Experimental Study of Sequent Depths Ratio of Hydraulic Jump in Sloped Trapezoidal Channel

Sonia Cherhabil
soniacherhabil@hotmail.fr

Mahmoud Debabeche

Follow this and additional works at: https://digitalcommons.usu.edu/ishs

Part of the Hydraulic Engineering Commons

Recommended Citation
Experimental Study of Sequent Depths Ratios of Hydraulic Jump in Sloped Trapezoidal Channels

Sonia Cherhabil1, Mahmoud Debabeche2
1,2Research Laboratory in Civil and Hydraulic Engineering, Sustainable Development and Environment (LARGHYDE)
University of Biskra, BP145 RP07000
ALGERIA
E-mail : soniacherhabil@hotmail.fr

ABSTRACT

The hydraulic jump in a sloped trapezoidal channel of 72.68° sidewall inclination angle was experimentally examined. The study aimed to determine the effect of channel slope on the sequent depths ratio of the jump. An experimental analysis is proposed to determine experimental relationships of the inflow Froude number as a function of the sequent depth ratio of the jump and the channel slope. For this purpose, positive and negative slopes were tested.

Keywords: Hydraulic jump, trapezoidal channel, positive slope, adverse slope, open channels, stilling basins.

1. INTRODUCTION

Hydraulic jumps are formed during the abrupt transition from supercritical to subcritical flow, when energy is dissipated. This phenomenon is invoked generally either downstream of a dam in order to dissipate the hydraulic energy or in water conveyance channels to raise the stream level. The hydraulic jump has been studied by many researchers such as Bradley and Peterka (1957), Hager and Bretz (1987), Hager (1992), and Ead and Rajaratnam (2002). Most studies focused on the hydraulic jump in horizontal rectangular channels. However, the first detailed study on the hydraulic jump in a rectangular channel with positive slope was carried out by Bakhmeteff and Matzke (1938), who examined the surface profile, the jump length, and the jump speeds distribution. Additionally, Kindsvater (1944) classified the sloped hydraulic jump, according to the position of the upstream edge of the jump with regard to the end of the slope, into four types: A-jump, in which the toe of the jump coincides with the downstream extremity of the slope; B-jump, in which the toe of the jump is between the A-jump and the C-jump; C-jump, in which the end of the jump roller coincides with the downstream extremity of the slope; and D-jump, in which the jump roller appears completely in the sloped portion. The D-jump was analyzed by Wilson (1970), Ohatsi and al (1973), Rajaratnam and Murahari (1974), and Mikhailiev and Hoang (1976). Debabeche et al. (2009) have studied the hydraulic jump with positive slope in a triangular channel. Cherhabil (2010) subsequently developed, in her PhD thesis, the hydraulic jump with a positive slope in triangular and U-shaped channels. The most recent work on the hydraulic jump in a trapezoidal channel is that of Kateb (2014).

This study proposed an experimental research on the hydraulic jump in a sloped trapezoidal channel. The configuration adopted in this article corresponds to the D-jump type according to the classification of Kindsvater (1944). The objective is to determine the effect of the channel slope on the upstream sequent depth \(h_1 \) and downstream sequent depth \(h_2 \) for this jump configuration experimentally. However, empirical relationships are proposed relating the sequent depth ratio \(Y \) to the inflow Froude \(F_i \) and the channel slope \(i \).

2. EXPERIMENTAL SET-UP

Experimentation was carried out in a trapezoidal channel of 6 m length, 20 cm width, and 72.68° sidewall inclination with regard to the horizontal [see Figure 1]. Initial flow was generated by a set of five load boxes [see Figure 2] for which the opening heights correspond to the upstream sequent depths: \(h_1 (\text{mm}) = 20, 30, 40, 50, \text{ and } 60 \). For each chosen height \(h_1 \), six positive and two negative (adverse) slopes were tested so that the channel slope takes the following values, \(i(\%) : 0.005; 0.01; 0.015; 0.02; 0.00; -0.005 ; -0.01 \). Additionally, 22 thin
sills of different heights varying from 5 to 26 cm were used to control the hydraulic jump [see Fig. 3]. A practical range of inflow Froude numbers was obtained \(1 \leq F_i \leq 14\).

![Trapezoidal channel](image1.png)

Figure 1. Trapezoidal channel

![Load boxes](image2.png)
![Thin sills](image3.png)

Figure 2. Load boxes
Figure 3. Thin sills

3. Sequent Depth Ratio

Figures 4, 5, 6, 7, and 8 show the variation of the sequent depth ratio \(Y = h_2/h_1\) as function of the inflow Froude number \(F_i\) for seven slopes. Data analysis showed that a linear equation is possible for each value of the slope channel. This latter follows the form of \(y = a + b\).

Upstream Sequent Depth : \(h_i=20\text{mm}\)

![Graph](image4.png)

Figure 4. Variation of the sequent depth ratio as function the inflow Froude number for seven values of the channel slope \(i=(●)0.005,(∆) 0.01, (×) 0.015,(○) 0.02; (・) 0.00,(●)0.005,(-)0.01(—)\) Trend Curve for (●) 0.00.
Figure 5. Variation of sequent depth ratio as function of the inflow Froude number for five values of the channel slope, such as $i = \tan(\alpha) = (\bigcirc) 0.005, (\bigtriangleup) 0.01, (\bigtriangledown) 0.00, (\bigotimes) -0.005, (\star) -0.01$. (—) Trend Curve for (●) 0.00.

Figure 6. Variation of the sequent depth ratio as function of the inflow Froude number for seven values of the channel slope, such as $i = \tan(\alpha) = (**0.005, (\triangle) 0.01, (\times) 0.015, (\bigtriangleup) 0.02; (\bigotimes) 0.00, (\star) 0.005, (\bigast) -0.01. (—) Trend Curve for (●) 0.00.
Figure 7. Variation of the sequent depth ratio as function of the inflow Froude number for six values of the channel slope \(i=(□)0.005,(Δ)0.01,(×)0.015,(*)0.02;(●)0.005.(→)\) Trend Curve for (●) 0.00.

Figure 8. Variation of the sequent depth ratio as function of the inflow Froude number for five values of the channel slope such as \(i=\tan(α)= (□)0.005,(Δ)0.01,(×)0.015,(*)0.02;(●)0.00.(→)\) Trend Curve for (●) 0.00.
Table 1. Explicit relationships of variation of the sequent depth ratio, as function of the inflow Froude number and channel slope.

<table>
<thead>
<tr>
<th>Initial depth h</th>
<th>Relation of (Y_{\text{app}})</th>
<th>(i = \tan \alpha) (%)</th>
<th>(F_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mm</td>
<td>(Y_{\text{app}} = (3.25 \cdot \tan(\alpha) + 1.17) \cdot F_1 + 39.65 \cdot \tan(\alpha) + 0.09)</td>
<td>[0 - 2]</td>
<td>[3.1 - 3.6]</td>
</tr>
<tr>
<td></td>
<td>(Y_{\text{app}} = (13.1 \cdot \tan(\alpha) + 1.156) \cdot F_1 + 0.395)</td>
<td>[-1 - 0]</td>
<td>[3.1 - 3.6]</td>
</tr>
<tr>
<td>30 mm</td>
<td>(Y_{\text{app}} = (5.535 \cdot \tan(\alpha) + 1.446) \cdot F_1 + (3.331 \cdot \tan(\alpha) + 0.082))</td>
<td>[0 - 2]</td>
<td>[4 - 8]</td>
</tr>
<tr>
<td></td>
<td>(Y_{\text{app}} = 1.4/4F_1 + 1.545)</td>
<td>[-1 - 0]</td>
<td>[4 - 8]</td>
</tr>
<tr>
<td>40 mm</td>
<td>(Y_{\text{app}} = (8.2 \cdot \tan(\alpha) + 1.032) \cdot F_1 - 65.1 \cdot \tan(\alpha) + 2.006)</td>
<td>[0 - 2]</td>
<td>[1 - 5]</td>
</tr>
<tr>
<td></td>
<td>(Y_{\text{app}} = 1.4/4F_1 + 1.545)</td>
<td>[-1 - 0]</td>
<td>[3 - 5]</td>
</tr>
<tr>
<td>50 mm</td>
<td>(Y_{\text{app}} = (11.177 \cdot \tan(\alpha) + 1.521) \cdot F_1 + (24.7 \cdot \tan(\alpha) - 0.858))</td>
<td>[0 - 2]</td>
<td>[1 - 4]</td>
</tr>
<tr>
<td>60 mm</td>
<td>(Y_{\text{app}} = 17.134 \cdot \tan(\alpha) + 1.4789) \cdot F_1 - 15.243 \cdot \tan(\alpha) - 0.1152)</td>
<td>[0 - 2]</td>
<td>[1 - 3]</td>
</tr>
</tbody>
</table>

Explicit relationships provide a simple way for determining the ratio of the combined heights \(Y \) by knowing the inflow Froude number \(F_1 \) and the value of the channel slope \(i \).

4. CONCLUSION

The hydraulic jump in a sloped trapezoidal channel was experimentally studied. The configuration of the jump adopted in this study corresponds to the D-jump. The experimental study focused on the variation of the relative height \(Y \). The generalized relations obtained, express the sequent depth ratio \(Y \) as a function to the inflow Froude number \(F_1 \) and the channel slope \(i \).

5. REFERENCES

6. LIST OF SYMBOLS

D Diameter of the channel [m]

F_i inflow Froude number [-]

g acceleration of gravity [m.s$^{-2}$]

h_1 upstream sequent depth [m]

h_2 downstream sequent depth [m]

i channel slope ($i=\tan(\alpha)$)

Q flow discharge [m3.s$^{-1}$]

Y sequent depth ratio

α angle of inclination of the channel with regard to the horizontal [rad]