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* Defects

e Conduction in Disordered Solids
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* The Dispersion Parameter
* Equations and physical interpretation
* Dispersive to normal transport transitions
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Why? i

Connect microscopic
processes to macroscopic
behavior

Explain anomalous/dispersive
behavior

Theory has applications from
spacecraft charging to HVDC
cable insulation

Defines many different
material properties and
measurements characteristics
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Understanding Conduction - Crystalline

* Perfect periodic structure (long-range order)

— I .
Schrédinger’s Equation py 72Y(r) + Va)yY(@) = Ep(r) —  Bloch Functions 1, (1) = w (r)et*”

Vacant

Occupied

Conductor Semi-conductor Insulator




Understanding Conduction - Amorphous

(a) CRYSTAL (b)

GLASS (c) GAS

Amorphous solids exhibit

* No long-range order

e Short-range order

* Atoms have equilibrium point
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Understanding Conduction - Localization

 Extended state
wavefunction

e Localized
wavefunction
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Understanding Conduction - Localization

 Metal-insulator
transitions with
added:

e Spatial separation
(Mott transition)

* Energetic disorder
(Anderson
Transition)

 Extended state to
localized transition

Electron Wave Functions

ANDERSON
TRANSITION

B<'W

Change at the
Metal side  Insulator side Characteristic M- T Criterion for
Transition of Transition  of Transition Energies Transition  Localization
Bloch Extended Extended Bandwidth B8 Partly filled —
bands — all
bands filled or
empty
Mott Extended Localized Electron- Correlation- U>Rh
electron (e2/r,;,-) induced
correlation localization
energy I/
Anderson Extended Locatized Width W of Disorder- W>B8
the distribu- induced
tion of Jocalization
random site
energies
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Defects Vacaney
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Understanding Conducting - Amorphous

Conduction mechanisms in amorphous insulators:

Multiple Trapping and Variable Range Hopping and .
Thermally Assisted Hopping Radiation Indlu;ed Conductivity Percolation
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Transient Anomalous Phenomena - |
Photoconductivity wazss | [ :

A . : -
. . 1

. Random Wa_Iks | : , L',_®J L ,. 2

 Spatially disordered lattice
* Discrete hopping times

* Requires ensemble averages of all :
possible spatial disorder | =

e Continuous Time Random Walks

* Characterized by hopping-time
distribution function

* Walker moves on periodic ordered
lattice but probability of hopping is
given as a function of time

« Disorder is contained in distribution -t R!
function

(Gillespie, 2017; Zallen, 1983)
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Transient Anomalous Phenomena -

Photoconductivity
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Transient Anomalous Phenomena —
Permittivity and Conductivity (e

* Cole-Cole diagrams depict semi-circles or
circular arcs

* Introduces the dispersion parameter
through a geometrical argument

e Under DC conditions this gives a current of

g
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Transient Anomalous Phenomena —
Permittivity and Conductivity

* Transient conductivity in constant voltage conductivity tests exhibit the

same behavior as photoconductivity
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Steady State Phenomena — DC Conductivity

Two regimes: a(T) =T1

c

e Assuming low applied field

Temperature Dependence of Resisitivty with Model Fits

1 T > T 50 l I I I I I
* — °C —
* Multiple trapping dominates 2o g
+ g~exp(T~1) -
2. T<TC ‘; 14 g
* Variable range hopping dominates = 2
2 ar .
» o~exp(T~"%) E
4 w- -
5
38 | | | | ] |
"230 240 250 260 270 280 290 300

Temperature (K)
(Dennison, 2008; Brunson, 2007)
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PRIC (ohm

Steady State Phenomena — Radiation
Induced Conductivity

* Radiation induced conductivity is also defined by the dispersion
parameter
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Anomalous Phenome

na — Other

IR Photocurrent Decay in LDPE

Coefficient values + one standard deviation
] =095+ 0
tau =0.33969 + 0.0039
beta =0.8559+ 00126

C =55.414 = 0.362

— LDPE (Wintle 1977)
— Stretched Exponential Fit (Harea 2003

Experiments: - o]
* Charge decay as modeled £ e
with a stretched =
exponential _; 2 70+
pn(£) = Ly (0)e (&) +eonstant :

*B=1-a

 Surface voltage potential
* Luminescence

e Secondary electron yield
Modeling Approaches:

* Fractional dynamic
equations

 Effective medium approach

0
— P(
ot

ot

_ | —a
— 0 1

Fractional Diffusion Equation

)
x,t) = oD} "*Ky—P(x,1)

Fractional Fokker-Planck Equation

“(

04 0.g 0.8 1.0

Time (min}

Fractional Derivative

ad
Hx=

),

0

d F(x)

0X Mg

e y=1

dx~

)P(.\‘.r)

M B R S R |
4 5

(Metzler 2004)



Physical Significance of a

Word of warning:

* Difficult to extract due to multitude of underlying factors leading to

the same experimental behavior

* Charge transport depends on parameters that are statistically distributed,
leading to broad distributions of event times

* Small variations = broad distributions

“However complicated the form of the transition rates and the To obtain a broad dispersion of transit times
details of the molecular charge transfer, it is assumed that these (or featureless!! current trace) a carrier must be
rates depend sensitively on a number of parameters that are . )

captured approximately once in a trap whose mean

statistically distributed. Thus, even rather mild variations of some
system parameters ‘map’ onto a broad distribution of transition =~ release time 7, ; is approximately equal to the em-

rates. This mapping is not unique. A number of different parameter  pirical transit time {,. This is called the critical

dispersions can produce very similar transition rate distributions.” trap criterion (CTC) o
(Pfister, 1978) (Schmidlin 1977)



Density of States - Exponential

* Exponential energetic density

of states in mobility gap E f

extended states

* Most commonly used in the

P —— E
literature EaI c —
* Otherwise Gaussianis 777 Eileeies

considered = |esfe/l.....lN

* Math considerably more

complex (often numerical) localized states

v

(Adhikari, 2018)



Physical Significance of a

* Hopping
* CTRW
* Average site distances
* Transition rates

* Multiple trapping

* Transport equations

e Capture and release rates

* Percolation

* Transitions related to critical

fractions

e Monte-Carlo Simulations

e Thermalization

* Physical interpretation of

current traces
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(zallen, 1983; Sim, 2013)



Physical Significance of a

* Hopping
* CTRW
* Average site distances
* Transition rates

* Multiple trapping

* Transport equations

e Capture and release rates

* Percolation

* Transitions related to critical

fractions

e Monte-Carlo Simulations

e Thermalization

* Physical interpretation of

current traces
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(Zallen, 1983; Sim, 2013)



Physical Significance of a

* Hopping
* CTRW
* Average site distances

* Transition rates T

* Multiple trapping —

fo--Re-+} _
* Transport equations oyt
* Capture and release rates v %r —E,_
* Percolation . -
* Transitions related to critical o "
fractions —
* Monte-Carlo Simulations == e
* Thermalization = — —E
* Physical interpretation of — = "
current traces — — —

(zallen, 1983)



Physical Significance of a

* Hopping ( ; o )

* CTRW
* Average site distances
* Transition rates

* Multiple trapping

* Transport equations b

e Capture and release rates
* Percolation | V
* Transitions related to critical

fractions
e Monte-Carlo Simulations

* Thermalization - P

* Physical interpretation of ! .

current traces ° 0.5 !
FRACTION OF UNCUT BONDS (p)

CURRENT

(zallen, 1983)



Physical Significance of a

* Hopping
* CTRW
* Average site distances

* Transition rates

* Multiple trapping

* Transport equations

e Capture and release rates

* Percolation

* Transitions related to critical

fractions

e Monte-Carlo Simulations

* Thermalization

* Physical interpretation of

current traces

ENERGY

(Sim, 2013; Tiedje, 1981)
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Figure 1 - Distribution of injected electrons
in traps after one trapping time,
plotted on a linear scale. The
zero of energy isthe conduction

band mobility edge.

L e{t) = kT 1In vt

Density of Localized States

Density of Injected Electrons

Distribution of electrons at time t,
on a log scale, many trapping times
after the injection pulse. In the
text the peak in the density at
e(t) = kT Tnvt is treated as being
although in practice it

ri

sharp,
ie emnnthly vraimda.



P
Thermalization

* Dispersive transport occurs during
thermalization of charge

* Centroid of charge is located at the
demarcation energy

nop)

nysical Significance of a -

 Demarcation energy equals the equilibrium

Fermi level when equilibrium is reac

ned

 If DE > TE then downward hopping ¢
* If DE < TE then VRH-like transport occurs (up

ominates

ENERGY

(Sim, 2013; Tiedje, 1981)
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T(K)

Physical Significance of a — Dispersive to

Normal Transport Transition —e—eses e = _
f f—\Aa?OK L=12.5}Jm
104 L e 424K PVK |
* Transition occursata =1 _,
414K
* Dispersive to normal transport 1
transition occurs at when T =T_ I X
* T.is temperature at which states are ¥ 0 *
“frozen in” ~ " _ _
KT T a=1 ol k -
a(T) = — = — Tr "n=T 274K _
( ) E, T, - Transitio c . ?
0 — '2f04LJJ3.IOIII .4¥0‘ -
ifr (10=3kh

Temperature dependence of hole transport PVK and 3Br-PVK. Representative
current traces are shown (after Pfister and Griffiths 1978). (Pfister, 1978)
ister,



Physical Significance of a — Dispersive to
Normal Transport Transition

* Transition occursata =1 gaE g =1 2KT.

a(E) = 2KT, - Erransition = q_a

* Dispersive to normal transport
transition occurs at when E=E,_ ...

2MV/em 4 MV/cm
. o Arode & 1MV/em \3MWcm/
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(Andersen, 2017; Matsui, 2005)
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LDPE as an example

Conductivity(ohm-cm)

T.=268 K from a(T)
B-phase transition at ~T_

ESD onset and dispersive to normal
transport transition at E~¥100 MV/m

RIC measurements predict T.~255 K

B LDPE Conductivity
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210"
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100
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(Wood, 2018; Brunson, 2007; McCrum,

1967; Matsui, 2005; Andersen, 2017)

IR Photocurrent Decay in LOPE
Coefficient values + one standard deviation
a0 < lo =95+ 0
tau =0.33960 + 0.0039
beta  =0.8559+ 00126
[ =55.414 + 0.362
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Conclusions

* Dispersion parameter describes many physical phenomena

* AC and DC conductivity
* Photoconductivity and radiation induced conductivity

* Transitions associated with ESD onset, glassy transition temperature, normal
to dispersive transport

 Ratio of thermal or field energy to characteristic energy (width)

* The dispersion parameter is a wonderful tool to understand
measurements (macroscopic effects)

* For deeper physical understanding (microscopic effects) a detailed
knowledge of the material must be established first



Future Work

 Link measurements of LDPE in the literature through the dispersion
para meter
* Cole-Cole diagrams of permittivity
* DC conductivity plots
* ESD onset and association with dispersive/normal transport transition
* Temperature dependent conductivity and transition

* Measurements of charge propagation via PEA

* Measurements of temperature dependent conductivity via CVC
* In Progress



Constant Voltage
Conductivity Chamber

Front
Electrode

Guard

Rear
Electrode

Measurement limit of ~0.2 fA at ~900 V with 2 cm?
area and 25 um thick sample

V=I L
=1(p A)
Resistance

Ohm’s Law

Voltage

Sample Area

~N /

p(t) =
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Current

Sample Thickness

|-



DC Conductivity
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Previous Resistivity Tests

Temperature Dependence of Resisitivty with Model Fits * Data to the left shows the change in
50 , , I , , , resistivity with temperature

previously taken with the CVC
A chamber

* The change in resistivity occurs

Ao g around 270 K
* transition from multiple trapping to
a4 — variable range hopping
* Current tests are shown as
421" g conductivity instead of resistivity

having a relationship of

401~

L.n (Calculated Resistivty (Ohm-cm))

| | | ] ] | P

230 240 250 260 270 280 290 300

)
o0

Temperature (K)

(Dennison, 2008; Brunson, 2007)
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Conductivity (ohm-cm)*

1.0E-15

1.0E-16

1.0E-17

1.0E-18

1.0E-15
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10E-21

Temperature Results

Conductivity vs Temperature
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A change in slope is expected around 270 K
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290 300
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This may or may not be evident from seeing a small change in slope but more data is needed below the

temperature threshold to claim this with any certainty

330

340



Conclusions

CVC measurements of LDPE have been done from ~260-330 K

This did not show any clear transition from multiple trapping to variable range
hopping

New data is higher quality with better temperature regulation but (for now) over a
smaller range

Future Work

Data is currently being taken again of LDPE using the CVC system at temperatures lower than
those shown previously

This will then be repeated to create a large set of data to fit the model with more accuracy
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