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We classify all generalized symmetries of the vacuum Einstein equations in four spacetime dimen-
sions. They consist of constant scalings of the metric and of the infinitesimal action of generalized
spacetime diffeomorphisms. Our results rule out a large class of possible “observables” for the gravita-
tional field, and suggest that the vacuum Einstein equations are not integrable.
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A point symmetry of a system of differential equations
is a one-parameter group of transformations of the under-
lying space of independent and dependent variables that
carries solutions of the equations to other solutions. Over
a century ago, Lie [1] initiated a geometrical approach to
the study of differential equations based on their point
symmetries. By considering infinitesimal group transfor-
mations, Lie produced algorithms for finding the point
symmetries of any system of equations. For differential
equations derived from a variational principle, Noether
[2] proved that those point symmetries which preserve the
action lead to conservation laws. Noether also pointed
out that not all conservation laws arise as a consequence
of point symmetries. She therefore introduced the idea of
derivative-dependent infinitesimal symmetry transforma-
tions, now known as ‘“generalized symmetries.” Her
work, together with the appropriate technical assump-
tions [3], establishes a one-to-one correspondence be-
tween generalized symmetries of the underlying action
functional and conservation laws.

In recent years, symmetry analysis has become an im-
portant tool in the study of differential equations [3-5].
This is due, in part, to the intimate connection between
generalized symmetries and integrable systems of partial
differential equations. Indeed, a widely acknowledged at-
tribute of an integrable field theory is the existence of an
infinite set of generalized symmetries [6,7]. Physically,
the importance of symmetries of field equations stems
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from their use in classifying solutions to the equations,
construction of solution generating algorithms, and, via
Noether’s theorem, the identification of conservation
laws.

While applied mathematicians have devoted a large
amount of attention to applications of the theory of sym-
metry groups to a variety of nonlinear partial differential
equations, relatively few results have been obtained for
the most important nonlinear field equations of theoreti-
cal physics, e.g., the Yang-Mills equations and the Ein-
stein equations. The purpose of this Letter is to report on
the results of a generalized symmetry analysis of the vac-
uum Einstein equations in four spacetime dimensions.
Our analysis has yielded a complete classification of the
generalized symmetries.

Why look for generalized symmetries of the Einstein
equations? The existence of “hidden symmetries” of the
Einstein equations would lead to solution generating/clas-
sification techniques, and perhaps even information about
the “‘general solution” to the Einstein equations. There
are hints that such symmetries may exist: The two Kil-
ling field reduction of the Einstein equations leads to an
integrable system of partial differential equations [8,9];
the self-dual Einstein equations exhibit an infinite num-
ber of symmetries and can be integrated using twistor
methods [10,11]. A complete generalized symmetry
analysis indicates whether the rich structure of special
reductions of the Einstein equations extends to the full
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theory. Another important consequence of a generalized
symmetry analysis stems from the fact that the existence
of generalized symmetries of the Einstein equations is a
necessary condition for the existence of local differential
conservation laws for the gravitational field. If such
symmetries/conservation laws could be found, they would
lead to “‘observables” for the gravitational field. It has
long been an open problem in relativity theory to exhibit
such observables. The lack of observables currently
hampers progress in canonical quantization of general re-
lativity [12].

Recently, Gurses has proposed new generalized sym-
metries of the vacuum Einstein equations [13]. Hauser
and Ernst [14] have shown that Gurses’ type (a) and (b)
symmetries are special cases of generalized diffeomor-
phism symmetries (introduced below), and that his type
(c) transformations are symmetries for only a restricted
class of Einstein metrics and therefore are not symmetries
of the full Einstein equations.

A generalized symmetry of the Einstein equations
Gap =0 is an infinitesimal transformation &gg of the
metric which formally maps solutions of the Einstein
equations to other ““nearby” solutions. The generator of a
generalized symmetry transformation is built from the
spacetime position x, the metric, and an arbitrary but
finite number of derivatives of the metric at x:

3gab =hap (x,2,0x8,...). (1)

We say that the functions h,, generate a symmetry if and
only if they satisfy the linearized Einstein equations,

(—g*s5a62 — g8 + 275568 WV Vehay =0,  (2)

when the Einstein equations Gz =0 hold. In (2) V, is
the unique connection compatible with the Einstein
metric gqp.

There are two classes of generalized symmetries that
can be identified immediately. The first is the well-known
scale symmetry of the Einstein equations, which corre-
sponds to the infinitesimal point symmetry

68ab =C8ab , 3)

where ¢ is a constant. The second symmetry stems from
the general covariance (diffeomorphism covariance) of
the Einstein equations. It is well known that, for each
vector field V?(x), the tensor

6gab =V, Vp+V, Va (4)

satisfies the linearized equations (2) when Gz, =0. The
symmetries (3) and (4) comprise all the point symmetries
of the vacuum Einstein equations [15]. Given a general-
ized (covariant) vector field X,=X,(x,g,0,g,...), a
direct computation shows that

68ab =VaXp+VpX, (5)

also satisfies the linearized Einstein equations when
Gap =0, and therefore is a generalized symmetry. Let us
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call the symmetry (5) a generalized diffeomorphism
symmetry. According to the principles of general rela-
tivity, one should really view the Einstein equations as a
set of partial differential equations that determine dif-
feomorphism equivalence classes of metrics. Thus the
generalized diffeomorphism symmetry (5) is considered
physically trivial (at least locally).

Our symmetry analysis shows that the scale symmetry
(3) and generalized diffeomorphism symmetry (5) are in
fact the only generalized symmetries admitted by the
vacuum Einstein equations. The proof of this fact is rath-
er long; accordingly, it is best to begin by classifying an
important subclass of symmetries, the “natural” general-
ized symmetries. Natural symmetries are generated by
those hg, which transform properly under spacetime
diffeomorphisms. Specifically, a “natural tensor” hg is a
tensor which is built from the metric, the curvature, and
covariant derivatives of the curvature up to some finite
order [16-18]. Such A, are universal geometric expres-
sions and are defined on any manifold irrespective of its
topological structure. In this case we have the following
theorem.

Theorem |.—Let 8ga =ha(g,0xg,...) be a natural
generalized symmetry for the Einstein equations Ggp =0
in four spacetime dimensions. Then

hab =Cgab+2V(aXb) ) (6)
where c is a constant and
X,=X,(g,0,g,...) )

is a natural (covariant) vector field.

We will now sketch the proof of this theorem; a more
rigorous discussion with all of the details will be given
elsewhere [19]. The primary complication in the analysis
is that (2) need only be satisfied when the Einstein tensor
and its derivatives vanish. To handle this complication
we use Penrose’s “exact set of fields” for the vacuum Ein-
stein equations [20,21]. Let ¥4pcp represent the Weyl
spinor (capital Latin indices are two-component spinor
indices). Penrose’s result is that the symmetrized covari-
ant derivatives of the Weyl spinor

Al Ay . oAy Ay)
WAII e Apst V(A: R O W Ay s Apt2An434n+4) ®)
and its complex conjugate, for n=0,1, ..., are freely

specifiable at a point of an Einstein space and completely
determine the curvature and all covariant derivatives of
the curvature at that point. We will denote the spinor (8)
and its complex conjugate by ¥” and ¥", respectively.
Using the spinor form of the Ricci and Bianchi identities
on an Einstein space it is straightforward to show that ¥"
satisfies
VBI\lel""‘.j:H:q’;ll ;::543-*-(9 d (9)
where @ denotes terms involving ¥* and ¥* for k
=0,...,n— 1.
The spinor translation of the generalized symmetry
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equation (2) can be put into the form

[— e’ eprensok 68 +65e ™ (ensSBSESY + eng 586 L6 M IV o VoghMN. =0 , (10)
where hpfin: is the spinor form of the symmetry generator I MNABCDE _ _M(ApCDE  _BIN . yM(BCDE (DN gN'
hap. We have also introduced the skew-symmetric € spi- M'N'E M'N'E M E
nors, which are used to raise and lower spinor indices. +Xﬁ,(BCDE€A)M5£1’. an

Equation (10) is to be satisfied modulo the Einstein equa-
tions. Hence, without loss of generality, we can assume
in (10) that AM/\: is a function of the soldering form o,

where

4 (1
and the ¥", ¥ " spinors up to some finite derivative order
N. The natural generalized symmetry hpfx: must satisfy
(10) for all values of the ¥” spinors and their complex
conjugates.

An an illustration of our analysis let us assume that
N =1 so that hg is a natural tensor depending on no
more than three derivatives of the metric at a given point:

(12)

Because (10) involves two derivatives of hg, the left-
hand side of (10) is a function of the soldering form and
¥" W¥" spinors for n=0,...,3. Differentiating (10)
with respect to ¥ leads to the following restriction on the

dependence of 4,4 on the v! spinors:

— A4
8ab =0a " ObaA'

hap =hap (o, ¥, 90 w! ¥') .

HYSIABCOE) 4 pMANABCOE) =g (13)
where we have defined
MN
MNABCDE . _ 0hm'N'
g = (14)
OV GscpE

Differentiating (10) with respect to ¥> shows that the
complex conjugate of (13) holds also.

Next, let us demand that the second derivative of (10)
with respect to 2 vanish for all values of the ¥" spinors.
Using (13) this leads, after some analysis, to

'y

E v
OV 4pcpE OY RsTUY

=0. (15)

Thus hgp is linear in its dependence on ¥'. Similar com-
putations involving second derivatives of (10) with espect
to ¥2,¥? and ¥2¥? show that the symmetry must be
linear in its dependence on the ¥ ' spinors, and also that
has contains no terms involving products ¥ 'w'.

We have thus found that the spinor expression of the
generalized symmetry A, takes the form

B3 MN _ «MNABCDE
Nprine —AM’N’E'

16)

where the 4 and B spinors depend on the soldering form
and the undifferentiated Weyl spinors ¥, % °. The condi-
tion (13) gives us further information about the spinor A;
(13) is satisfied if and only if there exist spinors D and X
such that

E' MN
¥ 48cpE + Byintc.c.,

We further restrict the structure of the A spinor by
taking the mixed second partial derivative of (10) with
respect to w2 and ¥'. After considerable analysis, the re-
sulting equations can be shown to imply: (i) The D spi-
nor in (17) is independent of ¥ and ¥° i.e., D is a func-
tion of the soldering form only, and (ii) the spinor X is a
gradient with respect to ¥°, i.e.,

M
I
M OVgcpe

(18)

Here Xﬂl is the spinor form of a natural spacetime vector
field.

Given (18), the X spinors correspond to a generalized
diffeomorphism symmetry (5). This can be seen by com-
paring the coefficient of the ¥' term in the spinor form of
(5), namely,

v . OXE , ox4 ,
VixXE+VEx] =—6‘—‘I’ﬂsnm + ¥ RsTus
Y RSTU OV rsTU
+cc., (19)

with the last two terms of (17).

To summarize, we have found that the only generalized
symmetry for N=1 is a linear function of ¥'. Modulo
terms of the form (5), the coefficient A4 of the ¥' term is
a natural spinor built from the soldering form only.
However, it can be shown that there is no spinor with the
symmetries of A that is built solely from the soldering
form. Therefore, modulo generalized diffeomorphism
symmetries, the linear term in ¥' vanishes and we con-
clude that [modulo (5)] the symmetry can only depend
on ¥° ¥ % and the soldering form,

hap =2V Xp)+ iy (o, w0, ¥0) . (20)

We now repeat the whole analysis starting with (10)
and ending with (18) under the assumption that the sym-
metry only depends on the soldering form and the
undifferentiated Weyl spinors. A virtually identical series
of calculations proves that Agp is a function of the solder-
ing form only, hss =ha,(c). This is easily seen to imply
that the point symmetry A,y can only be the scaling sym-
metry (3), i.e., hap =cgap. This proves the theorem when
N=1.

The proof of Theorem 1 in general is again via induc-
tion in the dependence of the symmetry /g on derivatives
of the metric. The spinor equations that arise in the
analysis for N > 1 are considerably more complicated
than in the example above, but they can be solved using
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elementary spinor techniques.

[t is possible to generalize theorem 1 by allowing A to
depend on the spacetime position, the metric, and a finite
number of derivatives of the metric at a point, with no
tensoriality assumptions.

Theorem 2.—Let 6gup =ha(x,2,0,g,...) be a gen-
eralized symmetry for the Einstein equations Gg =0 in
four spacetime dimensions. Then

hap =('gab+2V(aXb) s
where ¢ is a constant and
Xo=X,(x,g,0,g,...).

The proof of theorem 2 involves the enlargement of the
spinor variables to include the nontensorial parts of the
metric derivatives. An inductive argument, similar to
that used in the natural case, reduces the derivative
dependence of the symmetry generator to only first
derivatives of the metric modulo terms of the form (5).
Because of the complicated dependence of the linearized
Einstein equations on first and second derivatives of the
metric occurring in the covariant derivatives, this case
— first-order generalized symmetries— must be treated
separately. A lengthy analysis leads to the result that,
modulo the generalized diffeomorphism symmetry, the
symmetry generator is a function of the undifferentiated
metric only. This leads back to the scale symmetry and
completes the proof.

Theorems 1 and 2 allow us to determine the structure
of possible conservation laws for the vacuum Einstein
equations. Let us define a local differential conservation
law for the Einstein equations as a current (vector densi-
ty) J9=J%x,g,0,g,. . .) satisfying

Vo J9=0,J7=0, @n

when G4, =0. Then we can prove the following corollary.

Corollary I.—Let J? be a local differential conserva-
tion law for the vacuum Einstein equations in four space-
time dimensions. Then, at least locally, there exist func-
tions S%(x,g,8+g,...) skew symmetric on a and b,

§% = — g% such that, up to terms that vanish when the
Einstein equations hold,
1=V,S5%. (22)

If J% is a natural vector density, i.e., built from the
metric, curvature, and covariant derivatives of the curva-
ture, then S can be chosen to be a natural tensor densi-
ty.

This corollary follows from the fact that the existence
of a generalized symmetry is a necessary condition for the
existence of a local differential conservation law (see, e.g.,
[31), and some fundamental results from the theory of the
variational bicomplex [22] (see also [23]). From the
point of view of the theory of local differential conserva-
tion laws, the form (22) of J? is trivial in the sense that
such conservation laws are al/ways possible for any system
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of equations, irrespective of the form of the equations.
Nevertheless, such currents can have a physical role to
play in general relativity. Indeed, (22) forms the basis
for constructing energy-momentum pseudotensors for the
gravitational field [24].

The form (22) of the conservation laws has strong im-
plications for the existence of “observables” in the Ham-
iltonian formulation of gravitation in closed universes.
Recall that observables are defined as functions of the
gravitational phase space that have weakly vanishing
Poisson brackets with the super-Hamiltonian and super-
momentum [25,26]. This is equivalent to defining observ-
ables as constants of motion for the Einstein equations.
From (22), however, it is clear that if the spatial mani-
fold is compact without boundary there can be no non-
trivial constants of motion built as spatial integrals of lo-
cal functions of the spacetime metric and its derivatives.
Thus our generalized symmetry analysis has ruled out a
large class of observables. In particular, we conjecture
that there are no observables built as spatial integrals of
local functions of the canonical Arnowitt-Deser-Misner
(ADM) coordinates and momenta (and their deriva-
tives). It would thus appear that observables must be
constructed in a nonlocal fashion, e.g., along the lines of
those found in the class of cylindrically symmetric Ein-
stein metrics in [27]. We are currently exploring the
Hamiltonian implications of our analysis.

We have classified all generalized symmetries and local
differential conservation laws of the vacuum Einstein
equations in four spacetime dimensions. The symmetries
consist of constant scalings and the induced action of
infinitesimal generalized diffeomorphisms. The corre-
sponding conservation laws are trivial. We note that the
vacuum Einstein equations, when viewed as a system of
equations for the diffeomorphism equivalence classes of
metrics, fail to pass a widely acknowledged “litmus test”
for the integrability of a system of partial differential
equations, namely, the existence of an infinite-dimen-
sional set of generalized symmetries [6,7].

Our analysis suggests several questions for further
study. They include the Hamiltonian interpretation of
theorems | and 2 and corollary 1, the existence of gen-
eralized symmetries of subsystems of the Einstein equa-
tions, and existence of nonlocal symmetries, e.g., Back-
lund transformations and the existence of generalized
symmetries of the Einstein equations with matter cou-
plings.
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