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ABSTRACT

Collaborative Task Completion for Simulated Hexapod Robots Using Reinforcement

Learning

by

Tayler Don Baker, Master of Science

Utah State University, 2023

Major Professor: Mario Harper, Ph.D.
Department: Computer Science

There is growing interest in developing autonomous systems capable of exhibiting col-

laborative behaviors. Using methods such as reinforcement learning is another way to train

multiple robots for collaborative task completion. This research talks about two reinforce-

ment learning algorithms such as PPO and MA-POCA and uses them to train multiple

hexapod robots to push a target to a designated goal collaboratively. This required each

robot to learn how find the target and push that target to a goal. It shows the results of

the simulations and talks about conclusions and future work. This work suggests that using

reinforcement learning for collaborative task completion for hexapod robots may simplify

the complexity of the software and improve the decisions that they make.

(56 pages)
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PUBLIC ABSTRACT

Collaborative Task Completion for Simulated Hexapod Robots Using Reinforcement

Learning

Tayler Don Baker

There is growing interest in developing autonomous systems capable of exhibiting col-

laborative behaviors. Using methods such as reinforcement learning is another way to train

multiple robots for collaborative task completion. This study was able to successfully in

simulation train multiple hexapod robots to push a target to a designated goal collabora-

tively. This required each robot to learn how find the target and push that target to a goal.

This work suggests that using reinforcement learning for collaborative task completion for

hexapod robots may simplify the complexity of the software and improve the decisions that

they make.
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CHAPTER 1

INTRODUCTION

There is growing interest in developing autonomous systems capable of exhibiting col-

laborative behaviors. These systems have the potential to greatly improve robotics by

simplifying intelligence architectures currently used in search and rescue operations, envi-

ronmental monitoring, and industrial automation. One particular group of robots that can

benefit significantly from collaborative intelligence are ant-like hexapedal robots, individ-

ually limited but capable of group action. Inspired by the sophisticated coordination and

cooperation observed in ant colonies, these robots possess unique locomotion capabilities

and can navigate complex terrains.

The successful implementation of collaborative behaviors in hexapedal ant-like robots

requires the adoption of appropriate learning algorithms. Among the various approaches

available, RL has emerged as a promising technique to achieve the desired objectives. RL

enables robots to learn from their interactions with the environment by receiving feedback

in the form of rewards or penalties, allowing them to make informed decisions and improve

their performance over time. There are several compelling reasons why leveraging RL is

advantageous over other methods when it comes to building collaborative behaviors for

hexapedal ant-like robots.

Firstly, RL offers a versatile framework that can handle a wide range of complex tasks.

Hexapedal ant-like robots often operate in dynamic and uncertain environments, where

traditional rule-based approaches may struggle to provide effective solutions. RL algorithms,

on the other hand, are capable of adapting and learning from experience, making them well-

suited for handling the inherent complexity and uncertainty associated with collaborative

behaviors.

Secondly, RL allows for decentralized decision-making and coordination among multiple

robots. In the context of collaborative behaviors, it is crucial to enable individual robots to
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make autonomous decisions while maintaining a collective goal or objective. RL algorithms

provide a distributed learning mechanism, allowing each robot to learn its own policy based

on local observations and rewards, while also facilitating coordination and cooperation

among the robots towards achieving a common goal.

Furthermore, RL has the potential to facilitate the emergence of novel and adaptive

strategies. Traditional programming approaches often require extensive manual engineer-

ing and may not capture the full complexity of collaborative behaviors. In contrast, RL

enables robots to explore and discover new strategies through trial and error, leading to the

emergence of innovative and adaptive behaviors that can enhance the overall performance

and efficiency of the collaborative system.

Lastly, leveraging RL can enable continuous improvement and lifelong learning in

hexapedal ant-like robots. As the robots interact with the environment and learn from

their experiences, they can continuously refine their behaviors and adapt to changing con-

ditions. This ability to learn and improve over time is crucial in scenarios where the robots

are deployed in dynamic and evolving environments, as it allows them to cope with new

challenges and unforeseen situations.

This thesis explores a promising approach for building collaborative behaviors in hexapedal

ant-like robots. By enabling adaptability, decentralized decision-making, and the emergence

of novel strategies, RL empowers these robots to navigate complex environments, work to-

gether towards common goals, and continuously improve their performance. This thesis aims

to explore RL techniques specifically tailored for collaborative hexapedal ant-like robots,

paving the way for more sophisticated and efficient collaborative robotic systems.

RL follows the idea that an autonomously acting agent obtains its behavior policy

through repeated interaction with its environment on a trial-and-error basis [1]. The purpose

of RL is there is an agent that is aware of the state of environment at time t, the agent

takes an action at t which leads to state t + 1, where the agent receives a reward at Rt. As

illustrated in Figure 1.1 this cyclical model encourages the agent to take actions to maximize

the reward given.
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Fig. 1.1: RL Cycle [1]

As seen RL gives the option of instead of designing a software to control multiple

hexapod robots it is possible to design a higher-level task description in the form of the

reward [6].

The higher level task of this paper is to have two hexapod robots in simulation collab-

oratively push a target to a goal. The hexapod robots are similar to the A-Pod robot by

Lynxmotion as illustrated in Figure 1.2 is a six-legged robot with a claw that can open and

close so that it can grasp objects. This was done so that in future work the same RL that

was done on the simulated model could be put on a similar physical robot.

This paper goes as follows: We first talk about the different RL algorithms that were

used in this research. We then discuss related work of what has already been done in the

research of multi agent systems. Next we discuss the simulation tools that we used. I talk

about the preliminary work that was done to learn about the different RL algorithms with

the results of the training. Next we talk about the methods of this research and how it

was set up. After we discuss the results of the research. We then give a conclusion and

lessons learned about the research. Finally we talk about possible future work needed for

this research.
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Fig. 1.2: A-Pod Robot by Lynxmotion [2]
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CHAPTER 2

BACKGROUND

Many RL frameworks rely on policy gradient methods. PG methods are a class of RL

algorithms that directly optimize the policy of an agent in order to maximize its cumula-

tive reward. Unlike value-based methods that estimate the value function, policy gradient

methods learn a parameterized policy that maps states to actions. By iteratively updating

the policy based on the observed rewards, these methods enable the agent to improve its

decision-making over time. Policy gradient methods offer advantages such as the ability

to handle continuous action spaces and the potential for end-to-end learning. They have

been successfully applied to various domains, including robotics, where they have shown

promise in training agents to perform complex tasks and exhibit adaptive and collaborative

behaviors.

In RL, algorithms based on policy gradient provide an outstanding paradigm for con-

tinuous action space problems. The purpose of all such algorithms is to maximize the

cumulative expected rewards [7]. The two RL algorithms were used in this paper: PPO

and MA-POCA.

2.0.1 PPO

Many RL frameworks rely on policy gradient methods. Policy gradient methods are a

class of RL algorithms that directly optimize the policy of an agent in order to maximize

its cumulative reward. Unlike value-based methods that estimate the value function, policy

gradient methods learn a parameterized policy that maps states to actions. By iteratively

updating the policy based on the observed rewards, these methods enable the agent to

improve its decision-making over time. Policy gradient methods offer advantages such as

the ability to handle continuous action spaces and the potential for end-to-end learning.

They have been successfully applied to various domains, including robotics, where they
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have shown promise in training agents to perform complex tasks and exhibit adaptive and

collaborative behaviors.

The PPO algorithm is a particular form of PG-RL which has emerged as a popular RL

technique. PPO addresses some of the limitations of previous policy gradient methods by

providing a stable and efficient approach for training complex robotic systems. Its ability

to handle high-dimensional action spaces and continuous control tasks makes it particularly

relevant for the development of collaborative behaviors in hexapedal ant-like robots.

Four particular benefits of PPO are:

• Sample Efficiency: Traditional policy gradient methods often suffer from poor sample

efficiency. Since these methods update the policy based on Monte Carlo estimates of

the expected returns, they require a large number of interactions with the environment

to achieve good performance. PPO addresses this limitation by utilizing the collected

data more effectively. It uses a surrogate objective function that constrains the policy

update within a certain range, ensuring more stable and efficient updates. This leads

to better sample efficiency and reduces the number of interactions needed to learn an

effective policy.

• Policy Divergence: Another limitation of policy gradient methods is the potential for

policy divergence during training. As the policy is updated based on the current esti-

mate of expected returns, large updates can cause the policy to deviate significantly,

leading to instability and poor performance. PPO mitigates this issue by employing

a clipping mechanism in the surrogate objective function. By constraining the policy

update to a range around the current policy, PPO prevents drastic policy changes

that could lead to divergence. This clipping mechanism ensures more stable updates

and helps maintain policy convergence.

• Exploration-Exploitation Trade-off: Balancing exploration and exploitation is crucial

for effective learning in RL. Traditional policy gradient methods often struggle with
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this trade-off, as they can get trapped in suboptimal policies or fail to explore promis-

ing regions of the action space. PPO addresses this limitation by leveraging the impor-

tance sampling ratio and the clipped surrogate objective function. These techniques

encourage exploration by allowing the policy to explore actions with higher proba-

bilities and discouraging excessive exploitation. This way, PPO achieves a balance

between exploration and exploitation, facilitating the discovery of optimal policies.

• High-Dimensional Action Spaces: Many real-world robotic systems, including hexapedal

ant-like robots, have high-dimensional action spaces. Traditional policy gradient

methods can face challenges in effectively exploring and learning in such spaces.

PPO tackles this limitation by providing stable and efficient updates even in high-

dimensional action spaces. Its surrogate objective function and the use of a trust

region ensure that the policy updates remain within a reasonable range, allowing

effective learning in complex action spaces.

PPO enhances the performance and stability of policy gradient methods, making it

a valuable technique for training robotic systems, including hexapedal ant-like robots, to

exhibit sophisticated and collaborative behaviors.

PPO is well-suited for the hexapedal ant-like robots described above for several reasons.

Firstly, these robots possess a large action space, as their locomotion involves coordinated

movements of multiple limbs. Traditional RL algorithms may struggle to handle such high-

dimensional action spaces effectively. PPO, however, uses a surrogate objective function

that ensures efficient exploration and stable updates, making it suitable for learning complex

locomotion policies for these robots.

Secondly, PPO offers sample efficiency, which is crucial when dealing with resource-

constrained robotic systems. Training hexapedal ant-like robots through physical interac-

tions can be time-consuming and expensive. PPO’s ability to extract more information

from each interaction and effectively utilize collected data leads to faster and more efficient

learning, reducing the number of interactions required to achieve desirable collaborative

behaviors.
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Furthermore, PPO provides a balance between exploration and exploitation, allowing

the hexapedal ant-like robots to discover optimal coordination strategies while avoiding

premature convergence to suboptimal policies. The ability to strike this balance is critical

in developing robust and adaptive collaborative behaviors, as the robots need to explore a

wide range of behaviors and learn from their interactions to achieve effective coordination

and cooperation.

PPO is a policy gradient algorithm that learns a parameterized policy that attractively

updates the parameters of the policy by solving a local optimization problem [8]. PPO is

built off of the algorithm TRPO but has unconstrained surrogate objective function and

generalized advantage estimation [9].

The objective of the unconstrained surrogate objective function is shown as

Jppo(θ) = Es,a [min (ρθA
πθold , clip (ρθ, 1 − ϵ, 1 + ϵ)Aπθold )]

where pθ = πθ(a|s)
πθold(a|s)

When Aπθold > 0, the term pθ would tend to be much larger

than 1 to make the performance as high as possible, which leads to unstable learning. The

objective of PPO cuts this motivation by clipping p with 1 + ϵ. Same situation is with

Aπθold < 0 [9].

The advantage function for the PPO policy gradient can be estimated by

Âπ(s, a) = Q̂π(s, a) − V (s, w),

where Q̂π(s, a) is the action-value function estimated by samples, V (s, w) is the ap-

proximation of the state-value function. TRPO used Monte Carlo methods to construct

Q̂π(s, a), i.e., [9]

Q̂π(st, at) =
∞∑
l=t

γl−trl.

It is unbiased but suffers from high variance. Actor-critic methods use one-step boot-

strapping to form Q̂π(s, a), i.e., [9]
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Q̂π(st, at) = rt + γV (st+1, w),

this is biased but has a low variance. Generalized advantage estimation uses the linear

combination on n-step bootstrapping to obtain both low bias and low variance, which is

shown as [9]

Q̂π(st, at) =
∞∑
l=t

(γλ)l−tδl + V (st, w),

where δl is the TD error,

δl = rl + γV (sl+1, w) − V (sl, w).

Compared with TRPO, PPO is much simpler and faster to implement because it is a

first-order optimization algorithm and has better convergence speed when it is combined

with generalized advantage estimation. However, PPO is an on-policy method and in-

evitably has high sample complexity [9]. PPO has some benefits of TRPO but is much

simple to implement as illustrated in Figure 2.1, and has better sample complexity [3]

Fig. 2.1: PPO Algorithm [3]

2.0.2 MA-POCA

MARL is a subfield of RL that focuses on developing algorithms and techniques to

enable multiple agents to learn and interact in a shared environment. Unlike single-agent
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RL, where a single agent learns from its own experiences, MARL tackles the challenges of

coordinating and learning in the presence of other agents with their own goals and policies.

MARL plays a crucial role in domains such as robotics, game theory, and multi-robot sys-

tems, where collaborative behaviors, competition, or coordination among multiple agents

are essential. By leveraging MARL, agents can learn to adapt, strategize, and cooperate,

leading to more sophisticated and intelligent decision-making in complex, dynamic environ-

ments.

Posthumous credit assignment is an approach in which rewards are allocated to past

actions based on their contribution to the final outcome, even if their impact is not im-

mediately observable. In the context of hexapedal ant-robots building a cooperative task

intelligence, posthumous credit assignment can provide several benefits compared to using

the PPO algorithm alone.

Firstly, in a cooperative task where multiple ant-like robots work together, the indi-

vidual actions of each robot may not yield immediate observable benefits or rewards. For

example, one robot may clear an obstacle that allows another robot to access a valuable

resource. With posthumous credit assignment, the delayed rewards associated with such

actions can be appropriately attributed, allowing the robots to understand the long-term

consequences of their decisions and learn to collaborate more effectively.

Secondly, hexapedal ant-robots often operate in complex and dynamic environments

where the outcome of a cooperative task may be influenced by a combination of actions

from multiple robots. Posthumous credit assignment enables the robots to analyze the

joint effect of their actions, fostering coordination and collaboration. By assigning rewards

retrospectively based on the collective outcome, the robots can learn to prioritize and adapt

their behaviors to achieve better cooperative task performance.

Furthermore, posthumous credit assignment facilitates the learning of strategic and

coordinated behaviors. By explicitly accounting for the delayed effects of actions, the robots

can develop an understanding of how their behaviors interact and influence the overall

task execution. This can lead to the emergence of sophisticated cooperative strategies and
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enhance the overall intelligence of the collaborative system.

While PPO provides a powerful framework for RL, it may face challenges in explicitly

capturing the delayed and cumulative effects of actions in cooperative tasks. Posthumous

credit assignment complements PPO by providing a mechanism to allocate rewards retro-

spectively, enabling the hexapedal ant-robots to build a cooperative task intelligence by

understanding and optimizing their long-term contributions to the task’s success.

One of the challenges of MARL is the early agent terminations. This early termination

is a problem because terminated agents generally does not learn from its fellow agents.

This is referred to as the Posthumous Credit Assignment problem. Many MARL methods

solve these problems by placing terminated agents in an absorbing state until all the agents

complete the task or are terminated [10]. This solution is both costly and ineffective since

agents do not share rewards which in turn increases training time.

Unity found a solution by developing its own MARL, MA-POCA which naturally han-

dles agents that are created or destroyed within an episode but share a reward function. It

can scale to an arbitrary number of agents [10]. According to the ML-Agents documenta-

tion, MA-POCA will allow to give rewards to the agents collectively as a group. This will

help the agents learn best how to contribute to achieving that award [4]. MA-POCA trains

a centralized critic that acts as a trainer for all of the agents, instead of individual rewards

to individual agents, it is possible to reward the whole team of agents teaching them to act

in the best interest of the team rather than individually [11].

To handle a varying number of agents per timestep, first encode the observations of all

active agents g1(o
i
t)1≤ i≤ kt where oit is the observation of agent i at time t. These encodings

then pass through an RSA block. The RSA block is similar to the one used in vanilla

Transformer architecture [12] but without positional encodings [13]. The centralized state

value function is parameterized by ϕ has the form [10]

Vϕ(RSA(gi(o
i
t)1≤ i≤ kt))
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and is trained with TD(λ) [14]

J(ϕ) = (Vϕ(RSA(gi(o
i
t)1≤ i≤ kt)) − y(λ))2

where

y(λ) = (1 − λ)

∞∑
n=1

λn−1G
(n)
t

G
(n)
t =

∞∑
n=1

λι−1rt+ι + λnVϕ(RSA(gi(o
i
t)1≤ i≤ kt+n))

Where kt+n is the number of agents active at the time t + n. kt+n can be greater or less

than kt as agents can spawn and despawn at time step t, this is how expected value from t

+ n can propagate back to agents that terminated at time t [10].

Through the MA-POCA Counterfactual Baseline agent j learns the value functions

based on the observation of agents i. The baseline parameterized by ψ for agent j has the

form [10]

Qψ(RSA(gj(o
j
t ), fi(o

i
t, a

i
t)1 ≤ ii ̸=j ≤ kt))

The objective for the baseline is

J(ψ) = Qψ(RSA(gj(o
j
t ), fi(o

i
t, a

i
t)1 ≤ ii ̸=j ≤ kt)) − y(λ))2

The advantage for agent j to be used in the update is given by

Advj = y(λ) −Qψ(RSA(gj(o
j
t ), fi(o

i
t, a

i
t)1 ≤ ii ̸=j ≤ kt))

MA-POCA was found to perform as well as or slightly better than COMA and PPO

for tasks without dying or spawning, and significantly outperform both methods for tasks

where agents die and/or spawn [10].
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CHAPTER 3

RELATED WORK

A significant amount of work has been done already in the field of multi agent systems

using RL to complete tasks. Such methods that have been explored have been where agents

coordinate with its neighbors and follow a leader, sever implementation, and actor-critic

solutions.

Such an example of research is by researchers [15] where through simulation they had

multiple virtual robot formation system which consisted of one USV and three USV followers

[15]. These researchers implemented two layers of learning to accomplish their objective.

The followers learn the behaviors of the virtual objects in the first layer based on the

adaptive NNs. Then another layer realizes the tracking performance between the virtual

objects and the leader by introducing the local data-based performance index [15]. Through

these two layers each agent could only communicate with its neighboring agents and were

required to complete formation tasks by following their leader USV’s trajectory. One flaw

of this type of method is that in the researchers conclusions they found that due to tracking

errors the followers had to be close enough to the leader or else they got confused and off

course.

Another example of multi agent learning is by researchers [16] who used batch RL

tailored to the use of multilayer perceptrons to approximate value functions over continuous

state spaces [16]. They implemented a Markov Decision Process with a closed control loop

with discrete time steps on each agent. They also were able to implement a client/server

that simulated the playing field, communication, the environment and its dynamics, while

the agents, eleven per team, sent their intended actions, once per simulation cycle, to the

server [16]. While this research did prove successful it did require the use of a server and a

control loop to be implemented on each agent.

Research on an application for multi agent learning was done by researchers [17] who
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used multi agent learning in a coverage application task by using an UAV as their agent.

Each agent acted independently and can observe the preceding actions of its teammates to

make a decision accordingly [17]. For this scenario a single reward was given to the group to

encourage collaboration amongst the individual agents. To accomplish this the researchers

proposed a noel actor-critic multi-agent RL algorithm to address the problem of multi-UAV

target assignment and path planning [17].
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CHAPTER 4

UNITY

Unity is a cross-platform game engine that allows the implementation of art assets or

models, physics, and code for creating game experiences or simulations. Unity is built using

the model of a scene, or stage of the experience with game objects in that scene. Game

objects are separate entities that each have a position, Cartesian coordinates (x,y,z) with

the scale being 1 equals to one meter, in the scene and have the ability to have components

added. Such components could be a renderer, collider, rigid body, or C# script.

This reinforcement training was done using Unity ML-Agents which is a Unity plugin

that uses Python and PyTorch to set up training environments for RL. As illustrated in

Figure 4.1, Unity is where the environment is setup for the training and that environment

connects to the PyTorch Python API. This provides the ML-Agents SDK which contains

all functionality necessary to define environments within the Unity Editor along with the

core C# scripts to build a learning pipeline [5]. This allows for different environments to

be set up for training agents with different deep learning algorithms.

Fig. 4.1: Unity Learning Environment with Python API [4]

The main components of the ML-Agents SDK are sensors, agents, and the academy.

Any object that is in the scene and can observe, receive rewards, and take action is an agent
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or an intelligent entity. An agents collects observation via many means, such as ray casting,

images, knowledge of x, y, and z locations of other objects, or Boolean logic such as if agent

has a ball. Each agent has a policy labeled with a behaviour name. Multiple agents can

have a policy with the same behaviour name [5].

Agents can receive both positive and negative rewards during training by using the

Unity scripting system. Examples of such rewards my be agents completing a task, agents

failing, or smaller intermediate rewards such as agents getting closer to a target. The reward

structure and size is totally dependant on the training scenario designer. An agent’s top

priority is to maximize their reward output, which should be taken into consideration on

how much to reward both positive and negatively because it will affect the training outcome.

Rewards can be given to agents individually or in the case of a MARL where collaboration

is encouraged algorithms such as MA-POCA the reward can be given to the agents as a

whole.

The academy is the overseer of the simulation by keeping track of things such as

simulation steps and agents. The academy also contains the ability to define environment

parameters, which can be used to change the configuration of the environment at runtime [5].

As seen in Figure 4.2 agents take action and observe the environment while the academy

takes care of coordination amongst the agents and environment simulation.
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Fig. 4.2: Unity Learning Environment with Academy and Agents [5]

The environments that were created for this paper are set up with an agent(s) in a

walled rectangular shaped arena so that the agent cannot leave the arena. To speed up the

training each training scenario had multiple environments, each with their own agent(s),

target(s), arena, and goal, to speed up training.
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CHAPTER 5

PRELIMINARY WORK

To implement multiple simulated hexapod robots completing a task into simulation,

preliminary work was done before hand to learn and to test the different RL algorithms.

There was a total of four different training scenarios implemented to break down the com-

plexity of creating the different environments. The scenarios are: Bring Ball to Goal, Push

Target to Goal - Single Agent, and Push Target to Goal - Multiple Agents. All of these

different training scenarios used PPO as the RL algorithm unless otherwise stated.

5.1 Bring Ball to Goal

As illustrated in Figure 5.1 in this scenario an agent was placed in an arena with the

objective to bring a target to a goal. On environment initialization the agent, target, and

goal are randomly spawned on the playing field. The target is sphere-shaped, however, it

does not have the ability to roll around the environment keeping the same initial position

unless acted upon by the agent. As soon as the agent collides with the target, the target’s

position will be set to the agent’s position so that the agent can bring the target to the

goal. The episode ends when the agent collides with the goal if the target’s position is set

to the agent’s position first.

5.2 Push Target to Goal - Single Agent

For this scenario an agent was placed in an arena with the objective to push a target

to a goal. As illustrated in Figure 5.2 on environment initialization the agent and target

are randomly spawned in the arena, with the goal randomly spawned either on the left or

right side of the arena. The target is cubed-shaped so that the agent and target both have

flat surfaces for pushing. The target is able to be moved freely so that if the agent runs into

it and has a constant speed, the target will be pushed with the same vector as the agent’s
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Fig. 5.1: Ball To Goal Environment

vector. There is no momentum in the target so if the agent stops pushing it the target’s

position will cease to changed. The episode ends when the target collides with the goal.

5.3 Push Target to Goal - Multiple Agents

In this scenario three agents are placed in an arena with the objective to push six

targets to a goal. Because of the use of multiple agents the RL algorithm that was used

was MA-POCA, which as being described earlier allows all the agents to share a reward.

This will allow for shared knowledge amongst the agents and will help them achieve their

goal faster.

As illustrated in Figure 5.3 on environment initialization the agents and targets are

randomly spawned in the arena, with the goal randomly spawned either on the left or right

side of the arena. The targets are cubed-shaped so that the agent and target both have flat
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Fig. 5.2: Push Target to Goal - Single Environment

surfaces for pushing. As before the targets are able to be moved freely so that if an agent

runs into it and has a constant speed, the target will be pushed with the same vector as

the agent’s vector. However, there are three different sizes of targets: small, medium, and

large. The small target, labeled “1”, has a mass of 10 kg requiring at least one agent to

push it to be moved, the medium target, labeled “2”, has a mass of 150 kg requiring at least

two agents to push it simultaneously for it to be moved, and the large target, labeled “3”,

has a mass of 250 kg requiring all three agents to push it simultaneously for it to be moved.

There is no momentum in the targets so if the agents stop pushing a target its position will

not be changed. Once a target has collided with the goal it will be removed from the arena.

The episode ends when all the targets have collided with the goal.
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Fig. 5.3: Push Target to Goal - Multiple Environment

5.4 Preliminary Work Results

After the different environments were setup they were each trained separately using

PyTorch. The first training scenario, Ball to Goal, was trained by running the agent for

two million actions, or steps. As illustrated in Figure 5.4 the training results are shown

with the cumulative reward on the y-axis and the number of steps on the x-axis. As seen,

as the steps increase the cumulative reward consistently increases showing that the agent
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in this environment was learning by getting a higher reward. During the training the agent

did not obtain the maximum reward possible, however, the trained result was good enough

as the trained agent was consistently able to find the ball, grab the ball, and take the ball

to the goal.

Fig. 5.4: Ball To Goal Results

For the next scenario, Push to Goal - Single Agent, the agent was trained for three

million steps. As illustrated in Figure 5.5 the training results are shown with the cumulative

reward on the y-axis and the number of steps on the x-axis. As seen at around 1.25 million

steps the cumulative reward stopped increasing at around positive two or three. This is

because the agent achieved the maximum reward possible and it was not possible to receive

a better reward. At the end of the training the agent was able to complete the task of

pushing the target to the goal.
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Fig. 5.5: Push To Goal - Single Results

For the last scenario, Push to Goal - Multiple Agents, the agents were trained for

twenty five million steps. As illustrated in Figure 5.6 the training results are shown with

the cumulative reward on the y-axis and the number of steps on the x-axis. As the steps

increase the cumulative reward increases this proves that the agents did learn by increasing

their cumulative reward. The reason for the spikes in the graph because at some points in

the training the agents were able to push the medium and large targets to the goal. After

the training the agents were able to consistently push the small targets to the goal, however,

were not able to consistently push the medium and large targets to the goal proving that

the agents needed more time to train.
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Fig. 5.6: Push To Goal - Multiple Results
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CHAPTER 6

METHODS

6.1 Training Environment

The training environment that was setup for the learning for this research was setup

using Unity. As seen in Figure 6.1 the environment was composed of a floor, which is a

(100x, 1y, 100z) cube, with walls surrounding the area to keep the agents in the environment.

Both the floor and walls have box colliders around them so that the goals, targets, or agents

cannot fall through them. Each environment contains two blue hexapod agents, a green

target, and two white goals on the top and bottom.

The target is a (20x, 1y, 1z) cube. The starting position of the target is randomized

randomized position between -35 to 35 in the x, 1 in the y position, and -40 to 40 in the y

with the origin being the center of the training environment. If a target collides with a goal

it will respawn randomly in the training environment under the same random parameters.

The mass was modified for different training scenarios and will be discussed later on in

the Results chapter. I has an angular drag of 0.05 which requires both agents to push it

effectively. The target also cannot rotate so if an agent is push on one of the target’s edges

the target will always be parallel to the goal. The goals are (100x, 2y, 5z) cubes where one

is at the top and the other one is at the bottom of the environment. To detect collision

both the target and goals have box colliders on them.

The goal for the training environment is to have the two agents push the target to the

goal collaboratively by first learning how to walk, second know where the target and goal

are, and third learn how to push the target to a goal.

6.2 Environment Controller

The environment controller handles what needs to happen in the scene as well as the
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Fig. 6.1: Unity Training Environment with Agents

reinforcement parameters such as max environment steps and the reward function. The

max environment steps which are how long the environment will run before it resets. For

this training the max environment steps is 25000, each step is called every 0.02 seconds so

the environment will reset every 500 seconds. The environment controller handles spawning

the target randomly in the scene at scene initialization and when the target hits the goal.

At the beginning of each episode it will reset the agents to their starting positions and will

randomly spawn the target in the training environment. Once the target hits the goal the

environment controller will randomly spawn it to a new location.

The environment controller uses Unity’s SimpleMultiAgentGroup class which registers

all of the agents under one entity. This allows the ability to give the whole team of agents

a reward collectively. It also knows the agent’s and target’s starting position, starting

rotation, and ridged body parameters.
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6.3 Agent

As shown in Figure 6.2 each agent was a 3D hexapod ant robot that was modeled

by gusmangananda [18]. Each agent has six legs with three different components per leg

(femur, tibia, and a tarsus) that can all move as separate linked components.

Fig. 6.2: Agent Hexapod Model

For the agent to be able to walk, each leg component needed a set amount of degrees

of freedom (DOF) set which specified the amount of DOF each joint could move. The was

done by adding a Unity Configurable Joint component, which allows setting a number of

DOF in either x, y, or z axis to each each leg joint. This is so that the agent will be able

to move realistically. Each DOF was modeled after the A-Pod robot by Lynxmotion. Since

each leg component could only move on one axis all axes were set to zero unless otherwise

specified. Each leg components were given the same DOF except for the two legs in the

middle of the model where the femur only had 60 DOF on the y axis.

The femur DOF was set to 120 on the y axis as shown in Figure 6.3 the DOF on the

femur is represented by the greenish-yellow shading area near the joint connecting the body
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and femur on the model.

Fig. 6.3: Femur DOF

The tibia DOF was set to 110 on the z axis as shown in Figure 6.4 the DOF on the

tibia is represented by the blue shading area near the joint connecting the femur and tibia

on the model.

Fig. 6.4: Tibia DOF

The tarsus DOF was set to 180 on the z axis as shown in Figure 6.5 the DOF on the
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tarsus is represented by the blue shading area near the joint connecting the tibia and tarsus

on the model.

Fig. 6.5: Tarsus DOF

Each agent has a mass of 20. The body, tail, and head has a box collider and the femur,

tibia, and tarsus all have mesh colliders, this allows the agent the ability to push the target

and so it will not be able to fall through the floor.

6.3.1 Agent Observations

Each agent is given observations of their environment. This is in hope that based off

of these observations, the agent can make the best decisions possible. For this training all

of the observations have to do with target and goal positions, where the agent is pointed,

each of the agent’s leg component positions, the joint strength of each leg component, the

velocity of the agent, and whether or not each joint of the agent is touching the ground.

Table 6.1 shows all of the agent’s observations.
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Table 6.1: Agent’s Observations

Begin of Table

Observation Name Data Type Number of Observations

Orientation Cube Forward Vector3 3

Velocity Goal Vector3 3

Average Velocity Vector3 3

Velocity Goal - Average Velocity Float 1

Agent Distance from Target Float 1

Average Agent Body Velocity Relative to Target Vector3 3

Velocity Goal Relative to Target Vector3 3

Rotation Delta Quaternion 4

Position of Target Relative to Orientation Cube Vector3 3

Goal 1 Position Vector3 3

Goal 2 Position Vector3 3

Direction to Goal 1 Vector3 3

Direction to Goal 2 Vector3 3

Body Touching ground Boolean 1

Leg 1 Femur Touching Ground Boolean 1

Leg 2 Femur Touching Ground Boolean 1

Leg 3 Femur Touching Ground Boolean 1

Leg 4 Femur Touching Ground Boolean 1

Leg 5 Femur Touching Ground Boolean 1

Leg 6 Femur Touching Ground Boolean 1

Leg 1 Tibia Touching Ground Boolean 1

Leg 2 Tibia Touching Ground Boolean 1

Leg 3 Tibia Touching Ground Boolean 1

Leg 4 Tibia Touching Ground Boolean 1

Leg 5 Tibia Touching Ground Boolean 1
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Observation Name Data Type Number of Observations

Leg 6 Tibia Touching Ground Boolean 1

Leg 1 Tarsus Touching Ground Boolean 1

Leg 2 Tarsus Touching Ground Boolean 1

Leg 3 Tarsus Touching Ground Boolean 1

Leg 4 Tarsus Touching Ground Boolean 1

Leg 5 Tarsus Touching Ground Boolean 1

Leg 6 Tarsus Touching Ground Boolean 1

Leg 1 Femur Joint Strength float 1

Leg 2 Femur Joint Strength float 1

Leg 3 Femur Joint Strength float 1

Leg 4 Femur Joint Strength float 1

Leg 5 Femur Joint Strength float 1

Leg 6 Femur Joint Strength float 1

Leg 1 Tibia Joint Strength float 1

Leg 2 Tibia Joint Strength float 1

Leg 3 Tibia Joint Strength float 1

Leg 4 Tibia Joint Strength float 1

Leg 5 Tibia Joint Strength float 1

Leg 6 Tibia Joint Strength float 1

Leg 1 Tarsus Joint Strength float 1

Leg 2 Tarsus Joint Strength float 1

Leg 3 Tarsus Joint Strength float 1

Leg 4 Tarsus Joint Strength float 1

Leg 5 Tarsus Joint Strength float 1

Leg 6 Tarsus Joint Strength float 1

End of Table
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Each agent has its own orientation cube which will rotate so that it points towards the

target at all times. This gets updated every frame in the code. The algorithm as shown in

Figure 6.6 takes the difference of vectors of the target’s position and the orientation cube’s

position. After using a quaternion it uses that difference of the vectors to know how to

rotate the orientation cube and set the rotation and position. That rotation is the new

rotation from the quaternion and the position is the position of the orientation cube.

Fig. 6.6: Orientation Cube Controller [4]

6.3.2 Agent Actions

The agents uses continuous actions which are floating point values in an array that

range from -1 to +1. These continuous actions are used to set the joint rotations as shown

in Figure 6.7 and setting the joint strength as shown in Figure 6.8.

Set Joint Target Rotation

The algorithm for setting the joint target rotation as shown in Figure 6.9 takes in all of

the continuous actions as either x, y, or z. Since each leg joint only moves in one direction

on the axes as shown in Figure 6.7 each leg joint has only one continuous action, y for the

femur and z for the tibia and tarsus, the other axes are set to zero. The Lerp function

for Mathf is structured as Lerp(float a, float b, float t) where a is the start value, b is the



33

Fig. 6.7: Setting Joint Rotation

end value, and t is the interpolation value between the start value and end value where

0 ≥ t ≤ 1. The purpose of

x = (x+ 1f) ∗ 0.5f ;

y = (y + 1f) ∗ 0.5f ;

z = (z + 1f) ∗ 0.5f ;

is so that whether the continuous action value be between -1 and 1 we will always have

0 ≥ t ≤ 1. With that we get xRot, yRot, or zRot as the interpolated float between both the

low angular limit and high angular limit for x or negative angular limit and angular limit

for y and z. The angular limit for the femur is 60 degrees for the front and back legs and

30 degrees for the middle legs, with 55 degrees for the tibia, and 90 degrees for the tarsus.

The angular limit is essentially half of the DOF for each leg component. The joint target

rotation which is a quaternion takes in xRot, yRot, or zRot which are Euler angles so it is

necessary to convert them to a quaternion.
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Fig. 6.8: Setting Joint Strength

Fig. 6.9: Setting Joint Rotation Algorithm [4]

Set Joint Strength

The algorithm for setting the joint strength as shown in Figure 6.8 takes in the contin-

uous action, called strength, and multiplies it with the maxJointForceLimit, which for this

training scenario is 20000. It then creates a new JointDrive object which set position spring
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and position damper based off of maxJointSpring which is 40000 and jointDampen which

is 5000. It then sets the slerpDrive, which is how the joints rotation will behave around all

local axes, to this new object. The only difference between this new object and prior ones

is the maximumForce of the joint which is calculated using the continuous action.

Fig. 6.10: Setting Joint Strength Algorithm [4]

6.4 Reward Function

To help the agents achieve their goal a reward structure was implemented. Since the

multiple agent nature of this training MA-POCA was used as the RL algorithm which will

also be useful if an agent need to be reset. There are three parts of the reward function

that was implemented.

First, if any body parts of the agent touch the ground except for the tarsus the team

will receive a reward of -1. This is to keep the agent from falling down. If an agent receives

this reward this will cause the agent to reset back to its starting position. Only the agent

that was responsible will reset and will not affect other agents in play other than effecting

the team reward.

Second, the agent will receive a positive reward for looking at the target and if velocity

of the agent is matching the velocity goal. The actual velocity is calculated by taking the

average velocity of all of the body parts that have a ridged body component which are the

body, femur, tibia, and tarsus of all the legs, 19 in total. It also has a velocity goal which is
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calculated by multiplying the way the orientation cube is pointing and the target walking

speed. We calculate a match speed reward as seen in Figure 6.11 which is how the actual

velocity is matched with the velocity goal. Here we get velDeltaMagnitude by getting the

distance between our actual velocity vector and velocity goal vector. We use Mathf.Clamp

to be sure the distance is between 0 and our target walking speed. By raising our values to

the power twice, we return anywhere from zero to one. As our actual velocity and velocity

goal are closer together we return a one and a zero as they get farther apart.

Fig. 6.11: Matching Velocity Reward [4]

We also calculate a look at target reward by taking the dot product of the orientation

cube and the agents forward body position. We then add one to that value so to be sure

that we have a positive value and then multiply it by 0.5. We then reward the team by

multiplying the match speed reward with the look at target reward. This reward will always

be between a zero or one based off of what was previously was mentioned.

Lastly, if the target collides with one of the goals the team will receive a +100 which

is the highest reward possible signifying to the agents that this is the end goal and most

important priority.
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CHAPTER 7

RESULTS

For the research, multiple training sessions were run with different RL algorithms and

different target weights. Each training session was run for 30 million steps to give the agents

sufficient time to learn and to start to converge on a solution.

As shown in Figure 7.1 all training sessions were run with six training environments

running simultaneously to speed up training. Each training environment had two hexapod

agents with the goal to push the target to a goal, the only difference between the training

sessions was the weight of the target and which algorithm was used.
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Fig. 7.1: Training Session with Six Training Environments

7.1 MA-POCA and PPO

The training sessions for the MA-POCA RL algorithm the reward structure was kept

the same as before mentioned under the Methods chapter. For the training sessions for

PPO, the reward function had to be modified. It has the same values for rewards as the

MA-POCA, however the rewards are not shared as a team but rather given to an agent

individually.
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In all of the resulting graphs for the training sessions, the MA-POCA results are shown

by the group cumulative reward and the PPO results are shown by the mean reward of all

of the agents individually. The rewards for both MA-POCA and PPO are the numbers

given to the team of agents or individual agents from the reward function which is shown

on the y-axis. The steps, which is how long the agents ran for is on the x-axis.

7.1.1 10 kg Target

For the training session for the 10 kg target it was possible, although difficult, for one

agent to push the target by itself. The results for the 10 kg target are shown in Figure 7.2.

As seen for this target weight, the PPO algorithm was able to converge faster and achieve

an overall higher average reward than MA-POCA.

Fig. 7.2: MA-POCA and PPO 10 kg Target Results
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7.1.2 15 & 20 kg Targets

As show in Figures 7.3 and 7.4 the training sessions with the 15 kg and 20 kg targets

the results were very similar to the 10 kg with the PPO achieving a much higher reward

than the MA-POCA. For these training session the target was too heavy for just one agent

to push it and required the both agents to collaboratively push the target to a goal for

success. The results show a slightly better reward for the 20 kg target scenario but that is

believed to be a result of the randomness in the algorithms or a an error within the standard

deviation. We suppose that if the training scenarios were run indefinitely we would expect

the 15 kg target scenario to have a higher group cumulative reward but not by a significant

amount.

Fig. 7.3: MA-POCA and PPO 15 kg Target Results
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Fig. 7.4: MA-POCA and PPO 20 kg Target Results
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CHAPTER 8

CONCLUSION

Through the research are able to learn many lessons and observations. First, we learn

that the agents were given a reward to go towards the center of the target, this causes

issues with the agents as they would trip over each other. This causes the agents to receive

a negative reward and would overall discourage collaboration. Another thing we notice

is at times one agent is pushing the other agent while that agent is pushing on the goal.

Although this may be collaborative in nature it is not the most efficient way to push the

target and could cause the agent getting pushed to fall over. Lastly we expected better

success with the MA-POCA results as the algorithm is designed with agents collaborating.

However where MA-POCA excels is with agents leaving and coming during training which

was not the case in the training that was done. The PPO algorithm excels in handling

complex high dimensional action spaces, the agents were able to learn how to walk better

than the MA-POCA algorithm thus achieving better overall results.

In this work we address the problem of developing autonomous systems capable of

exhibiting collaborative behaviours. To do this we implemented hexapedal ant-like robots

in a RL simulation where we simulated collaborative task completion using multi-agent

system. We discussed two RL algorithms MA-POCA and PPO that are commonly used in

MARL. We ran simulation test on these two algorithms and discussed the results that we

found.
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CHAPTER 9

FUTURE WORK

In this work we proved that collaborative task completion is possible through RL.

Although we were able to train simulated hexapod robots to collaboratively push a target

to a goal there is still work to be done. The training environment goal placement was

simplified and structured so that it did not matter if the agents were pushing the target

either positively or negatively on the y axis as it was always towards a goal. Future work

could only have one goal and give the agents rewards for pushing the target toward that

goal. Future work could implement rather than agents going toward the center of the target

they could go for any part of the target. This would fix the problem where the agents were

too close to each other while pushing. The research would also be improved if the agents

were able to grip the target with their claws allowing pulling and pushing motions. A

significant improvement to the research would be refining the reward structure by adding

more rewards or tweaking reward values to help the agents observe the environment better

and make better decisions.
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