10-27-2003

Measurement of Conductivity and Charge Storage in Insulators Related to Spacecraft Charging

A. R. Frederickson
California Institute of Technology

JR Dennison
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_conf

Part of the Condensed Matter Physics Commons

Recommended Citation
https://digitalcommons.usu.edu/mp_conf/30

This Presentation is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Conference Proceedings by an authorized administrator of DigitalCommons@USU. For more information, please contact rebecca.nelson@usu.edu.
Measurement of Conductivity and Charge Storage in Insulators Related to Spacecraft Charging

A. R. Frederickson, Caltech Jet Propulsion Laboratory, Pasadena, CA, USA
J. R. Dennison, Department of Physics, Utah State University, Logan, UT, USA

Paper G3
2003 IEEE Nuclear and Space Radiation Effects Conference
Monterey, CA, USA
ASTM and IEC Conductivity Test Method

\[V = \int_{0}^{a} \vec{E} \cdot d\vec{x} \]

\[\oint \vec{D} \cdot d\vec{s} = Q \]

\[\vec{D} = \sigma \vec{x} = \varepsilon_0 \vec{E} + \vec{P} \]

\[\vec{J}_i = \frac{d}{dt} (\sigma \vec{x}) = \frac{d}{dt} (\varepsilon_0 \vec{E} + \vec{P}) = \frac{d}{dt} \vec{P}. \]

Current consists of charge injected at electrodes and time-dependent polarization.
Alternative Method: Surface Voltage Measurement

\[V = V_0 \exp \left(\frac{-t}{\tau}\right) \]

\[\tau = RC = \rho \varepsilon \]

\[\rho = \text{resistivity} \]
For measurements on same sample of polyimide

\[\rho = 1 \times 10^{16} \text{ (ohm-cm)} \quad \rho > 5 \times 10^{20} \]
A Typical Surface Voltage Measurement

Polyimide Surface Voltage

Days Since First Charge Established

(negative) Volts on Surface

LaRC-SI-001
Kapton-001
The Spacecraft Charging Issues

- Polyimides, Mylar, Circuit Board, Teflon, Glass and etc. store charge >>longer than ASTM indicates.
- Charge accumulates from many orbits. How many volts are developed?
- What are the real mechanisms of charge storage and loss?
- How do we qualify a material for space flight?
- What are the proper test procedures?
Improved Measurement Capability

Electrostatic Voltmeter Dies in This Environment
Some Measurement Features
Sample Measurements Chamber
Surface Voltage Probe and 5-sample Carousel
Sample Capacitance Measurement
Typical Capacitance Data

Open Mount vs Closed Mount

Electron Beam Charging
Open Mount Only
Electron Beam Charging Physics

\[\text{Div } D = Q \quad D = \varepsilon E \]
Elementary Conductivity Physics

Diagram:

- Electron density (se^-)
- Drift left: \(\vec{E}^+ \)
- Drift right: \(\vec{E}^- \)
- Electron range

Energy Levels:

- \(E_C \) - Conduction Band
- \(E_v \) - Valence Band
- \(E_f \) - Fermi Level

Processes:

- Visible light empties these traps
- UV light empties these traps
- UV light, X-ray, keV e^- empty these filled states
Conduction Physics After Irradiation
Evolution of Conduction During Irradiation

Time = 0, e^- beam turned on...

Time = 1

Time = 2

Time = 3
Evolution of Conduction, continued

Time = 4

Thermal Emission

Tunneling

e⁻ range

Time = 5

Thermal Emission

Tunneling

e⁻ range
Emission of Electrons from Floating Surface of Sample

Electrons on Sensor Plate

Electrons, nanoCoulombs

Minutes
CONCLUSIONS

• New apparatus for measuring charge storage and resistivity has been designed and proven.
• Charge Storage measurements superior to ASTM
• Can monitor electron thermal emission from traps
• Monitor high-field tunneling currents from traps
• Monitor photon-assisted (lamp) conductivity
• In-situ comparison of multiple samples
• In-Situ characterization of pulsed discharges
• Electron and/or Ion Charging
• Measure sample capacitance or dielectric constant