10-31-2022

Round Robin Tests of Electron Irradiated Polymers via Pulsed Electroacoustic Measurements

Zachary Gibson
Utah State University

J. R. Dennison
Utah State University

Virginie Griseri
Université Paul Sabatier

Follow this and additional works at: https://digitalcommons.usu.edu/phys_stures

Part of the Physics Commons

Recommended Citation
https://digitalcommons.usu.edu/phys_stures/38

This Presentation is brought to you for free and open access by the Physics Student Research at DigitalCommons@USU. It has been accepted for inclusion in Physics Student Research by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
Round Robin Tests of Electron Irradiated Polymers via Pulsed Electroacoustic Measurements

Zachary Gibson and J.R. Dennison
Materials Physics Group, Physics Dept., Utah State University

Virginie Griseri
Laboratoire Plasma et Conversion d’Energie, Université Paul Sabatier

CEIDP, Oct. 31st, 2022
Overview

• Motivation
 • Validate Comparison of PEA Results

• Experiment
 • PEA System Comparison
 • Sample and Irradiation Details

• Results
 • Compare PEA Measurements

• Conclusions
Motivation – Validate Comparison of PEA

• PEA is a well established method for measuring internal charge distributions in dielectric materials

• There is a standard method of calibration
 • Apply known amount of charge and measure with PEA
 • Use as reference for calibration

• Calibration is a tough issue
 • Difficulties arise when calibrating samples with embedded charge or when using open PEA
 • Potential issues can result from applied pulsed voltage, electrode material, coupling media, semi-conducting layer, etc.
Overview of PEA System – Key Components

- High Voltage DC Power Supply
- High Voltage Pulse Generator
- Computer (Data Processing)
- Oscilloscope

Not to scale
Comparing PEA Systems

Utah State University PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~300 V exciting pulse
 - 1 kV pulse through 8 dB attenuator and short cable
- 50 Ω impedance match
- PVC semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (1 amplifier)
- Light machine oil (coupling media)
- 5000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with charged sample

Université Paul Sabatier PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~250 V exciting pulse
 - Low frequency artifacts, pulse traveled along 25 m cable
- 50 Ω impedance match
- Carbon black semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (2 amplifiers)
- Silicone oil (coupling media)
- 8000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System
- Ambient, parallel plate capacitor
- \(~5\) ns, \(~300\) V exciting pulse
 - 1 kV pulse through 8 dB attenuator and short cable
- 50 Ω impedance match
- PVC semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (1 amplifier)
- Light machine oil (coupling media)
- 5000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with charged sample

Université Paul Sabatier PEA System
- Ambient, parallel plate capacitor
- \(~5\) ns, \(~250\) V exciting pulse
 - Low frequency artifacts, pulse traveled along 25 m cable
- 50 Ω impedance match
- Carbon black semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (2 amplifiers)
- Silicone oil (coupling media)
- 8000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~300 V exciting pulse
 - 1 kV pulse through 8 dB attenuator and short cable
- 50 Ω impedance match
- PVC semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (1 amplifier)
- Light machine oil (coupling media)
- 5000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with charged sample

Université Paul Sabatier PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~250 V exciting pulse
 - Low frequency artifacts, pulse traveled along 25 m cable
- 50 Ω impedance match
- Carbon black semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (2 amplifiers)
- Silicone oil (coupling media)
- 8000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System

- Ambient, parallel plate capacitor
- ~5 ns, ~300 V exciting pulse
 - 1 kV pulse through 8 dB attenuator and short cable
- 50 Ω impedance match
- PVC semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (1 amplifier)
- Light machine oil (coupling media)
- 5000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with charged sample

Université Paul Sabatier PEA System

- Ambient, parallel plate capacitor
- ~5 ns, ~250 V exciting pulse
 - Low frequency artifacts, pulse traveled along 25 m cable
- 50 Ω impedance match
- Carbon black semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (2 amplifiers)
- Silicone oil (coupling media)
- 8000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System

- Ambient, parallel plate capacitor
- ~5 ns, ~300 V exciting pulse
 - 1 kV pulse through 8 dB attenuator and short cable
- 50 Ω impedance match
- PVC semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (1 amplifier)
- Light machine oil (coupling media)
- 5000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with charged sample

Université Paul Sabatier PEA System

- Ambient, parallel plate capacitor
- ~5 ns, ~250 V exciting pulse
 - Low frequency artifacts, pulse traveled along 25 m cable
- 50 Ω impedance match
- Carbon black semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (2 amplifiers)
- Silicone oil (coupling media)
- 8000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~300 V exciting pulse
 - 1 kV pulse through 8 dB attenuator and short cable
- 50 Ω impedance match
- PVC semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (1 amplifier)
- Light machine oil (coupling media)
- 5000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with charged sample

Université Paul Sabatier PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~250 V exciting pulse
 - Low frequency artifacts, pulse traveled along 25 m cable
- 50 Ω impedance match
- Carbon black semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (2 amplifiers)
- Silicone oil (coupling media)
- 8000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~300 V exciting pulse
 - 1 kV pulse through 8 dB attenuator and short cable
- 50 Ω impedance match
- PVC semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (1 amplifier)
- Light machine oil (coupling media)
- 5000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with charged sample

Université Paul Sabatier PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~250 V exciting pulse
 - Low frequency artifacts, pulse traveled along 25 m cable
- 50 Ω impedance match
- Carbon black semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (2 amplifiers)
- Silicone oil (coupling media)
- 8000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System

• Ambient, parallel plate capacitor
• ~5 ns, ~300 V exciting pulse
 • 1 kV pulse through 8 dB attenuator and short cable
• 50 Ω impedance match
• PVC semiconductor film
• Al electrodes
• 9 µm PVDF piezoelectric sensor
• 40 dB gain (1 amplifier)
• Light machine oil (coupling media)
• 5000 traces averaged/measurement
• Data is filtered with modified Gaussian
• Reference obtained with charged sample

Université Paul Sabatier PEA System

• Ambient, parallel plate capacitor
• ~5 ns, ~250 V exciting pulse
 • Low frequency artifacts, pulse traveled along 25 m cable
• 50 Ω impedance match
• Carbon black semiconductor film
• Al electrodes
• 9 µm PVDF piezoelectric sensor
• 40 dB gain (2 amplifiers)
• Silicone oil (coupling media)
• 8000 traces averaged/measurement
• Data is filtered with modified Gaussian
• Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~300 V exciting pulse
 - 1 kV pulse through 8 dB attenuator and short cable
- 50Ω impedance match
- PVC semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (1 amplifier)
- Light machine oil (coupling media)
- 5000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with charged sample

Université Paul Sabatier PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~250 V exciting pulse
 - Low frequency artifacts, pulse traveled along 25 m cable
- 50Ω impedance match
- Carbon black semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (2 amplifiers)
- Silicone oil (coupling media)
- 8000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System
- Ambient, parallel plate capacitor
- \(~5\) ns, \(~300\) V exciting pulse
 - 1 kV pulse through 8 dB attenuator and short cable
- 50 \(\Omega\) impedance match
- PVC semiconductor film
- Al electrodes
- 9 \(\mu\)m PVDF piezoelectric sensor
- 40 dB gain (1 amplifier)
- Light machine oil (coupling media)
- 5000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with charged sample

Université Paul Sabatier PEA System
- Ambient, parallel plate capacitor
- \(~5\) ns, \(~250\) V exciting pulse
 - Low frequency artifacts, pulse traveled along 25 m cable
- 50 \(\Omega\) impedance match
- Carbon black semiconductor film
- Al electrodes
- 9 \(\mu\)m PVDF piezoelectric sensor
- 40 dB gain (2 amplifiers)
- Silicone oil (coupling media)
- 8000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~300 V exciting pulse
 - 1 kV pulse through 8 dB attenuator and short cable
- 50 Ω impedance match
- PVC semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (1 amplifier)
- Light machine oil (coupling media)
- 5000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with charged sample

Université Paul Sabatier PEA System
- Ambient, parallel plate capacitor
- ~5 ns, ~250 V exciting pulse
 - Low frequency artifacts, pulse traveled along 25 m cable
- 50 Ω impedance match
- Carbon black semiconductor film
- Al electrodes
- 9 µm PVDF piezoelectric sensor
- 40 dB gain (2 amplifiers)
- Silicone oil (coupling media)
- 8000 traces averaged/measurement
- Data is filtered with modified Gaussian
- Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System
• Ambient, parallel plate capacitor
• ~5 ns, ~300 V exciting pulse
 • 1 kV pulse through 8 dB attenuator and short cable
• 50 Ω impedance match
• PVC semiconductor film
• Al electrodes
• 9 µm PVDF piezoelectric sensor
• 40 dB gain (1 amplifier)
• Light machine oil (coupling media)
• 5000 traces averaged/measurement
• Data is filtered with modified Gaussian
• Reference obtained with charged sample

Université Paul Sabatier PEA System
• Ambient, parallel plate capacitor
• ~5 ns, ~250 V exciting pulse
 • Low frequency artifacts, pulse traveled along 25 m cable
• 50 Ω impedance match
• Carbon black semiconductor film
• Al electrodes
• 9 µm PVDF piezoelectric sensor
• 40 dB gain (2 amplifiers)
• Silicone oil (coupling media)
• 8000 traces averaged/measurement
• Data is filtered with modified Gaussian
• Reference obtained with pristine sample
Comparing PEA Systems

Utah State University PEA System
• Ambient, parallel plate capacitor
• ~5 ns, ~300 V exciting pulse
 • 1 kV pulse through 8 dB attenuator and short cable
• 50 Ω impedance match
• PVC semiconductor film
• Al electrodes
• 9 µm PVDF piezoelectric sensor
• 40 dB gain (1 amplifier)
• Light machine oil (coupling media)
• 5000 traces averaged/measurement
• Data is filtered with modified Gaussian
• Reference obtained with charged sample

Université Paul Sabatier PEA System
• Ambient, parallel plate capacitor
• ~5 ns, ~250 V exciting pulse
 • Low frequency artifacts, pulse traveled along 25 m cable
• 50 Ω impedance match
• Carbon black semiconductor film
• Al electrodes
• 9 µm PVDF piezoelectric sensor
• 40 dB gain (2 amplifiers)
• Silicone oil (coupling media)
• 8000 traces averaged/measurement
• Data is filtered with modified Gaussian
• Reference obtained with pristine sample
Signal Processing

Processing Steps:
- Average multiple measurements and compute statistics (not shown)
 - The rest of the processing is done on the averaged measurement
- Compute FFT to determine filter parameters
- Modified Gaussian filter used on data
- Take difference of DC on – DC off to obtain reference wave (Chen 2006)
- Use system response to perform deconvolution

Calibration
- Multiply by calibration factor
 - \[\text{Calibration Factor} = \frac{\epsilon_r \epsilon_0 V_{DC}}{d \int V_{RefSignal} dx} \]
- Calibrate x-axis to distance using the speed of sound calculated from the measured thickness and peak-to-peak time difference of the two interfaces
Signal Processing – Filtering Effects

No Filter
- Higher spatial resolution
- Very noisy
- Overestimate charge density

Too Much Filtering
- Very low spatial resolution
- Underestimate charge density
- Low noise

Approximately Optimized Filtering
- Optimal charge density
- Low noise
- Optimal spatial resolution

(Gibson 2022)
Experimental Details – The Experiment

• Experimental Overview:
 • Measure pristine sample with DC bias only
 • Measure samples with embedded charge
 • Compare PEA measurements in ambient conditions at Utah State University (Logan, UT) and Université Paul Sabatier (Toulouse, France)

• Sample details
 • Samples must be very resistive so charge will not migrate during transportation
 • Materials used are polytetrafluoroethylene (PTFE) and polyether-etherketone (PEEK) of 200-250 µm thickness

• Irradiation chamber details
 • Samples irradiated with 50, 60, or 70 keV electrons with a flux of ~1 nA/cm² for 10 min
 • Irradiation completed at UPS with MATSPACE chamber
Comparing PEA – PTFE DC Bias

• Basically the same results
• The charge magnitude agrees by definition
• Slight difference in analysis/processing

PEA measurements of 200 µm thick PTFE with 2 kV DC bias. Inset depicts internal electric field calculated from the measured charge.
Comparing PEA – 70 keV PEEK

- Features are similar
- Charge magnitude greater for USU data
Comparing PEA – 50 keV PTFE

- Features are similar
- Charge magnitude greater for UPS data

- Attenuation/dispersion is apparent in “incident right” plot for PTFE
Comparing PEA – 50 keV PTFE – Classic Calibration

- Classic calibration only changes charge magnitude slightly
- Changes in the “wrong” direction (less agreement)

- The USU data was also calibrated with “classic” method (pristine sample)
Comparing PEA – Other Results

• Similar results were obtained for the rest of the measurements
 • PEEK irradiated with 60 keV electrons
 • PTFE irradiated with 60 keV and 70 keV electrons

• It was attempted to calibrate USU data with pristine sample reference but this provided a minimal change, and in the “wrong” direction

• There is no obvious answer to the discrepancies in the charge magnitude of the measurements
Conclusions

- The **shape** of measurements are in **agreement**
- The **distance scale** is in **agreement**
- The **charge magnitude** is **not in agreement** for measurements with embedded charge distributions

- Possible issues:
 - Electrode materials, coupling media, data analysis/processing, pulse effects, temperature, clamping pressure, humidity, errors (applied voltage, etc.)
 - Calibration used is from *surface charge*, perhaps allowing surface effects to contribute to error

- Ideal calibration for comparing absolute charge magnitude:
 - Known charge magnitude and distribution in bulk of material used for calibration
 - This is much more difficult to achieve
 - Perhaps an irradiated sample of PEEK or PTFE with magnitude of charge verified by surface potential measurement
References

• Gibson, Z., Dennison, J.R., Beecken, B., and Hoffmann, R., “Comparison of Pulsed Electroacoustic Measurements and AF-NUMIT3 Modeling of Polymers Irradiated with Monoenergetic Electrons,” Journal of Spacecraft and Rockets (2022) (under review)
Questions?
Backup slides
Other Results – PEEK
Other Results – PTFE