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Why?

• Connect microscopic 
processes to macroscopic 
behavior

• Explain anomalous/dispersive 
behavior

• Theory has applications from 
spacecraft charging to HVDC 
cable insulation 

• Defines many different 
material properties and 
measurements characteristics

(Zallen, 1983)
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Understanding Conduction - Crystalline
• Perfect periodic structure (long-range order)

Bloch Functions 𝜓𝑘 𝑟 = 𝑢𝑘 𝒓 e𝑖𝒌∙𝒓
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Understanding Conduction - Amorphous

Amorphous solids exhibit

• No long-range order

• Short-range order

• Atoms have equilibrium point

(Zallen, 1983)



Understanding Conduction - Localization

• Extended state 
wavefunction

• Localized 
wavefunction

ψ~𝑒−𝑎𝑟

𝜓𝑘 𝑡 = 𝑢𝑘 𝒓 e𝑖𝒌∙𝒓

(Zallen, 1983)



• Metal-insulator 
transitions with 
added:
• Spatial separation 

(Mott transition)

• Energetic disorder 
(Anderson 
Transition)

• Extended state to 
localized transition

Understanding Conduction - Localization

(Zallen, 1983)



Defects
Types of Defects:

• Point 

• Line (1D)

• Planar (2D)

• Volume (3D)
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Understanding Conducting - Amorphous
Conduction mechanisms in amorphous insulators:

Multiple Trapping and 
Thermally Assisted Hopping

Variable Range Hopping and 
Radiation Induced Conductivity Percolation 

(Zallen, 1983; Sim 2013)



• Random Walks 
• Spatially disordered lattice
• Discrete hopping times 
• Requires ensemble averages of all 

possible spatial disorder

• Continuous Time Random Walks 
• Characterized by hopping-time 

distribution function
• Walker moves on periodic ordered 

lattice but probability of hopping is 
given as a function of time

• Disorder is contained in distribution 
function

Transient Anomalous Phenomena -
Photoconductivity

(Gillespie, 2017; Zallen, 1983)



Transient Anomalous Phenomena -
Photoconductivity 𝜓 𝑡 ~𝑒−𝜏 𝜓 𝑡 ~𝑡− 1+𝛼

Transit Time
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Quick check: -(1 - α) - (1 + α) = -2



• Cole-Cole diagrams depict semi-circles or 
circular arcs

• Introduces the dispersion parameter 
through a geometrical argument 

• Under DC conditions this gives a current of

Transient Anomalous Phenomena –
Permittivity and Conductivity 𝜀∗ − 𝜀∞ =
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• Transient conductivity in constant voltage conductivity tests exhibit the 
same behavior as photoconductivity 

Transient Anomalous Phenomena –
Permittivity and Conductivity

𝜎 𝑡 = 𝜎𝑃

−𝑡
𝜏𝑃 + 𝜎𝑑𝑖𝑠𝑝𝑡

− 1−𝛼 𝜃 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 − 𝑡 + 𝜎𝑡𝑟𝑎𝑛𝑠𝑡
− 1+𝛼 𝜃 𝑡 − 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + 𝜎𝐷𝐶 (Wood, 2018)



Steady State Phenomena – DC Conductivity

Two regimes:

• Assuming low applied field

1. T ≥ Tc

• Multiple trapping dominates  

• 𝜎~exp(𝑇−1)

2. T < Tc

• Variable range hopping dominates

• 𝜎~exp(𝑇−1/4)

𝛼 𝑇 =
𝑇

𝑇𝑐

(Dennison, 2008; Brunson, 2007)



• Radiation induced conductivity is also defined by the dispersion 
parameter

Steady State Phenomena – Radiation 
Induced Conductivity
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(Gillespie, 2013; Tyutnev, 2006)



Experiments:

• Charge decay as modeled 
with a stretched 
exponential

• β = 1 – α

• Surface voltage potential 

• Luminescence

• Secondary electron yield

Modeling Approaches:

• Fractional dynamic 
equations

• Effective medium approach

Anomalous Phenomena – Other

𝐼𝑝ℎ 𝑡 = 𝐼𝑝ℎ 0 𝑒
−

𝑡
𝜏

𝛽
+𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Fractional Fokker-Planck Equation

Fractional Diffusion Equation Fractional Derivative

(Metzler 2004)



Physical Significance of α

Word of warning:

• Difficult to extract due to multitude of underlying factors leading to 
the same experimental behavior
• Charge transport depends on parameters that are statistically distributed, 

leading to broad distributions of event times

• Small variations  broad distributions

(Schmidlin 1977)

“However complicated the form of the transition rates and the
details of the molecular charge transfer, it is assumed that these
rates depend sensitively on a number of parameters that are
statistically distributed. Thus, even rather mild variations of some
system parameters ‘map’ onto a broad distribution of transition
rates. This mapping is not unique. A number of different parameter
dispersions can produce very similar transition rate distributions.”

(Pfister, 1978)



Density of States - Exponential

• Exponential energetic density 
of states in mobility gap

• Most commonly used in the 
literature

• Otherwise Gaussian is 
considered
• Math considerably more 

complex (often numerical)

(Adhikari, 2018)



Physical Significance of α

• Hopping 
• CTRW
• Average site distances
• Transition rates

• Multiple trapping
• Transport equations 
• Capture and release rates

• Percolation
• Transitions related to critical 

fractions
• Monte-Carlo Simulations

• Thermalization
• Physical interpretation of 

current traces

(Zallen, 1983; Sim, 2013)
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Physical Significance of α

(Initial, t=0) (At time t)

(Sim, 2013; Tiedje, 1981)
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Physical Significance of α -
Thermalization

• Dispersive transport occurs during 
thermalization of charge

• Centroid of charge is located at the 
demarcation energy

• Demarcation energy equals the equilibrium 
Fermi level when equilibrium is reached

• If DE > TE then downward hopping dominates

• If DE < TE then VRH-like transport occurs (up 
hop)

(Initial, t=0) (At time t)

(Sim, 2013; Tiedje, 1981)



Physical Significance of α – Dispersive to 
Normal Transport Transition

• Transition occurs at α = 1

• Dispersive to normal transport 
transition occurs at when T = Tc

• Tc is temperature at which states are 
“frozen in”

𝑇𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑇𝑐𝛼 𝑇 =
𝑘𝑇

𝐸𝑐
=

𝑇

𝑇𝑐

(Pfister, 1978)

→
𝛼 = 1



Physical Significance of α – Dispersive to 
Normal Transport Transition

• Transition occurs at α = 1

• Dispersive to normal transport 
transition occurs at when E = ETransition

• Etransition denotes onset of electrostatic 
breakdown

𝐸𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =
2𝑘𝑇𝑐
𝑞𝑎

𝛼 𝐸 =
𝑞𝑎𝐸

2𝑘𝑇𝑐

𝐹𝑚𝑖𝑛 =
∆𝐸

𝑞𝑎

(Andersen, 2017; Matsui, 2005)

→
𝛼 = 1



LDPE as an example

• Tc = 268 K from 𝜎(𝑇)

• β-phase transition at ~Tc

• ESD onset and dispersive to normal 
transport transition at E~100 MV/m

• RIC measurements predict Tc~255 K

𝐸𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =
2𝑘𝑇𝑐
qa

𝑇𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑇𝑐

(Wood, 2018; Brunson, 2007; McCrum, 
1967; Matsui, 2005; Andersen, 2017)



Conclusions

• Dispersion parameter describes many physical phenomena 
• AC and DC conductivity

• Photoconductivity and radiation induced conductivity

• Transitions associated with ESD onset, glassy transition temperature, normal 
to dispersive transport 

• Ratio of thermal or field energy to characteristic energy (width)

• The dispersion parameter is a wonderful tool to understand 
measurements (macroscopic effects)

• For deeper physical understanding (microscopic effects) a detailed 
knowledge of the material must be established first



Future Work

• Link measurements of LDPE in the literature through the dispersion 
parameter
• Cole-Cole diagrams of permittivity

• DC conductivity plots

• ESD onset and association with dispersive/normal transport transition

• Temperature dependent conductivity and transition

• Measurements of charge propagation via PEA

• Measurements of temperature dependent conductivity via CVC
• In Progress



Constant Voltage 
Conductivity Chamber

𝑉 = 𝐼(𝜌
𝐿

𝐴
) 𝜌(𝑡) =

𝑉(𝑡) ∗ 𝐴

𝐼(𝑡) ∗ 𝐿
𝜎 =

1

𝜌

Ohm’s Law

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑎𝑚𝑝𝑙𝑒 𝐴𝑟𝑒𝑎

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑎𝑚𝑝𝑙𝑒 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠Measurement limit of ~0.2 fA at ~900 V with 2 cm2

area and 25 µm thick sample



• Transient conductivity in constant voltage conductivity tests exhibit the 
same behavior as photoconductivity 

DC Conductivity

𝜎 𝑡 = 𝜎𝑃

−𝑡
𝜏𝑃 + 𝜎𝑑𝑖𝑠𝑝𝑡

− 1−𝛼 𝜃 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 − 𝑡 + 𝜎𝑡𝑟𝑎𝑛𝑠𝑡
− 1+𝛼 𝜃 𝑡 − 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + 𝜎𝐷𝐶

(Wood, 2018)



Previous Resistivity Tests

• Data to the left shows the change in 
resistivity with temperature 
previously taken with the CVC 
chamber

• The change in resistivity occurs 
around 270 K 

• transition from multiple trapping to 
variable range hopping

• Current tests are shown as 
conductivity instead of resistivity 
having a relationship of 

𝜎 =
1

𝜌

(Dennison, 2008; Brunson, 2007)



CVC Temperature Runs
Hot Temperature Run

Cold Temperature Run

• Temperature steps of ~8 ⁰C were taken from room 
temperature to ~57 ⁰C and then back down

• Each step was allowed to come close to an equilibrium 
over several hours

• Temperature steps again of ~8 ⁰C were taken from 
room temperature down to ~-12 ⁰C

• These steps had more uncertainty in the 
conductivity measurements due to 
instrumentation behavior at cold temperatures as 
opposed to hot temperatures



Temperature Results

• A change in slope is expected around 270 K 
• This may or may not be evident from seeing a small change in slope but more data is needed below the 

temperature threshold to claim this with any certainty



Future Work

• Data is currently being taken again of LDPE using the CVC system at temperatures lower than 
those shown previously

• This will then be repeated to create a large set of data to fit the model with more accuracy

• CVC measurements of LDPE have been done from ~260-330 K 

• This did not show any clear transition from multiple trapping to variable range 
hopping

• New data is higher quality with better temperature regulation but (for now) over a 
smaller range

Conclusions
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