Achieving Global Awareness via Advanced Remote Sensing Techniques on 3U CubeSats

Dr Karin Viergever, Ecometrica Ltd
Dr Andy Vick and Dr Ian Bryson, UK Astronomy Technology Centre (STFC)
Craig Clark and Steve Greenland, Clyde Space Limited
A need for affordable data is stimulating innovation.
How can we improve on environmental monitoring within financial limits
Ninja imaging...

- This conceptual sequence evoked further development of imaging concepts within the UK for CubeSat platforms...
Deployable mirror concepts

- Work with the UK Astronomy Technology Centre established feasibility of photon enhancement using deployable mirror systems
- Defines ROM ADCS imaging concept & specification
Resizing the aperture

2.1m resolution
(10 cm aperture at 500 nm wavelength and 350 km altitude)

0.7 m resolution
(30 cm aperture at 500 nm wavelength and 350 km altitude)
Derived ADCS concept

• 3-axis reaction wheel based control
• Sun and Earth sensing attitude knowledge

CRUISE MODE
1. Maintain off-set nadir pointing +/- 30 deg
2. 2 sigma 0.1 deg pointing knowledge accuracy
3. Periodic desaturation of wheels (> 15 orbits worst case)

IMAGING MODE
1. 30 s slow slew about pitch axis to facilitate TDI +/- 20 deg, c. 0.6 deg.s-1
2. Stability driven over pointing knowledge
3. Deactivation of ADCS actuation during imaging (70 x TDI period)
Towards fine pointing @ CSL

- Magnetorquer desaturation
 - Current CSL product
- ADCS motherboard
 - UKube-1 heritage
- Space-grade GPS
 - UKube-1 payload
- Horizon sensing
 - 3rd party off-the-shelf
- Fine sun tracking
 - Coarse sensor iteration
- Reaction wheels
 - Smallsat evolution
Other required platform improvements
Reference app: Wildfires

- Affects 30% of the global land surface
- Majority 30°S and 20°N
- Peaks 1-4 pm local time
- Imaging
 - 4 and 11 µm typical IR
 - Low res visible imager
 - onboard fire detection algorithms
End user needs

• Detection & geolocation
• Fire intensity
• Damage assessment
• Fire front evolution
Spatial vs temporal

<table>
<thead>
<tr>
<th>Need</th>
<th>Spatial</th>
<th>Temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection & geolocation</td>
<td>High</td>
<td>V High</td>
</tr>
<tr>
<td>Fire intensity</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Damage assessment</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Fire front evolution</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

• Given the significant cost for a full high spatial high temporal resolution constellation
 – What can be achieved by supplementing current capability with CubeSats?
Regions of interest
3U Medium Resolution Optics

- Payload design for the 3U CubeSat mission platform would use an uncooled dual-band Medium Wave / Long Wave InfraRed detector with optics.
Adhoc constellation

• Lower cost to orbit solution
• Evaluated 3-4 satellites in 4-5 planes with orbit parameters distributed based on likely future launches
• Parameter dependent but approximately 80:20 rule against Walker constellation
Real time links

• Typical RT needs
 – Detection alerts
 – RT firefront evolution

• Supplement to
 – End user transmissions (handheld radio)
 – Data dump over ground station
Further work

- Ongoing ADCS developments at Clyde Space
- Payload prototyping for subsystem characterisation using identified OTS sensors
- Continuing crossover capability with existing in-orbit capability
 - Synergy between early detection, and monitoring of fire front evolution with higher resolution small satellites (e.g. ESA / DLR FireBIRD concept)
- Developing framework agreements for end users, and refinement of the cost models c. 1.4 MGBP.yr-1
The goal: ‘LIVE’ Google Earth

• ‘Live maps’ will be the next evolution of online satellite EO images.
• To do this needs constellations of imaging spacecraft.
• CubeSats can enable this:
 – Starting with medium resolution imagery.
 – Deployable optics could provide hi-res imagery in 2-3 year timeframe.
 – (also has interesting military possibilities)
questions?

www.clyde-space.com
facebook.com/clydespace
twitter.com/clydespace
Linkedin group: CubeSats