The Ability of a Small Satellite Constellation to Tip and Cue Other Commercial Assets

Becky Cudzilo - Surrey Satellite US, LLC
K.C. Foley - GeoEye, Inc.
Chandler Smith - COM DEV USA, LLC, US Distributor for exactEarth©
Table of Contents

- Overview of Paper
- Technical Satellite Background
- Simple Process Flow
- Orbits
- Marine Protected Areas Scenario #1
- Environmental Safety Violation Scenario #2
- Reporting
- Users
- Summary
Overview of Paper

– Utilize small satellites to tip-off or cue larger EO satellites.
 – Automated Identification System (AIS) small sat
 – Synthetic Aperture Radar (SAR) small sat
 – EO satellites GeoEye-1 and IKONOS

– Address a specific case of Maritime Domain Awareness (MDA).

– Monitor ship activities over large areas that Coast Guard or other vessels can not currently cover.

– Look at both routine and ad hoc global satellite coverage of high-interest areas.
Technical Background

• Utilize existing and under construction assets

• exactEarth exactAIS™
 – Payloads on 2 SpaceQuest built satellites, ResourceSat-2
 – Launch of payload SSTL-built satellite July 2012
 – 4600km Field-Of-View
 – Unparalleled rate of detection: 2,171 ships in 9 min. detection rate of 241 ships per minute.

• Surrey NovaSAR system
 – S-band 750km swath 30m resolution Maritime mode
 – Launch in 2014
 – exactAIS™ payload to fly on NovaSAR

• GeoEye GE-1 and IKONOS
 – IK 11km swath and a 0.82m pan resolution
 – GE-1 15.2km swath and a 0.41 pan resolution
Simple Process Flow

- **Identify Area of Interest (AOI)**
 - Due to large amount of continuous data acquired, data over AOI should already exist in exactEarth© or acquired quickly

- **SAR Collection acquired**
 - SAR and AIS fused to facilitate vessel analysis and detection

- **Tip off EO for projected location of vessel**
 - Analyze EO imagery to characterize the vessel

- **Generate report using details of AIS, SAR and EO vessel imagery chip.**
Orbits

• To maximize data correlation, the satellites need near-coincident coverage of shipping lanes/open seas.
• AIS, GE-1 and IK already in 98° sun synch orbits
• SAR orbit options:
 • 98° sun synchronous orbit or ~58° inclined orbit
 • Dawn-Dusk or 10:30 am LT
• Simulation done to ensure orbits provide coincident coverage of the shipping lanes.
• In the chosen 98° sun synchronous orbit, the SAR satellite would be common with the GeoEye satellites ensuring maximum tip-off ability.
Marine Protected Areas Scenario #1

- MPA utilized is the Tarium Niryutait Marine Protected Area in the Canadian Arctic on the Beaufort Sea coast.
 - MPAs are protected from fishing and other activities yet cannot be adequately monitored well using ground based assets for violations.
- AIS data provides warning of vessel approaching MPA with position, speed and course direction.
- Positional Data projected forward in time for SAR detection.
Marine Protected Areas Scenario #1
(continued)

• SAR is acquired and merged with the AIS data to locate and identify the vessel.

• Using vessel-specific details the appropriate estimate of movement and precise EO tasking required is created.

• EO satellite is tasked and images the questionable vessel to characterize and identify the vessel.

• Total scenario time was less than 12 hours from when the vessel was first detected.
Environmental Safety Violation Scenario #2

• The AIS detects a “suspicious” vessel in port which has been known to practice poor maintenance or has been previously fined for leaking oil in the shipping lanes.

• The vessel is tagged as a known violator.

• 24 hours later, the AIS detects the vessel movement from the port.

• SAR satellite is cued and images the vessel in question.

• Analyzed SAR Data is merged with AIS data.
Environmental Safety Violation Scenario #2 (continued)

- It can be seen on the SAR image that a large oil slick is forming behind the vessel in question.

- EO cued and image taken to confirm the oil leakage.
- The vessel is identified and fined.
- The oil slick SAR information can be used as input to models predicting the spill movement and an oil spill response can be formulated and implemented.
Reporting

• Providing Watch Floor or Operation Center reporting would get data to the right people at the right time.
• This would shorten timelines for tactical responses of detected non-broadcasting vessels, vessels with violations and trespassing while it was occurring.
• The report could contain the most important data.
 • Vessel ID or lack thereof
 • Vessel imagery chip
 • Threat summary
 • See sample reports in more detail in paper
Users

- A consolidated report would be used primarily by the Maritime Safety Agencies, Coast Guard or Navies of national governments.
- Sharable reporting with State, Local, Tribal, Native, Aboriginal entities, Coalition partners, NGOs and other international entities.
- Archive in a Data Warehouse
 - Report
 - Raw full res imagery
 - AIS Vessel tracks
 - USG and Industry standards
 - Web services
 - MDA Common Operating Infrastructure (COI) data sharing vocabulary
Summary

• The timeliness and accuracy of commercial satellites can be harnessed and cued to support the MDA mission.

• By using a constellation of AIS, SAR and EO satellites in the Maritime Domain Awareness arena violations and other Maritime activities can be identified and made available to a user community.

• Data Warehouse using standards for services to deliver and discover the data along with a COI vocabulary would provide a historical archive.

• This leverages existing capabilities such as exactEarth’s AIS and GeoEye’s EO satellites in concert with the new NovaSAR satellite to better meet user timelines and Maritime needs.
Thank You

Becky Cudzilo
Surrey Satellite US, LLC
8310 S. Valley Hwy Third Floor
Englewood, CO 80112
720-256-2595
BCudzilo@sst-us.com

K.C. Foley
GeoEye, Inc.
12076 Grant Street
Thornton, CO 80241
303-254-2025
Foley.KC@geoeye.com

Chandler Smith
COM DEV USA, LLC, US Distributor for exactEarth©
2333 Utah Avenue
El Segundo, CA
424-456-8005
Chan.Smith@comdev-usa.com