8350 2 1.5708 65605.6027
𝐼𝑥𝑦𝑏 0 0 0 0
𝐼𝑥𝑧𝑏 0 0 0 -5
𝐼𝑦𝑧𝑏 -160.5850 2 0 160.5850
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B. Aircraft Aerodynamic Model Coefficients

Table A.4 Baseline aerodynamic model force coefficients.

Coefficient Value
𝐶𝐿0 0.0456
𝐶𝐿,𝛼 3.5791
𝐶𝐿,𝑞̄ 3.3916
𝐶𝐿, 𝛿𝑒 0.5652
𝐶𝑆,𝛽 -0.9009
𝐶𝑆, 𝑝̄ -0.0153
𝐶𝑆,𝐿 𝑝̄ 0.3318
𝐶𝑆,𝑟 0.4357
𝐶𝑆, 𝛿𝑎 0.0656
𝐶𝑆, 𝛿𝑟 0.1698
𝐶𝐷0 0.0218
𝐶𝐷,𝐿 -0.0340
𝐶𝐷,𝐿2 0.1834
𝐶𝐷,𝑆2 0.6081
𝐶𝐷,𝑆 𝑝̄ 0.0768
𝐶𝐷,𝑞̄ 0.0368
𝐶𝐷,𝐿𝑞̄ 0.7750
𝐶𝐷,𝐿2𝑞̄ -0.1844
𝐶𝐷,𝑆𝑟 -0.7239
𝐶𝐷,𝛿𝑒 -0.0032
𝐶𝐷,𝐿𝛿𝑒 0.1775
𝐶𝐷,𝛿2

𝑒
0.2854

𝐶𝐷,𝑆𝛿𝑎 0.1118
𝐶𝐷,𝑆𝛿𝑟 0.1604
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Table A.5 Baseline aerodynamic model moment coefficients.

Coefficient Value
𝐶ℓ,𝛽 -0.0786
𝐶ℓ, 𝑝̄ -0.3182
𝐶ℓ,𝑟 0.0469
𝐶ℓ,𝐿𝑟 0.1067
𝐶ℓ, 𝛿𝑎 -0.0741
𝐶ℓ, 𝛿𝑟 0.0257
𝐶𝑚0 -0.0097
𝐶𝑚,𝛼 0.1766
𝐶𝑚,𝑞̄ -4.8503
𝐶𝑚,𝛿𝑒 -0.5881
𝐶𝑛,𝛽 0.2426
𝐶𝑛, 𝑝̄ 0.0131
𝐶𝑛,𝐿 𝑝̄ -0.1005
𝐶𝑛,𝑟 -0.1787
𝐶𝑛, 𝛿𝑎 -0.0276
𝐶𝑛,𝐿𝛿𝑎 0.0077
𝐶𝑛, 𝛿𝑟 -0.0899
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Table A.6 BIRE aerodynamic model force coefficients.

Coefficient 𝐴 𝜔 𝜙 𝑧

𝐶̂𝐿0 -0.0144 2 1.5708 0.0621
𝐶̂𝐿,𝛼 0.1091 2 1.5708 3.5469
𝐶̂𝐿,𝛽 -0.7216 2 0 0
𝐶̂𝐿, 𝑝̄ 0 0 0 0
𝐶̂𝐿,𝑞̄ 2.0262 2 1.5708 1.5469
𝐶̂𝐿,𝑟 0.6798 2 0 0
𝐶̂𝐿, 𝛿𝑎 0 0 0 -0.0007
𝐶̂𝐿, 𝛿𝐵

𝑒
0.7646 1 1.5708 -0.1822

𝐶̂𝑆0 -0.0106 2 0 0
𝐶̂𝑆,𝛼 0.1834 2 0 0
𝐶̂𝑆,𝛽 0.6805 2 1.5708 -0.8493
𝐶̂𝑆, 𝑝̄ 0 0 0 -0.0022
𝐶̂𝑆,𝐿 𝑝̄ 0.0192 2 1.5708 0.2233
𝐶̂𝑆,𝑞̄ 1.9916 2 0 0
𝐶̂𝑆,𝑟 -0.6134 2 1.5708 0.5976
𝐶̂𝑆, 𝛿𝑎 0.0015 2 1.5708 -0.0524
𝐶̂𝑆, 𝛿𝐵

𝑒
0.7352 1 0 0

𝐶̂𝐷0 0 0 0 0.0209
𝐶̂𝐷,𝐿 0 0 0 -0.0332
𝐶̂𝐷,𝐿2 0.0047 4 1.5708 0.1767
𝐶̂𝐷,𝑆 0.0255 2 0 -0.0000
𝐶̂𝐷,𝑆2 0.3082 2 1.5708 0.6364
𝐶̂𝐷, 𝑝̄ 0 0 0 0
𝐶̂𝐷,𝑆 𝑝̄ 0 0 0 0.0013
𝐶̂𝐷,𝑞̄ 0 0 0 0.0261
𝐶̂𝐷,𝐿𝑞̄ 0.3883 2 1.5708 0.3700
𝐶̂𝐷,𝐿2𝑞̄ 0 0 0 -0.0303
𝐶̂𝐷,𝑟 0 0 0 0
𝐶̂𝐷,𝑆𝑟 0 0 0 -0.1146
𝐶̂𝐷,𝛿𝑎 -0.0079 2 0 0.0000
𝐶̂𝐷,𝑆𝛿𝑎 0.0492 2 1.5708 -0.0381
𝐶̂𝐷,𝛿𝐵

𝑒
-0.0061 1 1.5708 0.0015

𝐶̂𝐷,𝐿𝛿𝐵
𝑒

0.1830 1 1.5708 0
𝐶̂𝐷,𝛿𝐵 2

𝑒
-0.0950 1 1.5708 0.4244
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Table A.7 BIRE aerodynamic model moment coefficients.

Coefficient 𝐴 𝜔 𝜙 𝑧

𝐶̂ℓ0 0.0002 2 0 0
𝐶̂ℓ,𝛼 -0.0023 4 0 0
𝐶̂ℓ,𝛽 0.0017 2 1.5708 -0.0283
𝐶̂ℓ, 𝑝̄ 0.0040 2 1.5708 -0.3069
𝐶̂ℓ,𝑞̄ 0 0 0 0
𝐶̂ℓ,𝑟 0 0 0 0.0062
𝐶̂ℓ,𝐿𝑟 0 0 0 0.1104
𝐶̂ℓ, 𝛿𝑎 0.0140 2 1.5708 -0.1065
𝐶̂ℓ, 𝛿𝐵

𝑒
0.0017 1 0 0

𝐶̂𝑚0 0.0164 2 1.5708 -0.0218
𝐶̂𝑚,𝛼 -0.1381 2 1.5708 0.2720
𝐶̂𝑚,𝛽 0.8299 2 0 0
𝐶̂𝑚, 𝑝̄ -0.0102 2 0 0
𝐶̂𝑚,𝑞̄ -2.3551 2 1.5708 -2.5457
𝐶̂𝑚,𝑟 -0.7667 2 0 0
𝐶̂𝑚,𝛿𝑎 0.0008 2 0 -0.0007
𝐶̂𝑚,𝛿𝐵

𝑒
-0.9115 1 1.5708 0.2914

𝐶̂𝑛0 0.0048 2 0 0
𝐶̂𝑛,𝛼 -0.0929 2 0 0
𝐶̂𝑛,𝛽 -0.3176 2 1.5708 0.2804
𝐶̂𝑛, 𝑝̄ 0 0 0 0.0010
𝐶̂𝑛,𝐿 𝑝̄ -0.0074 2 1.5708 -0.0621
𝐶̂𝑛,𝑞̄ -0.9205 2 0 0
𝐶̂𝑛,𝑟 0.2894 2 1.5708 -0.2789
𝐶̂𝑛, 𝛿𝑎 0 0 0 0.0131
𝐶̂𝑛,𝐿𝛿𝑎 -0.0169 2 1.5708 0.0411
𝐶̂𝑛, 𝛿𝐵

𝑒
-0.3527 1 0 0

B. Dynamics Linearization
Here is given the linearization for the system given in Eq. (50). As with the system description in Section II,

the linearization will be developed first from state and control derivatives of the incompressible aerodynamic model.
These will then be incorporated into the compressibility correction derivatives. With the propulsive derivatives, the
aerodynamic derivatives will then be included in the derivatives of the dimensional body-fixed forces and moments with
respect to aircraft state and input. A final formulated 𝐴 and 𝐵 matrix are then presented. Though this linearization is
performed with respect to the control input 𝑢, the subscript 𝑐𝑚𝑑 is excluded from the nomenclature for brevity.

For convenience in the linearization process, note the following partial derivatives of the aerodynamic angles and
dimensionless rotation rates with respect to body-fixed velocity:

𝛼,𝑉𝑥𝑏
= −

𝑉𝑧𝑏

𝑉2
𝑥𝑏 +𝑉2

𝑧𝑏

, 𝛼,𝑉𝑧𝑏
=

𝑉𝑥𝑏

𝑉2
𝑥𝑏 +𝑉2

𝑧𝑏

(B.1)

𝛽,𝑉𝑥𝑏
= −

𝑉𝑥𝑏𝑉𝑦𝑏

𝑉2
√︃
𝑉2
𝑥𝑏 +𝑉2

𝑧𝑏

, 𝛽,𝑉𝑦𝑏
=

√︃
𝑉2
𝑥𝑏 +𝑉2

𝑧𝑏

𝑉2 , 𝛽,𝑉𝑧𝑏
= −

𝑉𝑦𝑏𝑉𝑧𝑏

𝑉2
√︃
𝑉2
𝑥𝑏 +𝑉2

𝑧𝑏

(B.2)
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𝑝,𝑉𝑥𝑏
= −𝑝

𝑉𝑥𝑏

𝑉2 , 𝑝,𝑉𝑦𝑏
= −𝑝

𝑉𝑦𝑏

𝑉2 , 𝑝,𝑉𝑧𝑏
= −𝑝

𝑉𝑧𝑏

𝑉2 (B.3)

𝑞,𝑉𝑥𝑏
= −𝑞

𝑉𝑥𝑏

𝑉2 , 𝑞,𝑉𝑦𝑏
= −𝑞

𝑉𝑦𝑏

𝑉2 , 𝑞,𝑉𝑧𝑏
= −𝑞

𝑉𝑧𝑏

𝑉2 (B.4)

𝑟,𝑉𝑥𝑏
= −𝑟

𝑉𝑥𝑏

𝑉2 , 𝑟,𝑉𝑦𝑏
= −𝑟

𝑉𝑦𝑏

𝑉2 , 𝑟,𝑉𝑧𝑏
= −𝑟

𝑉𝑧𝑏

𝑉2 (B.5)

A. Baseline Aerodynamic Force and Moment Derivatives with respect to State
The aerodynamic force and moment derivatives with respect to state will first be determined for the baseline aircraft.

The derivatives of lift coefficient with respect to state are

𝐶̊𝐿,𝑉𝑥𝑏
= 𝐶𝐿,𝛼𝛼,𝑉𝑥𝑏

+ 𝐶𝐿,𝑞̄𝑞,𝑉𝑥𝑏
(B.6)

𝐶̊𝐿,𝑉𝑦𝑏
= 𝐶𝐿,𝑞̄𝑞,𝑉𝑦𝑏

(B.7)

𝐶̊𝐿,𝑉𝑧𝑏
= 𝐶𝐿,𝛼𝛼,𝑉𝑧𝑏

+ 𝐶𝐿,𝑞̄𝑞,𝑉𝑧𝑏
(B.8)

𝐶̊𝐿,𝑞 = 𝐶𝐿,𝑞̄𝑅𝑙𝑜𝑛 (B.9)

The derivatives of side-force coefficient with respect to state are

𝐶̊𝑆,𝑉𝑥𝑏
= 𝐶𝑆,𝛽𝛽,𝑉𝑥𝑏

+ 𝐶𝑆,𝐿 𝑝̄𝐶𝐿,𝛼𝛼,𝑉𝑥𝑏
𝑝 + (𝐶𝑆,𝐿 𝑝̄𝐶𝐿1 + 𝐶𝑆, 𝑝̄)𝑝,𝑉𝑥𝑏

+ 𝐶𝑆,𝑟𝑟,𝑉𝑥𝑏
(B.10)

𝐶̊𝑆,𝑉𝑦𝑏
= 𝐶𝑆,𝛽𝛽,𝑉𝑦𝑏

+ (𝐶𝑆,𝐿 𝑝̄𝐶𝐿1 + 𝐶𝑆, 𝑝̄)𝑝,𝑉𝑦𝑏
+ 𝐶𝑆,𝑟𝑟,𝑉𝑦𝑏

(B.11)

𝐶̊𝑆,𝑉𝑧𝑏
= 𝐶𝑆,𝛽𝛽,𝑉𝑧𝑏

+ 𝐶𝑆,𝐿 𝑝̄𝐶𝐿,𝛼𝛼,𝑉𝑧𝑏
𝑝 + (𝐶𝑆,𝐿 𝑝̄𝐶𝐿1 + 𝐶𝑆, 𝑝̄)𝑝,𝑉𝑧𝑏

+ 𝐶𝑆,𝑟𝑟,𝑉𝑧𝑏
(B.12)

𝐶̊𝑆,𝑝 = (𝐶𝑆,𝐿 𝑝̄𝐶𝐿1 + 𝐶𝑆, 𝑝̄)𝑅𝑙𝑎𝑡 (B.13)

𝐶̊𝑆,𝑟 = 𝐶𝑆,𝑟𝑅𝑙𝑎𝑡 (B.14)

The derivatives of drag coefficient with respect to state are

𝐶̊𝐷,𝑉𝑥𝑏
=

(
𝐶𝐷,𝐿 + 2𝐶𝐷,𝐿2𝐶𝐿1 +

(
2𝐶𝐷,𝐿2𝑞̄𝐶𝐿1 + 𝐶𝐷,𝐿𝑞̄

)
𝑞 + 𝐶𝐷,𝐿𝛿𝑒𝛿𝑒

)
𝐶𝐿,𝛼𝛼,𝑉𝑥𝑏

+
(
2𝐶𝐷,𝑆2𝐶𝑆1 + 𝐶𝐷,𝑆 𝑝̄𝑝 + 𝐶𝐷,𝑆𝑟𝑟 + 𝐶𝐷,𝑆𝛿𝑎𝛿𝑎 + 𝐶𝐷,𝑆𝛿𝑟 𝛿𝑟

)
𝐶𝑆,𝛽𝛽,𝑉𝑥𝑏

+ 𝐶𝐷,𝑆 𝑝̄𝐶𝑆1 𝑝,𝑉𝑥𝑏
+

(
𝐶𝐷,𝐿2𝑞̄𝐶

2
𝐿1

+ 𝐶𝐷,𝐿𝑞̄𝐶𝐿1 + 𝐶𝐷,𝑞̄

)
𝑞,𝑉𝑥𝑏

+ 𝐶𝐷,𝑆𝑟𝐶𝑆1𝑟,𝑉𝑥𝑏
(B.15)

𝐶̊𝐷,𝑉𝑦𝑏
=

(
2𝐶𝐷,𝑆2𝐶𝑆1 + 𝐶𝐷,𝑆 𝑝̄𝑝 + 𝐶𝐷,𝑆𝑟𝑟 + 𝐶𝐷,𝑆𝛿𝑎𝛿𝑎 + 𝐶𝐷,𝑆𝛿𝑟 𝛿𝑟

)
𝐶𝑆,𝛽𝛽,𝑉𝑦𝑏

+ 𝐶𝐷,𝑆 𝑝̄𝐶𝑆1 𝑝,𝑉𝑦𝑏
+

(
𝐶𝐷,𝐿2𝑞̄𝐶

2
𝐿1

+ 𝐶𝐷,𝐿𝑞̄𝐶𝐿1 + 𝐶𝐷,𝑞̄

)
𝑞,𝑉𝑦𝑏

+ 𝐶𝐷,𝑆𝑟𝐶𝑆1𝑟,𝑉𝑦𝑏
(B.16)

𝐶̊𝐷,𝑉𝑧𝑏
=

(
𝐶𝐷,𝐿 + 2𝐶𝐷,𝐿2𝐶𝐿1 +

(
2𝐶𝐷,𝐿2𝑞̄𝐶𝐿1 + 𝐶𝐷,𝐿𝑞̄

)
𝑞 + 𝐶𝐷,𝐿𝛿𝑒𝛿𝑒

)
𝐶𝐿,𝛼𝛼,𝑉𝑧𝑏

+
(
2𝐶𝐷,𝑆2𝐶𝑆1 + 𝐶𝐷,𝑆 𝑝̄𝑝 + 𝐶𝐷,𝑆𝑟𝑟 + 𝐶𝐷,𝑆𝛿𝑎𝛿𝑎 + 𝐶𝐷,𝑆𝛿𝑟 𝛿𝑟

)
𝐶𝑆,𝛽𝛽,𝑉𝑧𝑏

+ 𝐶𝐷,𝑆 𝑝̄𝐶𝑆1 𝑝,𝑉𝑧𝑏
+

(
𝐶𝐷,𝐿2𝑞̄𝐶

2
𝐿1

+ 𝐶𝐷,𝐿𝑞̄𝐶𝐿1 + 𝐶𝐷,𝑞̄

)
𝑞,𝑉𝑧𝑏

+ 𝐶𝐷,𝑆𝑟𝐶𝑆1𝑟,𝑉𝑧𝑏
(B.17)

𝐶̊𝐷,𝑝 = 𝐶𝐷,𝑆 𝑝̄𝐶𝑆1𝑅𝑙𝑎𝑡 (B.18)

𝐶̊𝐷,𝑞 =

(
𝐶𝐷,𝐿2𝑞̄𝐶

2
𝐿1

+ 𝐶𝐷,𝐿𝑞̄𝐶𝐿1 + 𝐶𝐷,𝑞̄

)
𝑅𝑙𝑜𝑛 (B.19)

𝐶̊𝐷,𝑟 = 𝐶𝐷,𝑆𝑟𝐶𝑆1𝑅𝑙𝑎𝑡 (B.20)

The derivatives of rolling moment coefficient with respect to state are

𝐶̊ℓ,𝑉𝑥𝑏
= 𝐶ℓ,𝛽𝛽,𝑉𝑥𝑏

+ 𝐶ℓ, 𝑝̄𝑝,𝑉𝑥𝑏
+ 𝐶ℓ,𝐿𝑟𝐶𝐿,𝛼𝛼,𝑉𝑥𝑏

𝑟 + (𝐶ℓ,𝐿𝑟𝐶𝐿1 + 𝐶ℓ,𝑟 )𝑟,𝑉𝑥𝑏
(B.21)

𝐶̊ℓ,𝑉𝑦𝑏
= 𝐶ℓ,𝛽𝛽,𝑉𝑦𝑏

+ 𝐶ℓ, 𝑝̄𝑝,𝑉𝑦𝑏
+ (𝐶ℓ,𝐿𝑟𝐶𝐿1 + 𝐶ℓ,𝑟 )𝑟,𝑉𝑦𝑏

(B.22)

𝐶̊ℓ,𝑉𝑧𝑏
= 𝐶ℓ,𝛽𝛽,𝑉𝑧𝑏

+ 𝐶ℓ, 𝑝̄𝑝,𝑉𝑧𝑏
+ 𝐶ℓ,𝐿𝑟𝐶𝐿,𝛼𝛼,𝑉𝑧𝑏

𝑟 + (𝐶ℓ,𝐿𝑟𝐶𝐿1 + 𝐶ℓ,𝑟 )𝑟,𝑉𝑧𝑏
(B.23)

𝐶̊ℓ, 𝑝 = 𝐶ℓ, 𝑝̄𝑅𝑙𝑎𝑡 (B.24)
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𝐶̊ℓ,𝑟 = (𝐶ℓ,𝐿𝑟𝐶𝐿1 + 𝐶ℓ,𝑟 )𝑅𝑙𝑎𝑡 (B.25)

The derivatives of pitching moment coefficient with respect to state are

𝐶̊𝑚,𝑉𝑥𝑏
= 𝐶𝑚,𝛼𝛼,𝑉𝑥𝑏

+ 𝐶𝑚,𝑞̄𝑞,𝑉𝑥𝑏
(B.26)

𝐶̊𝑚,𝑉𝑦𝑏
= 𝐶𝑚,𝑞̄𝑞,𝑉𝑦𝑏

(B.27)

𝐶̊𝑚,𝑉𝑧𝑏
= 𝐶𝑚,𝛼𝛼,𝑉𝑧𝑏

+ 𝐶𝑚,𝑞̄𝑞,𝑉𝑧𝑏
(B.28)

𝐶̊𝑚,𝑞 = 𝐶𝑚,𝑞̄𝑅𝑙𝑜𝑛 (B.29)

The derivatives of yawing moment coefficient with respect to state are

𝐶̊𝑛,𝑉𝑥𝑏
=

(
𝐶𝑛,𝐿 𝑝̄𝑝 + 𝐶𝑛,𝐿𝛿𝑎𝛿𝑎

)
𝐶𝐿,𝛼𝛼,𝑉𝑥𝑏

+ 𝐶𝑛,𝛽𝛽,𝑉𝑥𝑏
+ (𝐶𝑛,𝐿 𝑝̄𝐶𝐿1 + 𝐶𝑛, 𝑝̄)𝑝,𝑉𝑥𝑏

+ 𝐶𝑛,𝑟𝑟,𝑉𝑥𝑏
(B.30)

𝐶̊𝑛,𝑉𝑦𝑏
= 𝐶𝑛,𝛽𝛽,𝑉𝑦𝑏

+ (𝐶𝑛,𝐿 𝑝̄𝐶𝐿1 + 𝐶𝑛, 𝑝̄)𝑝,𝑉𝑦𝑏
+ 𝐶𝑛,𝑟𝑟,𝑉𝑦𝑏

(B.31)

𝐶̊𝑛,𝑉𝑧𝑏
=

(
𝐶𝑛,𝐿 𝑝̄𝑝 + 𝐶𝑛,𝐿𝛿𝑎𝛿𝑎

)
𝐶𝐿,𝛼𝛼,𝑉𝑧𝑏

+ 𝐶𝑛,𝛽𝛽,𝑉𝑧𝑏
+ (𝐶𝑛,𝐿 𝑝̄𝐶𝐿1 + 𝐶𝑛, 𝑝̄)𝑝,𝑉𝑧𝑏

+ 𝐶𝑛,𝑟𝑟,𝑉𝑧𝑏
(B.32)

𝐶̊𝑛,𝑝 = (𝐶𝑛,𝐿 𝑝̄𝐶𝐿1 + 𝐶𝑛, 𝑝̄)𝑅𝑙𝑎𝑡 (B.33)

𝐶̊𝑛,𝑟 = 𝐶𝑛,𝑟𝑅𝑙𝑎𝑡 (B.34)

where

𝑅𝑙𝑜𝑛 =
𝑐𝑤

2𝑉
(B.35)

𝑅𝑙𝑎𝑡 =
𝑏𝑤

2𝑉
(B.36)

Note the following negligible derivatives for the baseline

𝐶̊𝐿,𝑝 = 𝐶̊𝐿,𝑟 = 𝐶̊𝑆,𝑞 = 𝐶̊ℓ,𝑞 = 𝐶̊𝑚,𝑝 = 𝐶̊𝑚,𝑟 = 𝐶̊𝑛,𝑞 = 0 (B.37)

B. Baseline Aerodynamic Force and Moment Derivatives with respect to Input
Next, the aerodynamic force and moment derivatives with respect to input for the baseline aircraft will be determined.

The derivatives of drag coefficient with respect to input are

𝐶̊𝐷,𝛿𝑎 = 𝐶𝐷,𝑆𝛿𝑎𝐶𝑆1 (B.38)

𝐶̊𝐷,𝛿𝑒 = 𝐶𝐷,𝐿𝛿𝑒𝐶𝐿1 + 𝐶𝐷,𝛿𝑒 + 2𝐶𝐷,𝛿2
𝑒
𝛿𝑒 (B.39)

𝐶̊𝐷,𝛿𝑟 = 𝐶𝐷,𝑆𝛿𝑟𝐶𝑆1 (B.40)

The derivatives of yawing moment coefficient with respect to input are

𝐶̊𝑛, 𝛿𝑎 = 𝐶𝑛,𝐿𝛿𝑎𝐶𝐿1 + 𝐶𝑛, 𝛿𝑎 (B.41)

The following coefficients are equivalent to those shown in the aerodynamic model given in Eqs. (8) – (15) (i.e.
𝐶̊𝐿, 𝛿𝑒 = 𝐶𝐿, 𝛿𝑒 )

𝐶̊𝐿, 𝛿𝑒 , 𝐶̊𝑆, 𝛿𝑎 , 𝐶̊𝑆, 𝛿𝑟 , 𝐶̊ℓ, 𝛿𝑎 , 𝐶̊ℓ, 𝛿𝑟 , 𝐶̊𝑚,𝛿𝑒 , 𝐶̊𝑛, 𝛿𝑟 (B.42)

Note the following negligible derivatives for the baseline

𝐶̊𝐿, 𝛿𝑎 = 𝐶̊𝐿, 𝛿𝑟 = 𝐶̊𝑆, 𝛿𝑒 = 𝐶̊ℓ, 𝛿𝑒 = 𝐶̊𝑚,𝛿𝑎 = 𝐶̊𝑚,𝛿𝑟 = 𝐶̊𝑛, 𝛿𝑒 = 0 (B.43)

C. BIRE Aerodynamic Force and Moment Derivatives with respect to State
The aerodynamic force and moment derivatives with respect to state will now be found for the BIRE. The derivatives

of lift coefficient with respect to state are

𝐶̊𝐿,𝑉𝑥𝑏
= 𝐶̂𝐿,𝛼𝛼,𝑉𝑥𝑏

+ 𝐶̂𝐿,𝛽𝛽,𝑉𝑥𝑏
+ 𝐶̂𝐿, 𝑝̄𝑝,𝑉𝑥𝑏

+ 𝐶̂𝐿,𝑞̄𝑞,𝑉𝑥𝑏
+ 𝐶̂𝐿,𝑟𝑟,𝑉𝑥𝑏

(B.44)
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𝐶̊𝐿,𝑉𝑦𝑏
= 𝐶̂𝐿,𝛽𝛽,𝑉𝑦𝑏

+ 𝐶̂𝐿, 𝑝̄𝑝,𝑉𝑦𝑏
+ 𝐶̂𝐿,𝑞̄𝑞,𝑉𝑦𝑏

+ 𝐶̂𝐿,𝑟𝑟,𝑉𝑦𝑏
(B.45)

𝐶̊𝐿,𝑉𝑧𝑏
= 𝐶̂𝐿,𝛼𝛼,𝑉𝑧𝑏

+ 𝐶̂𝐿,𝛽𝛽,𝑉𝑧𝑏
+ 𝐶̂𝐿, 𝑝̄𝑝,𝑉𝑧𝑏

+ 𝐶̂𝐿,𝑞̄𝑞,𝑉𝑧𝑏
+ 𝐶̂𝐿,𝑟𝑟,𝑉𝑧𝑏

(B.46)

𝐶̊𝐿,𝑝 = 𝐶̂𝐿, 𝑝̄𝑅𝑙𝑎𝑡 (B.47)

𝐶̊𝐿,𝑞 = 𝐶̂𝐿,𝑞̄𝑅𝑙𝑜𝑛 (B.48)

𝐶̊𝐿,𝑟 = 𝐶̂𝐿,𝑟𝑅𝑙𝑎𝑡 (B.49)

The derivatives of side-force coefficient with respect to state are

𝐶̊𝑆,𝑉𝑥𝑏
= 𝐶̂𝑆,𝛼𝛼,𝑉𝑥𝑏

+ 𝐶̂𝑆,𝛽𝛽,𝑉𝑥𝑏
+ 𝐶̂𝑆,𝐿 𝑝̄𝐶̂𝐿,𝛼𝛼,𝑉𝑥𝑏

𝑝 +
(
𝐶̂𝑆,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑆, 𝑝̄

)
𝑝,𝑉𝑥𝑏

+ 𝐶̂𝑆,𝑞̄𝑞,𝑉𝑥𝑏
+ 𝐶̂𝑆,𝑟𝑟,𝑉𝑥𝑏

(B.50)

𝐶̊𝑆,𝑉𝑦𝑏
= 𝐶̂𝑆,𝛽𝛽,𝑉𝑦𝑏

+
(
𝐶̂𝑆,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑆, 𝑝̄

)
𝑝,𝑉𝑦𝑏

+ 𝐶̂𝑆,𝑞̄𝑞,𝑉𝑦𝑏
+ 𝐶̂𝑆,𝑟𝑟,𝑉𝑦𝑏

(B.51)

𝐶̊𝑆,𝑉𝑧𝑏
= 𝐶̂𝑆,𝛼𝛼,𝑉𝑧𝑏

+ 𝐶̂𝑆,𝛽𝛽,𝑉𝑧𝑏
+ 𝐶̂𝑆,𝐿 𝑝̄𝐶̂𝐿,𝛼𝛼,𝑉𝑧𝑏

𝑝 +
(
𝐶̂𝑆,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑆, 𝑝̄

)
𝑝,𝑉𝑧𝑏

+ 𝐶̂𝑆,𝑞̄𝑞,𝑉𝑧𝑏
+ 𝐶̂𝑆,𝑟𝑟,𝑉𝑧𝑏

(B.52)

𝐶̊𝑆,𝑝 =

(
𝐶̂𝑆,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑆, 𝑝̄

)
𝑅𝑙𝑎𝑡 (B.53)

𝐶̊𝑆,𝑞 = 𝐶̂𝑆,𝑞̄𝑅𝑙𝑜𝑛 (B.54)

𝐶̊𝑆,𝑟 = 𝐶̂𝑆,𝑟𝑅𝑙𝑎𝑡 (B.55)

The derivatives of drag coefficient with respect to state are

𝐶̊𝐷,𝑉𝑥𝑏
=

(
𝐶̂𝐷,𝐿 + 2𝐶̂𝐷,𝐿2𝐶̂𝐿1 +

(
2𝐶̂𝐷,𝐿2𝑞̄𝐶̂𝐿1 + 𝐶̂𝐷,𝐿𝑞̄

)
𝑞 + 𝐶̂𝐷,𝐿𝛿𝑒𝛿𝑒

)
𝐶̂𝐿,𝛼𝛼,𝑉𝑥𝑏

+
(
𝐶̂𝐷,𝑆 + 2𝐶̂𝐷,𝑆2𝐶̂𝑆1 + 𝐶̂𝐷,𝑆 𝑝̄𝑝 + 𝐶̂𝐷,𝑆𝑟𝑟 + 𝐶̂𝐷,𝑆𝛿𝑎𝛿𝑎

)
𝐶̂𝑆,𝛽𝛽,𝑉𝑥𝑏

+
(
𝐶̂𝐷,𝑆 𝑝̄𝐶̂𝑆1 + 𝐶̂𝐷, 𝑝̄

)
𝑝,𝑉𝑥𝑏

+
(
𝐶̂𝐷,𝐿2𝑞̄𝐶̂

2
𝐿1

+ 𝐶̂𝐷,𝐿𝑞̄𝐶̂𝐿1 + 𝐶̂𝐷,𝑞̄

)
𝑞,𝑉𝑥𝑏

+
(
𝐶̂𝐷,𝑆𝑟 𝐶̂𝑆1 + 𝐶̂𝐷,𝑟

)
𝑟,𝑉𝑥𝑏

(B.56)

𝐶̊𝐷,𝑉𝑦𝑏
=

(
𝐶̂𝐷,𝑆 + 2𝐶̂𝐷,𝑆2𝐶̂𝑆1 + 𝐶̂𝐷,𝑆 𝑝̄𝑝 + 𝐶̂𝐷,𝑆𝑟𝑟 + 𝐶̂𝐷,𝑆𝛿𝑎𝛿𝑎

)
𝐶̂𝑆,𝛽𝛽,𝑉𝑦𝑏

+
(
𝐶̂𝐷,𝑆 𝑝̄𝐶̂𝑆1 + 𝐶̂𝐷, 𝑝̄

)
𝑝,𝑉𝑦𝑏

+
(
𝐶̂𝐷,𝐿2𝑞̄𝐶̂

2
𝐿1

+ 𝐶̂𝐷,𝐿𝑞̄𝐶̂𝐿1 + 𝐶̂𝐷,𝑞̄

)
𝑞,𝑉𝑦𝑏

+
(
𝐶̂𝐷,𝑆𝑟 𝐶̂𝑆1 + 𝐶̂𝐷,𝑟

)
𝑟,𝑉𝑦𝑏

(B.57)

𝐶̊𝐷,𝑉𝑧𝑏
=

(
𝐶̂𝐷,𝐿 + 2𝐶̂𝐷,𝐿2𝐶̂𝐿1 +

(
2𝐶̂𝐷,𝐿2𝑞̄𝐶̂𝐿1 + 𝐶̂𝐷,𝐿𝑞̄

)
𝑞 + 𝐶̂𝐷,𝐿𝛿𝑒𝛿𝑒

)
𝐶̂𝐿,𝛼𝛼,𝑉𝑧𝑏

+
(
𝐶̂𝐷,𝑆 + 2𝐶̂𝐷,𝑆2𝐶̂𝑆1 + 𝐶̂𝐷,𝑆 𝑝̄𝑝 + 𝐶̂𝐷,𝑆𝑟𝑟 + 𝐶̂𝐷,𝑆𝛿𝑎𝛿𝑎

)
𝐶̂𝑆,𝛽𝛽,𝑉𝑧𝑏

+
(
𝐶̂𝐷,𝑆 𝑝̄𝐶̂𝑆1 + 𝐶̂𝐷, 𝑝̄

)
𝑝,𝑉𝑧𝑏

+
(
𝐶̂𝐷,𝐿2𝑞̄𝐶̂

2
𝐿1

+ 𝐶̂𝐷,𝐿𝑞̄𝐶̂𝐿1 + 𝐶̂𝐷,𝑞̄

)
𝑞,𝑉𝑧𝑏

+
(
𝐶̂𝐷,𝑆𝑟 𝐶̂𝑆1 + 𝐶̂𝐷,𝑟

)
𝑟,𝑉𝑧𝑏

(B.58)

𝐶̊𝐷,𝑝 =

(
𝐶̂𝐷,𝑆 𝑝̄𝐶̂𝑆1 + 𝐶̂𝐷, 𝑝̄

)
𝑅𝑙𝑎𝑡 (B.59)

𝐶̊𝐷,𝑞 =

(
𝐶̂𝐷,𝐿2𝑞̄𝐶̂

2
𝐿1

+ 𝐶̂𝐷,𝐿𝑞̄𝐶̂𝐿1 + 𝐶̂𝐷,𝑞̄

)
𝑅𝑙𝑜𝑛 (B.60)

𝐶̊𝐷,𝑟 =

(
𝐶̂𝐷,𝑆𝑟 𝐶̂𝑆1 + 𝐶̂𝐷,𝑟

)
𝑅𝑙𝑎𝑡 (B.61)

The derivatives of rolling moment coefficient with respect to state are

𝐶̊ℓ,𝑉𝑥𝑏
= 𝐶̂ℓ,𝛼𝛼,𝑉𝑥𝑏

+ 𝐶̂ℓ,𝛽𝛽,𝑉𝑥𝑏
+ 𝐶̂ℓ, 𝑝̄𝑝,𝑉𝑥𝑏

+ 𝐶̂ℓ,𝑞̄𝑞,𝑉𝑥𝑏
+ 𝐶̂ℓ,𝐿𝑟 𝐶̂𝐿,𝛼𝛼,𝑉𝑥𝑏

𝑟 +
(
𝐶̂ℓ,𝐿𝑟 𝐶̂𝐿1 + 𝐶̂ℓ,𝑟

)
𝑟,𝑉𝑥𝑏

(B.62)

𝐶̊ℓ,𝑉𝑦𝑏
= 𝐶̂ℓ,𝛽𝛽,𝑉𝑦𝑏

+ 𝐶̂ℓ, 𝑝̄𝑝,𝑉𝑦𝑏
+ 𝐶̂ℓ,𝑞̄𝑞,𝑉𝑦𝑏

+
(
𝐶̂ℓ,𝐿𝑟 𝐶̂𝐿1 + 𝐶̂ℓ,𝑟

)
𝑟,𝑉𝑦𝑏

(B.63)

𝐶̊ℓ,𝑉𝑧𝑏
= 𝐶̂ℓ,𝛼𝛼,𝑉𝑧𝑏

+ 𝐶̂ℓ,𝛽𝛽,𝑉𝑧𝑏
+ 𝐶̂ℓ, 𝑝̄𝑝,𝑉𝑧𝑏

+ 𝐶̂ℓ,𝑞̄𝑞,𝑉𝑧𝑏
+ 𝐶̂ℓ,𝐿𝑟 𝐶̂𝐿,𝛼𝛼,𝑉𝑧𝑏

𝑟 +
(
𝐶̂ℓ,𝐿𝑟 𝐶̂𝐿1 + 𝐶̂ℓ,𝑟

)
𝑟,𝑉𝑧𝑏

(B.64)

𝐶̊ℓ, 𝑝 = 𝐶̂ℓ, 𝑝̄𝑅𝑙𝑎𝑡 (B.65)

𝐶̊ℓ,𝑞 = 𝐶̂ℓ,𝑞̄𝑅𝑙𝑜𝑛 (B.66)

𝐶̊ℓ,𝑟 =

(
𝐶̂ℓ,𝐿𝑟 𝐶̂𝐿1 + 𝐶̂ℓ,𝑟

)
𝑅𝑙𝑎𝑡 (B.67)
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The derivatives of pitching moment coefficient with respect to state are

𝐶̊𝑚,𝑉𝑥𝑏
= 𝐶̂𝑚,𝛼𝛼,𝑉𝑥𝑏

+ 𝐶̂𝑚,𝛽𝛽,𝑉𝑥𝑏
+ 𝐶̂𝑚, 𝑝̄𝑝,𝑉𝑥𝑏

+ 𝐶̂𝑚,𝑞̄𝑞,𝑉𝑥𝑏
+ 𝐶̂𝑚,𝑟𝑟,𝑉𝑥𝑏

(B.68)

𝐶̊𝑚,𝑉𝑦𝑏
= 𝐶̂𝑚,𝛽𝛽,𝑉𝑦𝑏

+ 𝐶̂𝑚, 𝑝̄𝑝,𝑉𝑦𝑏
+ 𝐶̂𝑚,𝑞̄𝑞,𝑉𝑦𝑏

+ 𝐶̂𝑚,𝑟𝑟,𝑉𝑦𝑏
(B.69)

𝐶̊𝑚,𝑉𝑧𝑏
= 𝐶̂𝑚,𝛼𝛼,𝑉𝑧𝑏

+ 𝐶̂𝑚,𝛽𝛽,𝑉𝑧𝑏
+ 𝐶̂𝑚, 𝑝̄𝑝,𝑉𝑧𝑏

+ 𝐶̂𝑚,𝑞̄𝑞,𝑉𝑧𝑏
+ 𝐶̂𝑚,𝑟𝑟,𝑉𝑧𝑏

(B.70)

𝐶̊𝑚,𝑝 = 𝐶̂𝑚, 𝑝̄𝑅𝑙𝑎𝑡 (B.71)

𝐶̊𝑚,𝑞 = 𝐶̂𝑚,𝑞̄𝑅𝑙𝑜𝑛 (B.72)

𝐶̊𝑚,𝑟 = 𝐶̂𝑚,𝑟𝑅𝑙𝑎𝑡 (B.73)

The derivatives of yawing moment coefficient with respect to state are

𝐶̊𝑛,𝑉𝑥𝑏
=

[(
𝐶̂𝑛,𝐿 𝑝̄𝑝 + 𝐶̂𝑛,𝐿𝛿𝑎𝛿𝑎

)
𝐶̂𝐿,𝛼 + 𝐶̂𝑛,𝛼

]
𝛼,𝑉𝑥𝑏

+ 𝐶̂𝑛,𝛽𝛽,𝑉𝑥𝑏
+

(
𝐶̂𝑛,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑛, 𝑝̄

)
𝑝,𝑉𝑥𝑏

+ 𝐶̂𝑛,𝑞̄𝑞,𝑉𝑥𝑏
+ 𝐶̂𝑛,𝑟𝑟,𝑉𝑥𝑏

(B.74)

𝐶̊𝑛,𝑉𝑦𝑏
= 𝐶̂𝑛,𝛽𝛽,𝑉𝑦𝑏

+
(
𝐶̂𝑛,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑛, 𝑝̄

)
𝑝,𝑉𝑦𝑏

+ 𝐶̂𝑛,𝑞̄𝑞,𝑉𝑦𝑏
+ 𝐶̂𝑛,𝑟𝑟,𝑉𝑦𝑏

(B.75)

𝐶̊𝑛,𝑉𝑧𝑏
=

[(
𝐶̂𝑛,𝐿 𝑝̄𝑝 + 𝐶̂𝑛,𝐿𝛿𝑎𝛿𝑎

)
𝐶̂𝐿,𝛼 + 𝐶̂𝑛,𝛼

]
𝛼,𝑉𝑧𝑏

+ 𝐶̂𝑛,𝛽𝛽,𝑉𝑧𝑏
+

(
𝐶̂𝑛,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑛, 𝑝̄

)
𝑝,𝑉𝑧𝑏

+ 𝐶̂𝑛,𝑞̄𝑞,𝑉𝑧𝑏
+ 𝐶̂𝑛,𝑟𝑟,𝑉𝑧𝑏

(B.76)

𝐶̊𝑛,𝑝 =

(
𝐶̂𝑛,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑛, 𝑝̄

)
𝑅𝑙𝑎𝑡 (B.77)

𝐶̊𝑛,𝑞 = 𝐶̂𝑛,𝑞̄𝑅𝑙𝑜𝑛 (B.78)

𝐶̊𝑛,𝑟 = 𝐶̂𝑛,𝑟𝑅𝑙𝑎𝑡 (B.79)

D. BIRE Aerodynamic Force and Moment Derivatives with respect to Input
The aerodynamic force and moment derivatives with respect to input will now be found for the BIRE. The coefficient

derivatives with respect to BIRE angle will be denoted as

𝐶̆ = 𝐴𝜔 cos (𝜔𝛿𝐵 + 𝜙) (B.80)

The derivatives of lift coefficient with respect to input are

𝐶̊𝐿, 𝛿𝐵 = 𝐶̆𝐿0 + 𝐶̆𝐿,𝛼𝛼 + 𝐶̆𝐿,𝛽𝛽 + 𝐶̆𝐿, 𝑝̄𝑝 + 𝐶̆𝐿,𝑞̄𝑞 + 𝐶̆𝐿,𝑟𝑟 + 𝐶̆𝐿, 𝛿𝑎𝛿𝑎 + 𝐶̆𝐿, 𝛿𝐵
𝑒
𝛿𝐵𝑒 (B.81)

The derivatives of side-force coefficient with respect to input are

𝐶̊𝑆, 𝛿𝐵 = 𝐶̆𝑆0 + 𝐶̆𝑆,𝛼𝛼 + 𝐶̆𝑆,𝛽𝛽 +
(
𝐶̆𝑆,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑆,𝐿 𝑝̄𝐶̆𝐿1 + 𝐶̆𝑆, 𝑝̄

)
𝑝 + 𝐶̆𝑆,𝑞̄𝑞 + 𝐶̆𝑆,𝑟𝑟 + 𝐶̆𝑆, 𝛿𝑎𝛿𝑎 + 𝐶̆𝑆, 𝛿𝐵

𝑒
𝛿𝐵𝑒 (B.82)

The derivatives of drag coefficient with respect to input are

𝐶̊𝐷,𝛿𝑎 = 𝐶̂𝐷,𝑆𝛿𝑎𝐶̂𝑆1 + 𝐶̂𝐷,𝛿𝑎 (B.83)

𝐶̊𝐷,𝛿𝑒 = 𝐶̊𝐷,𝛿𝐵
𝑒
= 𝐶̂𝐷,𝐿𝛿𝐵

𝑒
𝐶̂𝐿1 + 𝐶̂𝐷,𝛿𝐵

𝑒
+ 2𝐶̂𝐷,𝛿𝐵 2

𝑒
𝛿𝐵𝑒 (B.84)

𝐶̊𝐷,𝛿𝐵 = 𝐶̆𝐷0 + 𝐶̆𝐷,𝐿𝐶̂𝐿1 + 𝐶̂𝐷,𝐿𝐶̆𝐿1 + 𝐶̆𝐷,𝐿2𝐶̂2
𝐿1

+ 2𝐶̂𝐷,𝐿2𝐶̂𝐿1𝐶̆𝐿1

+ 𝐶̆𝐷,𝑆𝐶̂𝑆1 + 𝐶̂𝐷,𝑆𝐶̆𝑆1 + 𝐶̆𝐷,𝑆2𝐶̂2
𝑆1

+ 2𝐶̂𝐷,𝑆2𝐶̂𝑆1𝐶̆𝑆1

+
(
𝐶̆𝐷,𝑆 𝑝̄𝐶̂𝑆1 + 𝐶̂𝐷,𝑆 𝑝̄𝐶̆𝑆1 + 𝐶̆𝐷, 𝑝̄

)
𝑝

+
(
𝐶̆𝐷,𝐿2𝑞̄𝐶̂

2
𝐿1

+ 2𝐶̂𝐷,𝐿2𝑞̄𝐶̂𝐿1𝐶̆𝐿1 + 𝐶̆𝐷,𝐿𝑞̄𝐶̂𝐿1 + 𝐶̂𝐷,𝐿𝑞̄𝐶̆𝐿1 + 𝐶̆𝐷,𝑞̄

)
𝑞

+
(
𝐶̆𝐷,𝑆𝑟 𝐶̂𝑆1 + 𝐶̂𝐷,𝑆𝑟 𝐶̆𝑆1 + 𝐶̆𝐷,𝑟

)
𝑟

+
(
𝐶̆𝐷,𝑆𝛿𝑎𝐶̂𝑆1 + 𝐶̂𝐷,𝑆𝛿𝑎𝐶̆𝑆1 + 𝐶̆𝐷,𝛿𝑎

)
𝛿𝑎 +

(
𝐶̆𝐷,𝐿𝛿𝐵

𝑒
𝐶̂𝐿1 + 𝐶̂𝐷,𝐿𝛿𝐵

𝑒
𝐶̆𝐿1 + 𝐶̆𝐷,𝛿𝐵

𝑒

)
𝛿𝐵𝑒 + 𝐶̆𝐷,𝛿𝐵 2

𝑒
𝛿𝐵 2
𝑒

(B.85)
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The derivatives of rolling moment coefficient with respect to input are

𝐶̊ℓ, 𝛿𝐵 = 𝐶̆ℓ0 + 𝐶̆ℓ,𝛼𝛼 + 𝐶̆ℓ,𝛽𝛽 + 𝐶̆ℓ, 𝑝̄𝑝 + 𝐶̆ℓ,𝑞̄𝑞 +
(
𝐶̆ℓ,𝐿𝑟 𝐶̂𝐿1 + 𝐶̂ℓ,𝐿𝑟 𝐶̆𝐿1 + 𝐶̆ℓ,𝑟

)
𝑟 + 𝐶̆ℓ, 𝛿𝑎𝛿𝑎 + 𝐶̆ℓ, 𝛿𝐵

𝑒
𝛿𝐵𝑒 (B.86)

The derivatives of pitching moment coefficient with respect to input are

𝐶̊𝑚,𝛿𝐵 = 𝐶̆𝑚0 + 𝐶̆𝑚,𝛼𝛼 + 𝐶̆𝑚,𝛽𝛽 + 𝐶̆𝑚, 𝑝̄𝑝 + 𝐶̆𝑚,𝑞̄𝑞 + 𝐶̆𝑚,𝑟𝑟 + 𝐶̆𝑚,𝛿𝑎𝛿𝑎 + 𝐶̆𝑚,𝛿𝐵
𝑒
𝛿𝐵𝑒 (B.87)

The derivatives of yawing moment coefficient with respect to input are

𝐶̊𝑛, 𝛿𝑎 = 𝐶̂𝑛,𝐿𝛿𝑎𝐶̂𝐿1 + 𝐶̂𝑛, 𝛿𝑎 (B.88)

𝐶̊𝑛, 𝛿𝐵 = 𝐶̆𝑛0 + 𝐶̆𝑛,𝛼𝛼 + 𝐶̆𝑛,𝛽𝛽 +
(
𝐶̆𝑛,𝐿 𝑝̄𝐶̂𝐿1 + 𝐶̂𝑛,𝐿 𝑝̄𝐶̆𝐿1 + 𝐶̆𝑛, 𝑝̄

)
𝑝

+ 𝐶̆𝑛,𝑞̄𝑞 + 𝐶̆𝑛,𝑟𝑟 +
(
𝐶̆𝑛,𝐿𝛿𝑎𝐶̂𝐿1 + 𝐶̂𝑛,𝐿𝛿𝑎𝐶̆𝐿1 + 𝐶̆𝑛, 𝛿𝑎

)
𝛿𝑎 + 𝐶̆𝑛, 𝛿𝐵

𝑒
𝛿𝐵𝑒 (B.89)

where

𝐶̆𝐿1 = 𝐶̆𝐿0 + 𝐶̆𝐿,𝛼𝛼 (B.90)
𝐶̆𝑆1 = 𝐶̆𝑆0 + 𝐶̆𝑆,𝛽𝛽 (B.91)

The following coefficients are equivalent to the BIRE-angle dependant coefficients shown in the aerodynamic model
given in Eqs. (18) – (25) (i.e. 𝐶̊𝐿, 𝛿𝑒 = 𝐶̊𝐿, 𝛿𝐵

𝑒
= 𝐶̂𝐿, 𝛿𝐵

𝑒
)

𝐶̊𝐿, 𝛿𝑎 , 𝐶̊𝐿, 𝛿𝑒 , 𝐶̊𝑆, 𝛿𝑎 , 𝐶̊𝑆, 𝛿𝑒 , 𝐶̊ℓ, 𝛿𝑎 , 𝐶̊ℓ, 𝛿𝑒 , 𝐶̊𝑚,𝛿𝑎 , 𝐶̊𝑚,𝛿𝑒 , 𝐶̊𝑛, 𝛿𝑒 (B.92)

E. Stall Derivatives
As the evaluated trim condition of the aircraft is in steady level flight, well within the linear region of lift, the stall

derivatives are neglected from this formulation (i.e. 𝐶́𝐴,𝑣 = 𝐶̊𝐴,𝑣).

F. Compressibility Derivatives
Each of the incompressible derivatives given previously can be corrected for compressibility. The derivative

of an incompressible force or moment 𝐶́𝐴 with respect to a given state or input component 𝑣 can be corrected for
compressibility using the chain rule as

𝐶𝐴,𝑣 = 𝐶𝐴,𝐶́𝐴
𝐶́𝐴,𝑣 + 𝐶𝐴,𝑀𝑀,𝑣 (B.93)

where

𝐶𝐴,𝐶́𝐴
=

cosΛ𝑐/2

(
𝜋𝑅𝐴

√︂
1 − 𝑀2 cos2 Λ𝑐/2 +

[
𝐶́𝐴 cosΛ𝑐/2

(𝜋𝑅𝐴)

]2
− 𝐶́𝐴 cosΛ𝑐/2

)
𝐶́𝐴 cosΛ𝑐/2

√︂
1 − 𝑀2 cos2 Λ𝑐/2 +

[
𝐶́𝐴 cosΛ𝑐/2

(𝜋𝑅𝐴)

]2
+ 𝜋𝑅𝐴

(
1 − 𝑀2 cos2 Λ𝑐/2 +

[
𝐶́𝐴 cosΛ𝑐/2

(𝜋𝑅𝐴)

]2) (B.94)

𝐶𝐴,𝑀 =
𝐶́𝐴 cosΛ𝑐/2

𝐶́𝐴 cosΛ𝑐/2
(𝜋𝑅𝐴)

√︂
1 − 𝑀2 cos2 Λ𝑐/2 +

[
𝐶́𝐴 cosΛ𝑐/2

(𝜋𝑅𝐴)

]2
+ 1 − 𝑀2 cos2 Λ𝑐/2 +

[
𝐶́𝐴 cosΛ𝑐/2

(𝜋𝑅𝐴)

]2
(B.95)

and

𝑀,𝑉𝑥𝑏
=

2𝑉𝑥𝑏

𝑉𝑎
, 𝑀,𝑉𝑦𝑏

=
2𝑉𝑦𝑏
𝑉𝑎

, 𝑀,𝑉𝑧𝑏
=

2𝑉𝑧𝑏
𝑉𝑎

(B.96)

𝑀, 𝑝 = 𝑀,𝑞 = 𝑀,𝑟 = 𝑀, 𝛿𝑎 = 𝑀, 𝛿𝑒 = 𝑀, 𝛿𝑟 = 𝑀, 𝛿𝐵 = 𝑀,𝜏 = 0 (B.97)
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G. Propulsion Force Derivatives with respect to State
The state derivatives of the thrust model are

𝑇,𝑉 =

{
𝑇idle ,𝑉 + (𝑇mil ,𝑉 − 𝑇idle ,𝑉 ) 𝑃1

50 , 𝑃1 < 50
𝑇mil ,𝑉 + (𝑇max ,𝑉 − 𝑇mil ,𝑉 ) 𝑃1−50

50 , 𝑃1 ≥ 50
(B.98)

𝑇set ,𝑉 =

(
𝜌

𝜌0

)𝑎set

(𝑇set 1 + 2𝑇set 2𝑉) (B.99)

Note, the effect of Earth-fixed altitude state (𝑧 𝑓 ) on freestream air density and thrust model parameters was assumed to
be minor, and is neglected in this formulation.

H. Propulsion Force Derivatives with respect to Input
The input derivatives of the thrust model are

𝑇,𝜏 =

{
(𝑇mil − 𝑇idle) 𝑃1,𝜏

50 , 𝜏 ≤ 0.77
(𝑇max − 𝑇mil) 𝑃1,𝜏

50 , 𝜏 > 0.77
(B.100)

𝑃1,𝜏 =

{
64.94, 𝜏 ≤ 0.77

217.38, 𝜏 > 0.77
(B.101)

I. Body-Fixed Force and Moment Derivatives with respect to State
The body-fixed force and moment derivatives with respect to state will be found using the defined aerodynamic

force and moment derivatives with respect to state given previously for the baseline or BIRE. Note, these equations
apply to either aircraft. The derivatives of the body-fixed 𝑥-force with respect to state are

𝐹𝑥𝑏 ,𝑉𝑥𝑏
= 𝜌𝑆𝑤𝑉𝑥𝑏

(
𝐶𝐿𝑆𝛼 − 𝐶𝑆𝐶𝛼𝑆𝛽 − 𝐶𝐷𝐶𝛼𝐶𝛽

)
+ 1

2
𝜌𝑉2𝑆𝑤

(
𝐶𝐿,𝑉𝑥𝑏

𝑆𝛼 + 𝐶𝐿𝐶𝛼𝛼,𝑉𝑥𝑏
− 𝐶𝑆,𝑉𝑥𝑏

𝐶𝛼𝑆𝛽 + 𝐶𝑆𝑆𝛼𝑆𝛽𝛼,𝑉𝑥𝑏
− 𝐶𝑆𝐶𝛼𝐶𝛽𝛽,𝑉𝑥𝑏

−𝐶𝐷,𝑉𝑥𝑏
𝐶𝛼𝐶𝛽 + 𝐶𝐷𝑆𝛼𝐶𝛽𝛼,𝑉𝑥𝑏

+ 𝐶𝐷𝐶𝛼𝑆𝛽𝛽,𝑉𝑥𝑏

)
+ 𝑇,𝑉

𝑉𝑥𝑏

𝑉

(B.102)

𝐹𝑥𝑏 ,𝑉𝑦𝑏
= 𝜌𝑆𝑤𝑉𝑦𝑏

(
𝐶𝐿𝑆𝛼 − 𝐶𝑆𝐶𝛼𝑆𝛽 − 𝐶𝐷𝐶𝛼𝐶𝛽

)
+ 1

2
𝜌𝑉2𝑆𝑤

(
𝐶𝐿,𝑉𝑦𝑏

𝑆𝛼 − 𝐶𝑆,𝑉𝑦𝑏
𝐶𝛼𝑆𝛽 − 𝐶𝑆𝐶𝛼𝐶𝛽𝛽,𝑉𝑦𝑏

−𝐶𝐷,𝑉𝑦𝑏
𝐶𝛼𝐶𝛽 + 𝐶𝐷𝐶𝛼𝑆𝛽𝛽,𝑉𝑦𝑏

)
+ 𝑇,𝑉

𝑉𝑦𝑏

𝑉

(B.103)

𝐹𝑥𝑏 ,𝑉𝑧𝑏
= 𝜌𝑆𝑤𝑉𝑧𝑏

(
𝐶𝐿𝑆𝛼 − 𝐶𝑆𝐶𝛼𝑆𝛽 − 𝐶𝐷𝐶𝛼𝐶𝛽

)
+ 1

2
𝜌𝑉2𝑆𝑤

(
𝐶𝐿,𝑉𝑧𝑏

𝑆𝛼 + 𝐶𝐿𝐶𝛼𝛼,𝑉𝑧𝑏
− 𝐶𝑆,𝑉𝑧𝑏

𝐶𝛼𝑆𝛽 + 𝐶𝑆𝑆𝛼𝑆𝛽𝛼,𝑉𝑧𝑏
− 𝐶𝑆𝐶𝛼𝐶𝛽𝛽,𝑉𝑧𝑏

−𝐶𝐷,𝑉𝑧𝑏
𝐶𝛼𝐶𝛽 + 𝐶𝐷𝑆𝛼𝐶𝛽𝛼,𝑉𝑧𝑏

+ 𝐶𝐷𝐶𝛼𝑆𝛽𝛽,𝑉𝑧𝑏

)
+ 𝑇,𝑉

𝑉𝑧𝑏

𝑉

(B.104)

𝐹𝑥𝑏 , 𝑝 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝐿,𝑝𝑆𝛼 − 𝐶𝑆,𝑝𝐶𝛼𝑆𝛽 − 𝐶𝐷,𝑝𝐶𝛼𝐶𝛽

)
(B.105)

𝐹𝑥𝑏 ,𝑞 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝐿,𝑞𝑆𝛼 − 𝐶𝑆,𝑞𝐶𝛼𝑆𝛽 − 𝐶𝐷,𝑞𝐶𝛼𝐶𝛽

)
(B.106)

𝐹𝑥𝑏 ,𝑟 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝐿,𝑟𝑆𝛼 − 𝐶𝑆,𝑟𝐶𝛼𝑆𝛽 − 𝐶𝐷,𝑟𝐶𝛼𝐶𝛽

)
(B.107)

The derivatives of the body-fixed 𝑦-force with respect to state are

𝐹𝑦𝑏 ,𝑉𝑥𝑏
= 𝜌𝑆𝑤𝑉𝑥𝑏

(
𝐶𝑆𝐶𝛽 − 𝐶𝐷𝑆𝛽

)
+ 1

2
𝜌𝑉2𝑆𝑤

(
𝐶𝑆,𝑉𝑥𝑏

𝐶𝛽 − 𝐶𝑆𝑆𝛽𝛽,𝑉𝑥𝑏
− 𝐶𝐷,𝑉𝑥𝑏

𝑆𝛽 − 𝐶𝐷𝐶𝛽𝛽,𝑉𝑥𝑏

)
(B.108)
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𝐹𝑦𝑏 ,𝑉𝑦𝑏
= 𝜌𝑆𝑤𝑉𝑦𝑏

(
𝐶𝑆𝐶𝛽 − 𝐶𝐷𝑆𝛽

)
+ 1

2
𝜌𝑉2𝑆𝑤

(
𝐶𝑆,𝑉𝑦𝑏

𝐶𝛽 − 𝐶𝑆𝑆𝛽𝛽,𝑉𝑦𝑏
− 𝐶𝐷,𝑉𝑦𝑏

𝑆𝛽 − 𝐶𝐷𝐶𝛽𝛽,𝑉𝑦𝑏

)
(B.109)

𝐹𝑦𝑏 ,𝑉𝑧𝑏
= 𝜌𝑆𝑤𝑉𝑧𝑏

(
𝐶𝑆𝐶𝛽 − 𝐶𝐷𝑆𝛽

)
+ 1

2
𝜌𝑉2𝑆𝑤

(
𝐶𝑆,𝑉𝑧𝑏

𝐶𝛽 − 𝐶𝑆𝑆𝛽𝛽,𝑉𝑧𝑏
− 𝐶𝐷,𝑉𝑧𝑏

𝑆𝛽 − 𝐶𝐷𝐶𝛽𝛽,𝑉𝑧𝑏

)
(B.110)

𝐹𝑦𝑏 , 𝑝 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝑆,𝑝𝐶𝛽 − 𝐶𝐷,𝑝𝑆𝛽

)
(B.111)

𝐹𝑦𝑏 ,𝑞 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝑆,𝑞𝐶𝛽 − 𝐶𝐷,𝑞𝑆𝛽

)
(B.112)

𝐹𝑦𝑏 ,𝑟 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝑆,𝑟𝐶𝛽 − 𝐶𝐷,𝑟𝑆𝛽

)
(B.113)

The derivatives of the body-fixed 𝑧-force with respect to state are

𝐹𝑧𝑏 ,𝑉𝑥𝑏
= 𝜌𝑆𝑤𝑉𝑥𝑏

(
−𝐶𝐿𝐶𝛼 − 𝐶𝑆𝑆𝛼𝑆𝛽 − 𝐶𝐷𝑆𝛼𝐶𝛽

)
+ 1

2
𝜌𝑉2𝑆𝑤

(
−𝐶𝐿,𝑉𝑥𝑏

𝐶𝛼 + 𝐶𝐿𝑆𝛼𝛼,𝑉𝑥𝑏
− 𝐶𝑆,𝑉𝑥𝑏

𝑆𝛼𝑆𝛽 − 𝐶𝑆𝐶𝛼𝑆𝛽𝛼,𝑉𝑥𝑏
− 𝐶𝑆𝑆𝛼𝐶𝛽𝛽,𝑉𝑥𝑏

−𝐶𝐷,𝑉𝑥𝑏
𝑆𝛼𝐶𝛽 − 𝐶𝐷𝐶𝛼𝐶𝛽𝛼,𝑉𝑥𝑏

+ 𝐶𝐷𝑆𝛼𝑆𝛽𝛽,𝑉𝑥𝑏

) (B.114)

𝐹𝑧𝑏 ,𝑉𝑦𝑏
= 𝜌𝑆𝑤𝑉𝑦𝑏

(
−𝐶𝐿𝐶𝛼 − 𝐶𝑆𝑆𝛼𝑆𝛽 − 𝐶𝐷𝑆𝛼𝐶𝛽

)
+ 1

2
𝜌𝑉2𝑆𝑤

(
−𝐶𝐿,𝑉𝑦𝑏

𝐶𝛼 − 𝐶𝑆,𝑉𝑦𝑏
𝑆𝛼𝑆𝛽 − 𝐶𝑆𝑆𝛼𝐶𝛽𝛽,𝑉𝑦𝑏

−𝐶𝐷,𝑉𝑦𝑏
𝑆𝛼𝐶𝛽 + 𝐶𝐷𝑆𝛼𝑆𝛽𝛽,𝑉𝑦𝑏

) (B.115)

𝐹𝑧𝑏 ,𝑉𝑧𝑏
= 𝜌𝑆𝑤𝑉𝑧𝑏

(
−𝐶𝐿𝐶𝛼 − 𝐶𝑆𝑆𝛼𝑆𝛽 − 𝐶𝐷𝑆𝛼𝐶𝛽

)
+ 1

2
𝜌𝑉2𝑆𝑤

(
−𝐶𝐿,𝑉𝑧𝑏

𝐶𝛼 + 𝐶𝐿𝑆𝛼𝛼,𝑉𝑧𝑏
− 𝐶𝑆,𝑉𝑧𝑏

𝑆𝛼𝑆𝛽 − 𝐶𝑆𝐶𝛼𝑆𝛽𝛼,𝑉𝑧𝑏
− 𝐶𝑆𝑆𝛼𝐶𝛽𝛽,𝑉𝑧𝑏

−𝐶𝐷,𝑉𝑧𝑏
𝑆𝛼𝐶𝛽 − 𝐶𝐷𝐶𝛼𝐶𝛽𝛼,𝑉𝑧𝑏

+ 𝐶𝐷𝑆𝛼𝑆𝛽𝛽,𝑉𝑧𝑏

) (B.116)

𝐹𝑧𝑏 , 𝑝 =
1
2
𝜌𝑉2𝑆𝑤

(
−𝐶𝐿,𝑝𝐶𝛼 − 𝐶𝑆,𝑝𝑆𝛼𝑆𝛽 − 𝐶𝐷,𝑝𝑆𝛼𝐶𝛽

)
(B.117)

𝐹𝑧𝑏 ,𝑞 =
1
2
𝜌𝑉2𝑆𝑤

(
−𝐶𝐿,𝑞𝐶𝛼 − 𝐶𝑆,𝑞𝑆𝛼𝑆𝛽 − 𝐶𝐷,𝑞𝑆𝛼𝐶𝛽

)
(B.118)

𝐹𝑧𝑏 ,𝑟 =
1
2
𝜌𝑉2𝑆𝑤

(
−𝐶𝐿,𝑟𝐶𝛼 − 𝐶𝑆,𝑟𝑆𝛼𝑆𝛽 − 𝐶𝐷,𝑟𝑆𝛼𝐶𝛽

)
(B.119)

The moment derivatives are performed on equations formulated to include an offset in the center of gravity, as
𝑀𝑥𝑏

𝑀𝑦𝑏

𝑀𝑧𝑏

 =
1
2
𝜌𝑉2𝑆𝑤


𝑏𝑤𝐶ℓ

𝑐𝑤𝐶𝑚

𝑏𝑤𝐶𝑛

 +

𝐹𝑥𝑏

𝐹𝑦𝑏

𝐹𝑧𝑏

 ×

Δ𝑥𝑐𝑔

Δ𝑦𝑐𝑔

Δ𝑧𝑐𝑔


The derivatives of the body-fixed 𝑥-moment with respect to state are

𝑀𝑥𝑏 ,𝑉𝑥𝑏
= 𝜌𝑆𝑤𝑏𝑤𝑉𝑥𝑏𝐶ℓ +

1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶ℓ,𝑉𝑥𝑏

+ 𝐹𝑦𝑏 ,𝑉𝑥𝑏
Δ𝑧𝑐𝑔 − 𝐹𝑧𝑏 ,𝑉𝑥𝑏

Δ𝑦𝑐𝑔 (B.120)

𝑀𝑥𝑏 ,𝑉𝑦𝑏
= 𝜌𝑆𝑤𝑏𝑤𝑉𝑦𝑏𝐶ℓ +

1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶ℓ,𝑉𝑦𝑏

+ 𝐹𝑦𝑏 ,𝑉𝑦𝑏
Δ𝑧𝑐𝑔 − 𝐹𝑧𝑏 ,𝑉𝑦𝑏

Δ𝑦𝑐𝑔 (B.121)

𝑀𝑥𝑏 ,𝑉𝑧𝑏
= 𝜌𝑆𝑤𝑏𝑤𝑉𝑧𝑏𝐶ℓ +

1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶ℓ,𝑉𝑧𝑏

+ 𝐹𝑦𝑏 ,𝑉𝑧𝑏
Δ𝑧𝑐𝑔 − 𝐹𝑧𝑏 ,𝑉𝑧𝑏

Δ𝑦𝑐𝑔 (B.122)

𝑀𝑥𝑏 , 𝑝 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶ℓ, 𝑝 + 𝐹𝑦𝑏 , 𝑝Δ𝑧𝑐𝑔 − 𝐹𝑧𝑏 , 𝑝Δ𝑦𝑐𝑔 (B.123)
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𝑀𝑥𝑏 ,𝑞 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶ℓ,𝑞 + 𝐹𝑦𝑏 ,𝑞Δ𝑧𝑐𝑔 − 𝐹𝑧𝑏 ,𝑞Δ𝑦𝑐𝑔 (B.124)

𝑀𝑥𝑏 ,𝑟 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶ℓ,𝑟 + 𝐹𝑦𝑏 ,𝑟Δ𝑧𝑐𝑔 − 𝐹𝑧𝑏 ,𝑟Δ𝑦𝑐𝑔 (B.125)

The derivatives of the body-fixed 𝑦-moment with respect to state are

𝑀𝑦𝑏 ,𝑉𝑥𝑏
= 𝜌𝑆𝑤𝑐𝑤𝑉𝑥𝑏𝐶𝑚 + 1

2
𝜌𝑉2𝑆𝑤𝑐𝑤𝐶𝑚,𝑉𝑥𝑏

+ 𝐹𝑧𝑏 ,𝑉𝑥𝑏
Δ𝑥𝑐𝑔 − 𝐹𝑥𝑏 ,𝑉𝑥𝑏

Δ𝑧𝑐𝑔 (B.126)

𝑀𝑦𝑏 ,𝑉𝑦𝑏
= 𝜌𝑆𝑤𝑐𝑤𝑉𝑦𝑏𝐶𝑚 + 1

2
𝜌𝑉2𝑆𝑤𝑐𝑤𝐶𝑚,𝑉𝑦𝑏

+ 𝐹𝑧𝑏 ,𝑉𝑦𝑏
Δ𝑥𝑐𝑔 − 𝐹𝑥𝑏 ,𝑉𝑦𝑏

Δ𝑧𝑐𝑔 (B.127)

𝑀𝑦𝑏 ,𝑉𝑧𝑏
= 𝜌𝑆𝑤𝑐𝑤𝑉𝑧𝑏𝐶𝑚 + 1

2
𝜌𝑉2𝑆𝑤𝑐𝑤𝐶𝑚,𝑉𝑧𝑏

+ 𝐹𝑧𝑏 ,𝑉𝑧𝑏
Δ𝑥𝑐𝑔 − 𝐹𝑥𝑏 ,𝑉𝑧𝑏

Δ𝑧𝑐𝑔 (B.128)

𝑀𝑦𝑏 , 𝑝 =
1
2
𝜌𝑉2𝑆𝑤𝑐𝑤𝐶𝑚,𝑝 + 𝐹𝑧𝑏 , 𝑝Δ𝑥𝑐𝑔 − 𝐹𝑥𝑏 , 𝑝Δ𝑧𝑐𝑔 (B.129)

𝑀𝑦𝑏 ,𝑞 =
1
2
𝜌𝑉2𝑆𝑤𝑐𝑤𝐶𝑚,𝑞 + 𝐹𝑧𝑏 ,𝑞Δ𝑥𝑐𝑔 − 𝐹𝑥𝑏 ,𝑞Δ𝑧𝑐𝑔 (B.130)

𝑀𝑦𝑏 ,𝑟 =
1
2
𝜌𝑉2𝑆𝑤𝑐𝑤𝐶𝑚,𝑟 + 𝐹𝑧𝑏 ,𝑟Δ𝑥𝑐𝑔 − 𝐹𝑥𝑏 ,𝑟Δ𝑧𝑐𝑔 (B.131)

The derivatives of the body-fixed 𝑧-moment with respect to state are

𝑀𝑧𝑏 ,𝑉𝑥𝑏
= 𝜌𝑆𝑤𝑏𝑤𝑉𝑥𝑏𝐶𝑛 +

1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶𝑛,𝑉𝑥𝑏

+ 𝐹𝑥𝑏 ,𝑉𝑥𝑏
Δ𝑦𝑐𝑔 − 𝐹𝑦𝑏 ,𝑉𝑥𝑏

Δ𝑥𝑐𝑔 (B.132)

𝑀𝑧𝑏 ,𝑉𝑦𝑏
= 𝜌𝑆𝑤𝑏𝑤𝑉𝑦𝑏𝐶𝑛 +

1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶𝑛,𝑉𝑦𝑏

+ 𝐹𝑥𝑏 ,𝑉𝑦𝑏
Δ𝑦𝑐𝑔 − 𝐹𝑦𝑏 ,𝑉𝑦𝑏

Δ𝑥𝑐𝑔 (B.133)

𝑀𝑧𝑏 ,𝑉𝑧𝑏
= 𝜌𝑆𝑤𝑏𝑤𝑉𝑧𝑏𝐶𝑛 +

1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶𝑛,𝑉𝑧𝑏

+ 𝐹𝑥𝑏 ,𝑉𝑧𝑏
Δ𝑦𝑐𝑔 − 𝐹𝑦𝑏 ,𝑉𝑧𝑏

Δ𝑥𝑐𝑔 (B.134)

𝑀𝑧𝑏 , 𝑝 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶𝑛,𝑝 + 𝐹𝑥𝑏 , 𝑝Δ𝑦𝑐𝑔 − 𝐹𝑦𝑏 , 𝑝Δ𝑥𝑐𝑔 (B.135)

𝑀𝑧𝑏 ,𝑞 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶𝑛,𝑞 + 𝐹𝑥𝑏 ,𝑞Δ𝑦𝑐𝑔 − 𝐹𝑦𝑏 ,𝑞Δ𝑥𝑐𝑔 (B.136)

𝑀𝑧𝑏 ,𝑟 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶𝑛,𝑟 + 𝐹𝑥𝑏 ,𝑟Δ𝑦𝑐𝑔 − 𝐹𝑦𝑏 ,𝑟Δ𝑥𝑐𝑔 (B.137)

J. Body-Fixed Force and Moment Derivatives with respect to Input
The body-fixed force and moment derivatives with respect to input will now be determined. Note, these equations

also apply to either aircraft. The derivatives of the body-fixed 𝑥-force with respect to input are

𝐹𝑥𝑏 , 𝛿𝑎 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝐿, 𝛿𝑎𝑆𝛼 − 𝐶𝑆, 𝛿𝑎𝐶𝛼𝑆𝛽 − 𝐶𝐷,𝛿𝑎𝐶𝛼𝐶𝛽

)
(B.138)

𝐹𝑥𝑏 , 𝛿𝑒 = 𝐹𝑥𝑏 , 𝛿𝐵
𝑒
=

1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝐿, 𝛿𝑒𝑆𝛼 − 𝐶𝑆, 𝛿𝑒𝐶𝛼𝑆𝛽 − 𝐶𝐷,𝛿𝑒𝐶𝛼𝐶𝛽

)
(B.139)

𝐹𝑥𝑏 , 𝛿𝑟 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝐿, 𝛿𝑟 𝑆𝛼 − 𝐶𝑆, 𝛿𝑟𝐶𝛼𝑆𝛽 − 𝐶𝐷,𝛿𝑟𝐶𝛼𝐶𝛽

)
(B.140)

𝐹𝑥𝑏 , 𝛿𝐵 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝐿, 𝛿𝐵𝑆𝛼 − 𝐶𝑆, 𝛿𝐵𝐶𝛼𝑆𝛽 − 𝐶𝐷,𝛿𝐵𝐶𝛼𝐶𝛽

)
(B.141)

𝐹𝑥𝑏 ,𝜏 = 𝑇,𝜏 (B.142)

The derivatives of the body-fixed 𝑦-force with respect to input are

𝐹𝑦𝑏 , 𝛿𝑎 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝑆, 𝛿𝑎𝐶𝛽 − 𝐶𝐷,𝛿𝑎𝑆𝛽

)
(B.143)
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𝐹𝑦𝑏 , 𝛿𝑒 = 𝐹𝑦𝑏 , 𝛿𝐵
𝑒
=

1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝑆, 𝛿𝑒𝐶𝛽 − 𝐶𝐷,𝛿𝑒𝑆𝛽

)
(B.144)

𝐹𝑦𝑏 , 𝛿𝑟 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝑆, 𝛿𝑟𝐶𝛽 − 𝐶𝐷,𝛿𝑟 𝑆𝛽

)
(B.145)

𝐹𝑦𝑏 , 𝛿𝐵 =
1
2
𝜌𝑉2𝑆𝑤

(
𝐶𝑆, 𝛿𝐵𝐶𝛽 − 𝐶𝐷,𝛿𝐵𝑆𝛽

)
(B.146)

The derivatives of the body-fixed 𝑧-force with respect to input are

𝐹𝑧𝑏 , 𝛿𝑎 =
1
2
𝜌𝑉2𝑆𝑤

(
−𝐶𝐿, 𝛿𝑎𝐶𝛼 − 𝐶𝑆, 𝛿𝑎𝑆𝛼𝑆𝛽 − 𝐶𝐷,𝛿𝑎𝑆𝛼𝐶𝛽

)
(B.147)

𝐹𝑧𝑏 , 𝛿𝑒 = 𝐹𝑧𝑏 , 𝛿𝐵
𝑒
=

1
2
𝜌𝑉2𝑆𝑤

(
−𝐶𝐿, 𝛿𝑒𝐶𝛼 − 𝐶𝑆, 𝛿𝑒𝑆𝛼𝑆𝛽 − 𝐶𝐷,𝛿𝑒𝑆𝛼𝐶𝛽

)
(B.148)

𝐹𝑧𝑏 , 𝛿𝑟 =
1
2
𝜌𝑉2𝑆𝑤

(
−𝐶𝐿, 𝛿𝑟𝐶𝛼 − 𝐶𝑆, 𝛿𝑟 𝑆𝛼𝑆𝛽 − 𝐶𝐷,𝛿𝑟 𝑆𝛼𝐶𝛽

)
(B.149)

𝐹𝑧𝑏 , 𝛿𝐵 =
1
2
𝜌𝑉2𝑆𝑤

(
−𝐶𝐿, 𝛿𝐵𝐶𝛼 − 𝐶𝑆, 𝛿𝐵𝑆𝛼𝑆𝛽 − 𝐶𝐷,𝛿𝐵𝑆𝛼𝐶𝛽

)
(B.150)

The derivatives of the body-fixed 𝑥-moment with respect to input are

𝑀𝑥𝑏 , 𝛿𝑎 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶ℓ, 𝛿𝑎 + 𝐹𝑦𝑏 , 𝛿𝑎Δ𝑧𝑐𝑔 − 𝐹𝑧𝑏 , 𝛿𝑎Δ𝑦𝑐𝑔 (B.151)

𝑀𝑥𝑏 , 𝛿𝑒 = 𝑀𝑥𝑏 , 𝛿
𝐵
𝑒
=

1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶ℓ, 𝛿𝑒 + 𝐹𝑦𝑏 , 𝛿𝑒Δ𝑧𝑐𝑔 − 𝐹𝑧𝑏 , 𝛿𝑒Δ𝑦𝑐𝑔 (B.152)

𝑀𝑥𝑏 , 𝛿𝑟 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶ℓ, 𝛿𝑟 + 𝐹𝑦𝑏 , 𝛿𝑟Δ𝑧𝑐𝑔 − 𝐹𝑧𝑏 , 𝛿𝑟Δ𝑦𝑐𝑔 (B.153)

𝑀𝑥𝑏 , 𝛿𝐵 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶ℓ, 𝛿𝐵 + 𝐹𝑦𝑏 , 𝛿𝐵Δ𝑧𝑐𝑔 − 𝐹𝑧𝑏 , 𝛿𝐵Δ𝑦𝑐𝑔 (B.154)

The derivatives of the body-fixed 𝑦-moment with respect to input are

𝑀𝑦𝑏 , 𝛿𝑎 =
1
2
𝜌𝑉2𝑆𝑤𝑐𝑤𝐶𝑚,𝛿𝑎 + 𝐹𝑧𝑏 , 𝛿𝑎Δ𝑥𝑐𝑔 − 𝐹𝑥𝑏 , 𝛿𝑎Δ𝑧𝑐𝑔 (B.155)

𝑀𝑦𝑏 , 𝛿𝑒 = 𝑀𝑦𝑏 , 𝛿
𝐵
𝑒
=

1
2
𝜌𝑉2𝑆𝑤𝑐𝑤𝐶𝑚,𝛿𝑒 + 𝐹𝑧𝑏 , 𝛿𝑒Δ𝑥𝑐𝑔 − 𝐹𝑥𝑏 , 𝛿𝑒Δ𝑧𝑐𝑔 (B.156)

𝑀𝑦𝑏 , 𝛿𝑟 =
1
2
𝜌𝑉2𝑆𝑤𝑐𝑤𝐶𝑚,𝛿𝑟 + 𝐹𝑧𝑏 , 𝛿𝑟Δ𝑥𝑐𝑔 − 𝐹𝑥𝑏 , 𝛿𝑟Δ𝑧𝑐𝑔 (B.157)

𝑀𝑦𝑏 , 𝛿𝐵 =
1
2
𝜌𝑉2𝑆𝑤𝑐𝑤𝐶𝑚,𝛿𝐵 + 𝐹𝑧𝑏 , 𝛿𝐵Δ𝑥𝑐𝑔 − 𝐹𝑥𝑏 , 𝛿𝐵Δ𝑧𝑐𝑔 (B.158)

𝑀𝑦𝑏 ,𝜏 = −𝐹𝑥𝑏 ,𝜏Δ𝑧𝑐𝑔 (B.159)

The derivatives of the body-fixed 𝑧-moment with respect to input are

𝑀𝑧𝑏 , 𝛿𝑎 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶𝑛, 𝛿𝑎 + 𝐹𝑥𝑏 , 𝛿𝑎Δ𝑦𝑐𝑔 − 𝐹𝑦𝑏 , 𝛿𝑎Δ𝑥𝑐𝑔 (B.160)

𝑀𝑧𝑏 , 𝛿𝑒 = 𝑀𝑧𝑏 , 𝛿
𝐵
𝑒
=

1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶𝑛, 𝛿𝑒 + 𝐹𝑥𝑏 , 𝛿𝑒Δ𝑦𝑐𝑔 − 𝐹𝑦𝑏 , 𝛿𝑒Δ𝑥𝑐𝑔 (B.161)

𝑀𝑧𝑏 , 𝛿𝑟 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶𝑛, 𝛿𝑟 + 𝐹𝑥𝑏 , 𝛿𝑟Δ𝑦𝑐𝑔 − 𝐹𝑦𝑏 , 𝛿𝑟Δ𝑥𝑐𝑔 (B.162)

𝑀𝑧𝑏 , 𝛿𝐵 =
1
2
𝜌𝑉2𝑆𝑤𝑏𝑤𝐶𝑛, 𝛿𝐵 + 𝐹𝑥𝑏 , 𝛿𝐵Δ𝑦𝑐𝑔 − 𝐹𝑦𝑏 , 𝛿𝐵Δ𝑥𝑐𝑔 (B.163)

𝑀𝑧𝑏 ,𝜏 = 𝐹𝑥𝑏 ,𝜏Δ𝑦𝑐𝑔 (B.164)
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K. Linearized Formulation
The resulting linearized state dynamics matrix is

𝐴full =


𝐴𝑉,𝑉 𝐴𝑉,𝜔 𝑍 𝐴𝑉,𝑒

𝐴𝜔,𝑉 𝐴𝜔,𝜔 𝑍 𝑍

𝐴𝑥,𝑉 𝑍 𝑍 𝐴𝑥,𝑒

𝑍 𝐴𝑒,𝜔 𝑍 𝐴𝑒,𝑒


(B.165)

where the body-fixed acceleration matrix components are

𝐴𝑉,𝑉 =


𝑔

𝑊
𝐹𝑥𝑏 ,𝑉𝑥𝑏

𝑔

𝑊
𝐹𝑥𝑏 ,𝑉𝑦𝑏

+ 𝑟 𝑔

𝑊
𝐹𝑥𝑏 ,𝑉𝑧𝑏

− 𝑞
𝑔

𝑊
𝐹𝑦𝑏 ,𝑉𝑥𝑏

− 𝑟 𝑔

𝑊
𝐹𝑦𝑏 ,𝑉𝑦𝑏

𝑔

𝑊
𝐹𝑦𝑏 ,𝑉𝑧𝑏

+ 𝑝
𝑔

𝑊
𝐹𝑧𝑏 ,𝑉𝑥𝑏

+ 𝑞 𝑔

𝑊
𝐹𝑧𝑏 ,𝑉𝑦𝑏

− 𝑝 𝑔

𝑊
𝐹𝑧𝑏 ,𝑉𝑧𝑏

 (B.166)

𝐴𝑉,𝜔 =


𝑔

𝑊
𝐹𝑥𝑏 , 𝑝

𝑔

𝑊
𝐹𝑥𝑏 ,𝑞 −𝑉𝑧𝑏

𝑔

𝑊
𝐹𝑥𝑏 ,𝑟 +𝑉𝑦𝑏

𝑔

𝑊
𝐹𝑦𝑏 , 𝑝 +𝑉𝑧𝑏

𝑔

𝑊
𝐹𝑦𝑏 ,𝑞

𝑔

𝑊
𝐹𝑦𝑏 ,𝑟 −𝑉𝑥𝑏

𝑔

𝑊
𝐹𝑧𝑏 , 𝑝 −𝑉𝑦𝑏

𝑔

𝑊
𝐹𝑧𝑏 ,𝑞 +𝑉𝑥𝑏

𝑔

𝑊
𝐹𝑧𝑏 ,𝑟

 (B.167)

𝐴𝑉,𝑒 = 𝑔


0 −𝐶𝜃 0

𝐶𝜙𝐶𝜃 −𝑆𝜙𝑆𝜃 0
−𝑆𝜙𝐶𝜃 −𝐶𝜙𝑆𝜃 0

 (B.168)

the body-fixed angular-acceleration matrix components are

𝐴𝜔,𝑉 = [I]−1


𝑀𝑥𝑏 ,𝑉𝑥𝑏

𝑀𝑥𝑏 ,𝑉𝑦𝑏
𝑀𝑥𝑏 ,𝑉𝑧𝑏

𝑀𝑦𝑏 ,𝑉𝑥𝑏
𝑀𝑦𝑏 ,𝑉𝑦𝑏

𝑀𝑦𝑏 ,𝑉𝑧𝑏

𝑀𝑧𝑏 ,𝑉𝑥𝑏
𝑀𝑧𝑏 ,𝑉𝑦𝑏

𝑀𝑧𝑏 ,𝑉𝑧𝑏

 (B.169)

𝐴𝜔,𝜔 = [I]−1



𝑀𝑥𝑏 , 𝑝 𝑀𝑥𝑏 ,𝑞 𝑀𝑥𝑏 ,𝑟

𝑀𝑦𝑏 , 𝑝 𝑀𝑦𝑏 ,𝑞 𝑀𝑦𝑏 ,𝑟

𝑀𝑧𝑏 , 𝑝 𝑀𝑧𝑏 ,𝑞 𝑀𝑧𝑏 ,𝑟

 +


0 −ℎ𝑧𝑏 ℎ𝑦𝑏

ℎ𝑧𝑏 0 −ℎ𝑥𝑏
−ℎ𝑦𝑏 ℎ𝑥𝑏 0


+


𝐼𝑥𝑧𝑏𝑞 − 𝐼𝑥𝑦𝑏𝑟 (𝐼𝑦𝑦𝑏 − 𝐼𝑧𝑧𝑏 )𝑟 + 2𝐼𝑦𝑧𝑏𝑞 + 𝐼𝑥𝑧𝑏 𝑝 (𝐼𝑦𝑦𝑏 − 𝐼𝑧𝑧𝑏 )𝑞 − 2𝐼𝑦𝑧𝑏𝑟 − 𝐼𝑥𝑦𝑏 𝑝
(𝐼𝑧𝑧𝑏 − 𝐼𝑥𝑥𝑏 )𝑟 − 2𝐼𝑥𝑧𝑏 𝑝 − 𝐼𝑦𝑧𝑏𝑞 𝐼𝑥𝑦𝑏𝑟 − 𝐼𝑦𝑧𝑏 𝑝 (𝐼𝑧𝑧𝑏 − 𝐼𝑥𝑥𝑏 )𝑝 + 2𝐼𝑥𝑧𝑏𝑟 + 𝐼𝑥𝑦𝑏𝑞
(𝐼𝑥𝑥𝑏 − 𝐼𝑦𝑦𝑏 )𝑞 + 2𝐼𝑥𝑦𝑏 𝑝 + 𝐼𝑦𝑧𝑏𝑟 (𝐼𝑥𝑥𝑏 − 𝐼𝑦𝑦𝑏 )𝑝 − 2𝐼𝑥𝑦𝑏𝑞 − 𝐼𝑥𝑧𝑏𝑟 𝐼𝑦𝑧𝑏 𝑝 − 𝐼𝑥𝑧𝑏𝑞




(B.170)

In order to simplify the numerical computation, the analytic inverse of the inertia tensor will be defined, as

[I]−1 =


𝐼𝑥𝑥𝑏 −𝐼𝑥𝑦𝑏 −𝐼𝑥𝑧𝑏
−𝐼𝑥𝑦𝑏 𝐼𝑦𝑦𝑏 −𝐼𝑦𝑧𝑏
−𝐼𝑥𝑧𝑏 −𝐼𝑦𝑧𝑏 𝐼𝑧𝑧𝑏


−1

=
1
|I|


𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 − 𝐼2

𝑦𝑧𝑏
𝐼𝑥𝑦𝑏 𝐼𝑧𝑧𝑏 + 𝐼𝑥𝑧𝑏 𝐼𝑦𝑧𝑏 𝐼𝑥𝑦𝑏 𝐼𝑦𝑧𝑏 + 𝐼𝑥𝑧𝑏 𝐼𝑦𝑦𝑏

𝐼𝑥𝑦𝑏 𝐼𝑧𝑧𝑏 + 𝐼𝑥𝑧𝑏 𝐼𝑦𝑧𝑏 𝐼𝑥𝑥𝑏 𝐼𝑧𝑧𝑏 − 𝐼2
𝑥𝑧𝑏

𝐼𝑥𝑥𝑏 𝐼𝑦𝑧𝑏 + 𝐼𝑥𝑦𝑏 𝐼𝑥𝑧𝑏
𝐼𝑥𝑦𝑏 𝐼𝑦𝑧𝑏 + 𝐼𝑥𝑧𝑏 𝐼𝑦𝑦𝑏 𝐼𝑥𝑥𝑏 𝐼𝑦𝑧𝑏 + 𝐼𝑥𝑦𝑏 𝐼𝑥𝑧𝑏 𝐼𝑥𝑥𝑏 𝐼𝑦𝑦𝑏 − 𝐼2

𝑥𝑦𝑏


(B.171)

where the determinant of the inertia tensor is

|I| = 𝐼𝑥𝑥𝑏 (𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 − 𝐼2
𝑦𝑧𝑏

) − 2𝐼𝑥𝑦𝑏 𝐼𝑥𝑧𝑏 𝐼𝑦𝑧𝑏 − (𝐼2
𝑥𝑦𝑏
𝐼𝑧𝑧𝑏 + 𝐼2

𝑥𝑧𝑏
𝐼𝑦𝑦𝑏 ) (B.172)

the Earth-fixed velocity matrix components are

𝐴𝑥,𝑉 =


𝐶𝜃𝐶𝜓 𝑆𝜙𝑆𝜃𝐶𝜓 − 𝐶𝜙𝑆𝜓 𝐶𝜙𝑆𝜃𝐶𝜓 + 𝑆𝜙𝑆𝜓
𝐶𝜃𝑆𝜓 𝑆𝜙𝑆𝜃𝑆𝜓 + 𝐶𝜙𝐶𝜓 𝐶𝜙𝑆𝜃𝑆𝜓 − 𝑆𝜙𝐶𝜓

−𝑆𝜃 𝑆𝜙𝐶𝜃 𝐶𝜙𝐶𝜃

 (B.173)
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𝐴𝑥,𝑒 =


𝑉𝑦 𝑓

𝑆𝜃𝐶𝜓 +𝑉𝑧 𝑓 𝑆𝜓 𝑉𝑧 𝑓𝐶𝜃𝐶𝜓 − 𝑆𝜃𝐶𝜓𝑉𝑥𝑏 −𝑉𝑦 𝑓
𝐶𝜓 −

(
𝑉𝑧 𝑓 𝑆𝜃 + 𝐶𝜃𝑉𝑥𝑏

)
𝑆𝜓

𝑉𝑦 𝑓
𝑆𝜃𝑆𝜓 −𝑉𝑧 𝑓𝐶𝜓 𝑉𝑧 𝑓𝐶𝜃𝑆𝜓 − 𝑆𝜃𝑆𝜓𝑉𝑥𝑏 −𝑉𝑦 𝑓

𝑆𝜓 +
(
𝑉𝑧 𝑓 𝑆𝜃 + 𝐶𝜃𝑉𝑥𝑏

)
𝐶𝜓

𝑉𝑦 𝑓
𝐶𝜃 −𝐶𝜃𝑉𝑥𝑏 −𝑉𝑧 𝑓 𝑆𝜃 0

 (B.174)

𝑉𝑦 𝑓
= 𝐶𝜙𝑉𝑦𝑏 − 𝑆𝜙𝑉𝑧𝑏 (B.175)

𝑉𝑧 𝑓 = 𝑆𝜙𝑉𝑦𝑏 + 𝐶𝜙𝑉𝑧𝑏 (B.176)

and the Earth-fixed orientation-rates matrix components are

𝐴𝑒,𝜔 =


1 𝑆𝜙𝑆𝜃/𝐶𝜃 𝐶𝜙𝑆𝜃/𝐶𝜃

0 𝐶𝜙 −𝑆𝜙
0 𝑆𝜙/𝐶𝜃 𝐶𝜙/𝐶𝜃

 (B.177)

𝐴𝑒,𝑒 =


𝐶𝜙𝑆𝜃/𝐶𝜃𝑞 − 𝑆𝜙𝑆𝜃/𝐶𝜃𝑟

(
𝑆𝜙𝑞 + 𝐶𝜙𝑟

)
/𝐶2

𝜃
0

−𝑆𝜙𝑞 − 𝐶𝜙𝑟 0 0(
𝐶𝜙𝑞 − 𝑆𝜙𝑟

)
/𝐶𝜃

(
𝑆𝜙𝑞 + 𝐶𝜙𝑟

)
𝑆𝜃/𝐶2

𝜃
0

 (B.178)

with the zero matrix

𝑍 =


0 0 0
0 0 0
0 0 0

 (B.179)

Where some states are neglected (see Eq. (51)) from the feedback control design, the linearized state dynamics matrix is

𝐴 = 𝐶𝐴full𝐶
𝑇 =


𝐴𝑉,𝑉 𝐴𝑉,𝜔 𝑍𝐶𝑇

𝑥 𝐴𝑉,𝑒𝐶
𝑇
𝑒

𝐴𝜔,𝑉 𝐴𝜔,𝜔 𝑍𝐶𝑇
𝑥 𝑍𝐶𝑇

𝑒

𝐶𝑥𝐴𝑥,𝑉 𝐶𝑥𝑍 𝐶𝑥𝑍𝐶
𝑇
𝑥 𝐶𝑥𝐴𝑥,𝑒𝐶

𝑇
𝑒

𝐶𝑒𝑍 𝐶𝑒𝐴𝑒,𝜔 𝐶𝑒𝑍𝐶
𝑇
𝑥 𝐶𝑒𝐴𝑒,𝑒𝐶

𝑇
𝑒


(B.180)

where

𝐶𝑒 =

[
1 0 0
0 1 0

]
(B.181)

𝐶𝑥 =

[
0 0 1

]
(B.182)

The resulting linearized input dynamics matrix is

𝐵full =


𝐵𝑉,𝑢

𝐵𝜔,𝑢

𝑍𝑞

𝑍𝑞


(B.183)

where, for the baseline aircraft, the body-fixed acceleration and angular-acceleration matrix components are

𝐵𝑉,𝑢 =
𝑔

𝑊


𝐹𝑥𝑏 , 𝛿𝑎 𝐹𝑥𝑏 , 𝛿𝑒 𝐹𝑥𝑏 , 𝛿𝑟 𝐹𝑥𝑏 ,𝜏

𝐹𝑦𝑏 , 𝛿𝑎 𝐹𝑦𝑏 , 𝛿𝑒 𝐹𝑦𝑏 , 𝛿𝑟 0
𝐹𝑧𝑏 , 𝛿𝑎 𝐹𝑧𝑏 , 𝛿𝑒 𝐹𝑧𝑏 , 𝛿𝑟 0

 (B.184)

𝐵𝜔,𝑢 = [I]−1


𝑀𝑥𝑏 , 𝛿𝑎 𝑀𝑥𝑏 , 𝛿𝑒 𝑀𝑥𝑏 , 𝛿𝑟 0
𝑀𝑦𝑏 , 𝛿𝑎 𝑀𝑦𝑏 , 𝛿𝑒 𝑀𝑦𝑏 , 𝛿𝑟 𝑀𝑦𝑏 ,𝜏

𝑀𝑧𝑏 , 𝛿𝑎 𝑀𝑧𝑏 , 𝛿𝑒 𝑀𝑧𝑏 , 𝛿𝑟 𝑀𝑧𝑏 ,𝜏

 (B.185)
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and for the BIRE, the body-fixed acceleration and angular-acceleration matrix components are

𝐵𝑉,𝑢 =
𝑔

𝑊


𝐹𝑥𝑏 , 𝛿𝑎 𝐹𝑥𝑏 , 𝛿𝐵

𝑒
𝐹𝑥𝑏 , 𝛿𝐵 𝐹𝑥𝑏 ,𝜏

𝐹𝑦𝑏 , 𝛿𝑎 𝐹𝑦𝑏 , 𝛿𝐵
𝑒

𝐹𝑦𝑏 , 𝛿𝐵 0
𝐹𝑧𝑏 , 𝛿𝑎 𝐹𝑧𝑏 , 𝛿𝐵

𝑒
𝐹𝑧𝑏 , 𝛿𝐵 0

 (B.186)

𝐵𝜔,𝑢 = ˆ[I]−1

𝑀𝑥𝑏 , 𝛿𝑎 𝑀𝑥𝑏 , 𝛿

𝐵
𝑒

¤𝑝, 𝛿𝐵 0
𝑀𝑦𝑏 , 𝛿𝑎 𝑀𝑦𝑏 , 𝛿

𝐵
𝑒

¤𝑞, 𝛿𝐵 𝑀𝑦𝑏 ,𝜏

𝑀𝑧𝑏 , 𝛿𝑎 𝑀𝑧𝑏 , 𝛿
𝐵
𝑒

¤𝑟, 𝛿𝐵 𝑀𝑧𝑏 ,𝜏

 + ˘[I]−1

0 0 ¤𝑝 0
0 0 ¤𝑞 0
0 0 ¤𝑟 0

 (B.187)

in which 
¤𝑝, 𝛿𝐵
¤𝑞, 𝛿𝐵
¤𝑟, 𝛿𝐵

 =



𝑀𝑥𝑏 , 𝛿𝐵

𝑀𝑦𝑏 , 𝛿𝐵

𝑀𝑧𝑏 , 𝛿𝐵

 +

(𝐼𝑦𝑦𝑏 − 𝐼𝑧𝑧𝑏 )𝑞𝑟 + 𝐼𝑦𝑧𝑏 (𝑞2 − 𝑟2) + 𝐼𝑥𝑧𝑏 𝑝𝑞 − 𝐼𝑥𝑦𝑏 𝑝𝑟
(𝐼𝑧𝑧𝑏 − 𝐼𝑥𝑥𝑏 )𝑝𝑟 + 𝐼𝑥𝑧𝑏 (𝑟2 − 𝑝2) + 𝐼𝑥𝑦𝑏𝑞𝑟 − 𝐼𝑦𝑧𝑏 𝑝𝑞
(𝐼𝑥𝑥𝑏 − 𝐼𝑦𝑦𝑏 )𝑝𝑞 + 𝐼𝑥𝑦𝑏 (𝑝2 − 𝑞2) + 𝐼𝑦𝑧𝑏 𝑝𝑟 − 𝐼𝑥𝑧𝑏𝑞𝑟


 (B.188)

and (from Eq. (40))
¤𝑝
¤𝑞
¤𝑟

 =



𝑀𝑥𝑏

𝑀𝑦𝑏

𝑀𝑧𝑏

 +


0 −ℎ𝑧𝑏 ℎ𝑦𝑏

ℎ𝑧𝑏 0 −ℎ𝑥𝑏
−ℎ𝑦𝑏 ℎ𝑥𝑏 0



𝑝

𝑞

𝑟

 +

(𝐼𝑦𝑦𝑏 − 𝐼𝑧𝑧𝑏 )𝑞𝑟 + 𝐼𝑦𝑧𝑏 (𝑞2 − 𝑟2) + 𝐼𝑥𝑧𝑏 𝑝𝑞 − 𝐼𝑥𝑦𝑏 𝑝𝑟
(𝐼𝑧𝑧𝑏 − 𝐼𝑥𝑥𝑏 )𝑝𝑟 + 𝐼𝑥𝑧𝑏 (𝑟2 − 𝑝2) + 𝐼𝑥𝑦𝑏𝑞𝑟 − 𝐼𝑦𝑧𝑏 𝑝𝑞
(𝐼𝑥𝑥𝑏 − 𝐼𝑦𝑦𝑏 )𝑝𝑞 + 𝐼𝑥𝑦𝑏 (𝑝2 − 𝑞2) + 𝐼𝑦𝑧𝑏 𝑝𝑟 − 𝐼𝑥𝑧𝑏𝑞𝑟


 (B.189)

where the BIRE-angle derivative of the inverted inertia tensor is

˘[I]−1
=

1
ˆ|I|

adj
(

˘|I|
)
− ˆ[I]−1 ˘|I|

ˆ|I|
(B.190)

adj
(

˘|I|
)
=


𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 + 𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 − 2𝐼𝑦𝑧𝑏 𝐼𝑦𝑧𝑏 𝐼𝑎 𝐼𝑏

𝐼𝑎 𝐼𝑥𝑥𝑏 𝐼𝑧𝑧𝑏 + 𝐼𝑥𝑥𝑏 𝐼𝑧𝑧𝑏 − 2𝐼𝑥𝑧𝑏 𝐼𝑥𝑧𝑏 𝐼𝑐

𝐼𝑏 𝐼𝑐 𝐼𝑥𝑥𝑏 𝐼𝑦𝑦𝑏 + 𝐼𝑥𝑥𝑏 𝐼𝑦𝑦𝑏 − 2𝐼𝑥𝑦𝑏 𝐼𝑥𝑦𝑏


(B.191)

𝐼𝑎 = 𝐼𝑥𝑦𝑏 𝐼𝑧𝑧𝑏 + 𝐼𝑥𝑦𝑏 𝐼𝑧𝑧𝑏 + 𝐼𝑥𝑧𝑏 𝐼𝑦𝑧𝑏 + 𝐼𝑥𝑧𝑏 𝐼𝑦𝑧𝑏 (B.192)
𝐼𝑏 = 𝐼𝑥𝑦𝑏 𝐼𝑦𝑧𝑏 + 𝐼𝑥𝑦𝑏 𝐼𝑦𝑧𝑏 + 𝐼𝑥𝑧𝑏 𝐼𝑦𝑦𝑏 + 𝐼𝑥𝑧𝑏 𝐼𝑦𝑦𝑏 (B.193)
𝐼𝑐 = 𝐼𝑥𝑥𝑏 𝐼𝑦𝑧𝑏 + 𝐼𝑥𝑥𝑏 𝐼𝑦𝑧𝑏 + 𝐼𝑥𝑦𝑏 𝐼𝑥𝑧𝑏 + 𝐼𝑥𝑦𝑏 𝐼𝑥𝑧𝑏 (B.194)
˘|I| = 𝐼𝑥𝑥𝑏 (𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 − 𝐼2

𝑦𝑧𝑏
) + 𝐼𝑥𝑥𝑏 (𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 + 𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 − 2𝐼𝑦𝑧𝑏 𝐼𝑦𝑧𝑏 ) − 2𝐼𝑥𝑦𝑏 𝐼𝑥𝑧𝑏 𝐼𝑦𝑧𝑏 − 2𝐼𝑥𝑦𝑏 𝐼𝑥𝑧𝑏 𝐼𝑦𝑧𝑏
− 2𝐼𝑥𝑦𝑏 𝐼𝑥𝑧𝑏 𝐼𝑦𝑧𝑏 − (2𝐼𝑥𝑦𝑏 𝐼𝑥𝑦𝑏 𝐼𝑧𝑧𝑏 + 𝐼2

𝑥𝑦𝑏
𝐼𝑧𝑧𝑏 + 2𝐼𝑥𝑧𝑏 𝐼𝑥𝑧𝑏 𝐼𝑦𝑦𝑏 + 𝐼2

𝑥𝑧𝑏
𝐼𝑦𝑦𝑏 ) (B.195)

or for the specific case of the BIRE aircraft (𝐼𝑥𝑦𝑏 = 𝐼𝑥𝑦𝑏 = 𝐼𝑥𝑥𝑏 = 𝐼𝑥𝑧𝑏 = 0)

˘[I]−1
=

1
|I|


𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 + 𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 − 2𝐼𝑦𝑧𝑏 𝐼𝑦𝑧𝑏 𝐼𝑥𝑧𝑏 𝐼𝑦𝑧𝑏 𝐼𝑥𝑧𝑏 𝐼𝑦𝑦𝑏

𝐼𝑥𝑧𝑏 𝐼𝑦𝑧𝑏 𝐼𝑥𝑥𝑏 𝐼𝑧𝑧𝑏 𝐼𝑥𝑥𝑏 𝐼𝑦𝑧𝑏

𝐼𝑥𝑧𝑏 𝐼𝑦𝑦𝑏 𝐼𝑥𝑥𝑏 𝐼𝑦𝑧𝑏 𝐼𝑥𝑥𝑏 𝐼𝑦𝑦𝑏

 − [I]−1
˘|I|
|I| (B.196)

˘|I| = 𝐼𝑥𝑥𝑏 (𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 + 𝐼𝑦𝑦𝑏 𝐼𝑧𝑧𝑏 − 2𝐼𝑦𝑧𝑏 𝐼𝑦𝑧𝑏 ) − 𝐼2
𝑥𝑧𝑏
𝐼𝑦𝑦𝑏 (B.197)

and the zero matrix

𝑍𝑞 =


0 0 0 0
0 0 0 0
0 0 0 0

 (B.198)

Where some states are neglected (see Eq. (51)) from the feedback control design, the linearized input dynamics matrix is

𝐵 = 𝐶𝐵full =


𝐵𝑉,𝑢

𝐵𝜔,𝑢

𝐶𝑥𝑍𝑞

𝐶𝑒𝑍𝑞


=


𝐵𝑉,𝑢

𝐵𝜔,𝑢

𝑍𝑞

 (B.199)
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The inertia tensor components 𝐼𝑥𝑥𝑏 , 𝐼𝑦𝑦𝑏 , 𝐼𝑧𝑧𝑏 , 𝐼𝑥𝑦𝑏 , and 𝐼𝑥𝑧𝑏 follow the format given in Eq. (17). 𝐼𝑦𝑧𝑏 however,
does not and follows the form

𝐼𝑦𝑧𝑏 = 𝐴 |sin (𝜔𝛿𝐵 + 𝜙) | + 𝑧 (B.200)

thus having the BIRE-angle derivative

𝐼𝑦𝑧𝑏 = 𝐴𝜔
sin (𝜔𝛿𝐵 + 𝜙) cos (𝜔𝛿𝐵 + 𝜙)

|sin (𝜔𝛿𝐵 + 𝜙) | (B.201)

As noted by Bolander, this derivative is undefined when the BIRE angle 𝛿𝐵 = 0◦,±180◦, and as stated by Bolander,
this derivative will be set to zero at these conditions [6]. The limit of this derivative as 𝛿𝐵 approaches zero is −1
approached from negative infinity and +1 approached from positive infinity. Taking both directions into account, and
when viewing the form of 𝐼𝑦𝑧𝑏 graphically, it can be readily seen that a value of zero is most appropriate for the cases of
𝛿𝐵 = 0◦,±180◦.
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