The Role of the Dispersion Parameter in Electrical Properties of Highly Disordered Insulating Materials

Zachary Gibson
Utah State University
The Role of the Dispersion Parameter in Electrical Properties of Highly Disordered Insulating Materials

Zack Gibson
Air Force Research Lab, Albuquerque
October 29th, 2019
Outline

• Motivation
• Conduction in Crystalline Solids
• Localization
 • Defects
• Conduction in Disordered Solids
• Modeling of Charge Transport in Disordered Solids
 • Transients
 • Steady State
• The Dispersion Parameter
 • Equations and physical interpretation
 • Dispersive to normal transport transitions
• Conclusions
• Future work
Why?

• Connect microscopic processes to macroscopic behavior
• Explain anomalous/dispersive behavior
• Theory has applications from spacecraft charging to HVDC cable insulation
• Defines many different material properties and measurements characteristics

\[\alpha(T) = \frac{kT}{E_c} = \frac{T}{T_c} \quad \alpha(E) = \frac{q\alpha E}{2kT_c} \]

(Zallen, 1983)
Understanding Conduction - Crystalline

- Perfect periodic structure (long-range order)

Schrödinger’s Equation

\[\frac{-\hbar^2}{2m} \nabla^2 \psi(r) + V(r)\psi(r) = E\psi(r) \]

Bloch Functions

\[\psi_k(r) = u_k(r)e^{i\mathbf{k}\cdot\mathbf{r}} \]
Understanding Conduction - Amorphous

Amorphous solids exhibit
- No long-range order
- Short-range order
- Atoms have equilibrium point

(Zallen, 1983)
Understanding Conduction - Localization

- Extended state wavefunction

\[\psi_k(t) = u_k(r)e^{ik \cdot r} \]

- Localized wavefunction

\[\psi \sim e^{-ar} \]

(Zallen, 1983)
Understanding Conduction - Localization

- Metal-insulator transitions with added:
 - Spatial separation (Mott transition)
 - Energetic disorder (Anderson Transition)
- Extended state to localized transition

<table>
<thead>
<tr>
<th>Transition</th>
<th>Metal side of Transition</th>
<th>Insulator side of Transition</th>
<th>Characteristic Energies</th>
<th>Change at the $M \rightarrow I$ Transition</th>
<th>Criterion for Localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloch</td>
<td>Extended</td>
<td>Extended</td>
<td>Bandwidth B</td>
<td>Partly filled bands \rightarrow all bands filled or empty</td>
<td>—</td>
</tr>
<tr>
<td>Mott</td>
<td>Extended</td>
<td>Localized</td>
<td>Electron-electron (ϵ^{2}/r_{p}) correlation energy U</td>
<td>Correlation-induced localization</td>
<td>$U > B$</td>
</tr>
<tr>
<td>Anderson</td>
<td>Extended</td>
<td>Localized</td>
<td>Width W of the distribution of random site energies</td>
<td>Disorder-induced localization</td>
<td>$W > B$</td>
</tr>
</tbody>
</table>

(Zallen, 1983)
Defects

Types of Defects:
- Point
- Line (1D)
- Planar (2D)
- Volume (3D)

Doped Semi-conductors

Conduction

Valence

N-type

P-type

Vacancy

Substitutional (larger)

Frenkel Pair

Substitutional (smaller)

Interstitial
Understanding Conducting - Amorphous

Conduction mechanisms in amorphous insulators:

- Multiple Trapping and Thermally Assisted Hopping
- Variable Range Hopping and Radiation Induced Conductivity
- Percolation

(Zallen, 1983; Sim 2013)
Transient Anomalous Phenomena - Photoconductivity

- Random Walks
 - Spatially disordered lattice
 - Discrete hopping times
 - Requires ensemble averages of all possible spatial disorder

- Continuous Time Random Walks
 - Characterized by hopping-time distribution function
 - Walker moves on periodic ordered lattice but probability of hopping is given as a function of time
 - Disorder is contained in distribution function

(Gillespie, 2017; Zallen, 1983)
Transient Anomalous Phenomena - Photoconductivity

\[I(t) \sim \begin{cases} \frac{1}{\Gamma(\alpha)t^{1-\alpha}} & t \ll t_{\text{transit}} \\ \frac{1}{-\Gamma(-\alpha)t^{1+\alpha}} & t \gg t_{\text{transit}} \end{cases} \]

Quick check: \(-(1 - \alpha) - (1 + \alpha) = -2\)

\[\psi(t) \sim e^{-\tau} \]

\[\psi(t) \sim t^{-(1+\alpha)} \]

(Zallen, 1983; Scher, 1975)
Transient Anomalous Phenomena – Permittivity and Conductivity

• Cole-Cole diagrams depict semi-circles or circular arcs
• Introduces the dispersion parameter through a geometrical argument
• Under DC conditions this gives a current of

\[
I(t) = \begin{cases}
\frac{\varepsilon_0 - \varepsilon_{\infty}}{\tau_0} \frac{1}{\Gamma(\alpha)} \left(\frac{t}{\tau_0} \right)^{-(1-\alpha)} & t \ll t_{\text{transit}} \\
\frac{\varepsilon_0 - \varepsilon_{\infty}}{\tau_0} \frac{(-1)}{\Gamma(\alpha)} \left(\frac{t}{\tau_0} \right)^{-(1+\alpha)} & t \gg t_{\text{transit}}
\end{cases}
\]

\[
\varepsilon^* - \varepsilon_{\infty} = \frac{(\varepsilon_0 - \varepsilon_{\infty})}{(1 + i\omega\tau_0)}
\]

\[
\varepsilon^* - \varepsilon_{\infty} = \frac{(\varepsilon_0 - \varepsilon_{\infty})}{[1 + (i\omega\tau_0)^{\alpha}]}
\]

(Cole, 1941)
Transient Anomalous Phenomena – Permittivity and Conductivity

• Transient conductivity in constant voltage conductivity tests exhibit the same behavior as photoconductivity

\[\sigma(t) = \sigma_P \frac{-t}{\tau_P} + \left\{ \sigma_{\text{disp}} t^{-(1-\alpha)} \theta(\tau_{\text{transit}} - t) + \sigma_{\text{trans}} t^{-(1+\alpha)} \theta(t - \tau_{\text{transit}}) \right\} + \sigma_{\text{DC}} \]

(Wood, 2018)
Steady State Phenomena – DC Conductivity

Two regimes:

1. \(T \geq T_c \)
 - Multiple trapping dominates
 - \(\sigma \sim \exp(T^{-1}) \)

2. \(T < T_c \)
 - Variable range hopping dominates
 - \(\sigma \sim \exp(T^{-1/4}) \)

\[\alpha(T) = \frac{T}{T_c} \]

(Dennison, 2008; Brunson, 2007)
Steady State Phenomena – Radiation Induced Conductivity

- Radiation induced conductivity is also defined by the dispersion parameter

\[\sigma_{RIC} = k_{RIC}(T)D^\Delta \]

\[\Delta = \frac{T_c}{T_c + T} = \frac{1}{1 + \frac{T}{T_c}} = \frac{1}{1 + \alpha} \]

(Gillespie, 2013; Tyutnev, 2006)
Anomalous Phenomena – Other

Experiments:
• Charge decay as modeled with a stretched exponential
 \[I_{ph}(t) = I_{ph}(0)e^{-\left(\frac{t}{\tau}\right)^\beta} + \text{constant} \]
 - \(\beta = 1 - \alpha \)
• Surface voltage potential
• Luminescence
• Secondary electron yield

Modeling Approaches:
• Fractional dynamic equations
• Effective medium approach

Fractional Fokker-Planck Equation
\[\frac{\partial P}{\partial t} = \frac{\partial}{\partial x} \left(-\frac{\partial}{\partial x} \frac{F(x)}{m\eta_x} + K_\alpha \frac{\partial^2}{\partial x^2} \right) P(x, t) \]

Fractional Derivative
\[y = \frac{1}{2} \cdot x^2 \]

Fractional Diffusion Equation
\[\frac{\partial}{\partial t} P(x, t) = D_t^{1-\alpha} \frac{\partial^2}{\partial x^2} P(x, t) \]

(Metzler 2004)
Physical Significance of α

Word of warning:

• Difficult to extract due to multitude of underlying factors leading to the same experimental behavior
 • Charge transport depends on parameters that are statistically distributed, leading to broad distributions of event times
 • Small variations \rightarrow broad distributions

“However complicated the form of the transition rates and the details of the molecular charge transfer, it is assumed that these rates depend sensitively on a number of parameters that are statistically distributed. Thus, even rather mild variations of some system parameters ‘map’ onto a broad distribution of transition rates. This mapping is not unique. A number of different parameter dispersions can produce very similar transition rate distributions.”
 (Pfister, 1978)

To obtain a broad dispersion of transit times (or featureless current trace) a carrier must be captured approximately once in a trap whose mean release time $\tau_{r,i}$ is approximately equal to the empirical transit time τ. This is called the critical trap criterion (CTC).
 (Schmidlin 1977)
Density of States - Exponential

- Exponential energetic density of states in mobility gap
- Most commonly used in the literature
- Otherwise Gaussian is considered
 - Math considerably more complex (often numerical)

(Adhikari, 2018)
Physical Significance of α

- **Hopping**
 - CTRW
 - Average site distances
 - Transition rates
- **Multiple trapping**
 - Transport equations
 - Capture and release rates
- **Percolation**
 - Transitions related to critical fractions
 - Monte-Carlo Simulations
- **Thermalization**
 - Physical interpretation of current traces

(Zallen, 1983; Sim, 2013)
Physical Significance of α

- **Hopping**
 - CTRW
 - Average site distances
 - Transition rates
- **Multiple trapping**
 - Transport equations
 - Capture and release rates
- **Percolation**
 - Transitions related to critical fractions
 - Monte-Carlo Simulations
- **Thermalization**
 - Physical interpretation of current traces

(Zallen, 1983; Sim, 2013)
Physical Significance of α

- Hopping
 - CTRW
 - Average site distances
 - Transition rates

- **Multiple trapping**
 - Transport equations
 - Capture and release rates

- Percolation
 - Transitions related to critical fractions
 - Monte-Carlo Simulations

- Thermalization
 - Physical interpretation of current traces

(Zallen, 1983)
Physical Significance of α

- Hopping
 - CTRW
 - Average site distances
 - Transition rates
- Multiple trapping
 - Transport equations
 - Capture and release rates
- Percolation
 - Transitions related to critical fractions
 - Monte-Carlo Simulations
- Thermalization
 - Physical interpretation of current traces
Physical Significance of α

- Hopping
 - CTRW
 - Average site distances
 - Transition rates
- Multiple trapping
 - Transport equations
 - Capture and release rates
- Percolation
 - Transitions related to critical fractions
 - Monte-Carlo Simulations
- **Thermalization**
 - Physical interpretation of current traces

Figure 1 - Distribution of injected electrons in traps after one trapping time, plotted on a linear scale. The zero of energy isetime conduction band mobility edge.

Figure 2 - Distribution of electrons at time t, on a log scale, many trapping times after the injection pulse. In the text the peak in the density at $\epsilon(t) = kT \ln v t$ is treated as being sharp, although in practice it is always rounded.

(Sim, 2013; Tiedje, 1981)
Physical Significance of α - Thermalization

- Dispersive transport occurs during thermalization of charge
- Centroid of charge is located at the demarcation energy
- Demarcation energy equals the equilibrium Fermi level when equilibrium is reached
- If $DE > TE$ then downward hopping dominates
- If $DE < TE$ then VRH-like transport occurs (up hop)
Physical Significance of α – Dispersive to Normal Transport Transition

• Transition occurs at $\alpha = 1$
• Dispersive to normal transport transition occurs at when $T = T_c$
• T_c is temperature at which states are "frozen in"

$$\alpha(T) = \frac{kT}{E_c} = \frac{T}{T_c} \Rightarrow \alpha = 1 \quad T_{\text{Transition}} = T_c$$

Temperature dependence of hole transport PVK and 3Br–PVK. Representative current traces are shown (after Pfister and Griffiths 1978). (Pfister, 1978)
Physical Significance of α – Dispersive to Normal Transport Transition

- Transition occurs at $\alpha = 1$
- Dispersive to normal transport transition occurs at when $E = E_{\text{Transition}}$
- $E_{\text{Transition}}$ denotes onset of electrostatic breakdown

$$\alpha(E) = \frac{qaE}{2kT_c}$$
$$\alpha = 1$$
$$E_{\text{Transition}} = \frac{2kT_c}{qa}$$

$$F_{\text{min}} = \frac{\Delta E}{qa}$$

(Andersen, 2017; Matsui, 2005)
LDPE as an example

- $T_c = 268$ K from $\sigma(T)$
- β-phase transition at $\sim T_c$
- ESD onset and dispersive to normal transport transition at $E \sim 100$ MV/m
- RIC measurements predict $T_c \sim 255$ K

$T_{\text{Transition}} = T_c$

$E_{\text{Transition}} = \frac{2kT_c}{qa}$

(Wood, 2018; Brunson, 2007; McCrum, 1967; Matsui, 2005; Andersen, 2017)
Conclusions

• Dispersion parameter describes many physical phenomena
 • AC and DC conductivity
 • Photoconductivity and radiation induced conductivity
 • Transitions associated with ESD onset, glassy transition temperature, normal
to dispersive transport

• Ratio of thermal or field energy to characteristic energy (width)

• The dispersion parameter is a wonderful tool to understand
 measurements (macroscopic effects)

• For deeper physical understanding (microscopic effects) a detailed
 knowledge of the material must be established first
Future Work

• Link measurements of LDPE in the literature through the dispersion parameter
 • Cole-Cole diagrams of permittivity
 • DC conductivity plots
 • ESD onset and association with dispersive/normal transport transition
 • Temperature dependent conductivity and transition

• Measurements of charge propagation via PEA

• Measurements of temperature dependent conductivity via CVC
Constant Voltage Conductivity Chamber

\[V = I \left(\rho \frac{L}{A} \right) \]

Ohm’s Law

- Voltage
- Sample Area

\[\rho(t) = \frac{V(t) \cdot A}{I(t) \cdot L} \]

- Resistance
- Current
- Sample Thickness

Measurement limit of \(~0.2\) fA at \(~900\) V with \(2\) cm\(^2\) area and \(25\) µm thick sample
DC Conductivity

- Transient conductivity in constant voltage conductivity tests exhibit the same behavior as photoconductivity

\[
\sigma(t) = \sigma_p \frac{-t}{\tau_p} + \left\{ \sigma_{disp} t^{-(1-\alpha)} \theta(\tau_{transit} - t) + \sigma_{trans} t^{-(1+\alpha)} \theta(t - \tau_{transit}) \right\} + \sigma_{DC}
\]

(Wood, 2018)
Previous Resistivity Tests

- Data to the left shows the change in resistivity with temperature previously taken with the CVC chamber.
- The change in resistivity occurs around 270 K:
 - transition from multiple trapping to variable range hopping.
- Current tests are shown as conductivity instead of resistivity having a relationship of
 \[\sigma = \frac{1}{\rho} \]

(Dennison, 2008; Brunson, 2007)
CVC Temperature Runs

Hot Temperature Run

- Temperature steps of ~8 °C were taken from room temperature to ~57 °C and then back down
- Each step was allowed to come close to an equilibrium over several hours

Cold Temperature Run

- Temperature steps again of ~8 °C were taken from room temperature down to ~-12 °C
- These steps had more uncertainty in the conductivity measurements due to instrumentation behavior at cold temperatures as opposed to hot temperatures
Temperature Results

- A change in slope is expected around 270 K
- This may or may not be evident from seeing a small change in slope but more data is needed below the temperature threshold to claim this with any certainty
Conclusions

• CVC measurements of LDPE have been done from ~260-330 K
• This did not show any clear transition from multiple trapping to variable range hopping
• New data is higher quality with better temperature regulation but (for now) over a smaller range

Future Work

• Data is currently being taken again of LDPE using the CVC system at temperatures lower than those shown previously
• This will then be repeated to create a large set of data to fit the model with more accuracy
References