High-Frequency Pulse Electro-Acoustic (PEA) Measurements for Mapping Charge Distribution*

Kristina M. Sorensen,¹ Lee H. Pearson,² JR Dennison,¹ Timothy E. Doyle³ and Kent L. Hartley¹

¹ Physics Department, Utah State University
² Box Elder Innovations, Brigham City, Utah
³ Utah Valley University, Orem, Utah

Abstract

High-frequency pulsed-electro-acoustic (PEA) measurements are a non-destructive method used to investigate internal charge distributions in dielectric materials. This presentation discusses the theory and signal processing of simple PEA experiments and shows results of PEA measurements. PEA experiments involve a thin dielectric positioned between two conducting electrodes. A voltage signal on the two electrodes generates an electric field across the dielectric, which stimulates embedded charge and creates a pressure wave that propagates within the capacitor. A coupled acoustic sensor then measures the ensuing electric pulse response. Spatial distributions of the charge profile are obtained from the resultant pressure waveform. Gaussian filters and other signal processing methods are used to increase the signal-to-noise ratio in this waveform. Estimates of the charge distribution inside the dielectric are extracted from this analysis. Our ultimate objective is to develop high resolution PEA methods to investigate in vacuo charge deposition in thin film polymeric, ceramic, or glass dielectric materials using medium to high energy (~10³ to ~10⁷ eV) electron beams.

*Supported by a Phase I STTR project through the AFRL.