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Abstract: Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s
surface, and are caused by the changes in magnetic field states in active solar regions. Earth and
its surrounding space environment can suffer from various negative impacts caused by solar flares,
ranging from electronic communication disruption to radiation exposure-based health risks to astronauts.
In this paper, we address the solar flare prediction problem from magnetic field parameter-based
multivariate time series (MVTS) data using multiple state-of-the-art machine learning classifiers that
include MINImally RandOm Convolutional KErnel Transform (MiniRocket), Support Vector Machine
(SVM), Canonical Interval Forest (CIF), Multiple Representations Sequence Learner (Mr-SEQL), and
a Long Short-Term Memory (LSTM)-based deep learning model. Our experiment is conducted on
the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, which is a partitioned
collection of MVTS data of active region magnetic field parameters spanning over nine years of operation
of the Solar Dynamics Observatory (SDO). The MVTS instances of the SWAN-SF dataset are labeled by
GOES X-ray flux-based flare class labels, and attributed to extreme class imbalance because of the rarity
of the major flaring events (e.g., X and M). As a performance validation metric in this class-imbalanced
dataset, we used the True Skill Statistic (TSS) score. Finally, we demonstrate the advantages of the MVTS
learning algorithm MiniRocket, which outperformed the aforementioned classifiers without the need for
essential data preprocessing steps such as normalization, statistical summarization, and class imbalance
handling heuristics.

Keywords: multivariate time series; solar flare; space weather; imbalanced data

1. Introduction

Solar flares are strong outbursts of radiation that result from the Sun’s magnetic energy
suddenly releasing its stored energy. The duration of these flares ranges from a few minutes
to several hours. Since 1974, the National Oceanic and Atmospheric Administration
(NOAA) has been monitoring and classifying the X-ray production of these flares within the
1–8 wavelength range using Geostationary Operational Environmental Satellites (GOESs).
Based on their peak soft X-ray emissions, flares are grouped logarithmically from A to X, as
A, B, C, M, and X, ascending from less powerful to more powerful, starting 10−8 W m−2 [1].
The most intense flares are classified as X-class; they are roughly 100 times stronger than
C-class and 10 times stronger than M-class flares. Nine subclasses that scale the intensity
are also included in each class. Finding a lower intensity When X-ray levels are high, it can
be difficult to identify A and B-class flares, but flares over the C2 threshold, in particular, are
typically identified as C-class and above. Because they can cause damage, M and X-class
flares are the most severe flares and are are typically the focus of space weather forecasting.
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Flares of the X-class and the M-class have the potential to cause serious risks, such
as radio blackouts globally and long-lasting radiation storms in the upper atmosphere.
Astronauts, flight attendants, and passengers could be exposed to significant risks. Trillions
of dollars in repair and replacement costs could result from solar flare damage, as mentioned
in the in the study by [2]. However, by implementing appropriate safety measures and
deploying a reliable system for predicting solar flares, it is possible to significantly reduce
the extent of the damage.

Classifying major solar flare events is a challenging task due to their rarity. According
to NASA, the frequency of solar flares is determined by the solar cycle, which lasts around
11 years [3]. Flares can occur multiple times a day during periods of maximum solar
activity, and fewer than once a week during quieter times. Furthermore, M1 class flares
can occur up to two thousand times per cycle, whereas more severe flares, like those in the
X10 class, are extremely infrequent, occurring on average only eight times per cycle [4]. It
is challenging for traditional classifiers to predict the minority class with high accuracy
due to this imbalance in the class distribution. Solar flare data do not follow the balanced
distribution of samples across classes that is assumed by most classification-based machine
learning algorithms [5,6].

The dataset, which contains a range of time series parameters generated from solar
photospheric magnetograms and NOAA’s records of flares in active locations, makes
solar flare forecasting even more challenging The dataset also includes physics-based
magnetic field parameters, originally acquired through the Space Weather HMI Active
Region Patches (SHARP) data product [7]. The high dimensionality of the time series
introduces another challenge because of the curse of dimensionality and the possible
noisiness of multiple feature vectors. Classifiers that are capable of providing reliable
accuracy on such imbalanced time series data are typically computationally expensive and
require significant training time, even with relatively small datasets.

The field of astrophysics lacks a specific physical theory that explains the mechanism
behind the solar flares occurrence, which limits solar flares forecasting and classification
ability [8,9]. Although several physics research teams are working to develop a theory for
flare prediction, there is still uncertainty about the project’s chances of success. The most
promising approach is to adopt a data-driven strategy using the active region parameters
observed by the Solar Dynamics Observatory, given the rapid advancements in AI and
machine learning. The goal is to develop a model capable of demonstrating an empirical
connection between AR parameters and flare occurrences.

Reference [1] provided a detailed analysis of the challenges associated with the
SWAN-SF dataset, the most extensive dataset on solar flares, which includes MVTS-based
photospheric magnetic field parameters of solar active regions. They addressed the extreme
class imbalance and temporal coherence of the data, proposing several solutions. Initially, they
extracted statistical features from each magnetic field parameter time series—such as median,
standard deviation, skewness, and kurtosis, along with the last value of each series—which
also helped to reduce data dimensionality and enhance scalability. They employed an SVM
classifier to evaluate their flare prediction model and used undersampling and oversampling
techniques to balance the class distribution in the preprocessing phase. At the classifier level,
they adjusted the weighting of misclassification penalties to minimize both false positives
and false negatives. For maintaining temporal coherence, they avoided overlaps in the MVTS
sequence by using 20 distinct pairs of testing and training data partitions. They assessed
the robustness of their SVM model using True Skill Statistics (TSS) and different forms of
the Heidke Skill Score (HSS). However, the experimental settings utilized by [1] had certain
limitations, such as the use of only five statistical features, which might not fully capture
the complexities of the time series data, potentially leading to less accurate predictions. Ad-
ditionally, they implemented a critical preprocessing step involving either undersampling
or oversampling of the training data. While the previous methods relied on preprocessing
through normalization and balancing, the proposed algorithm MiniRocket can achieve higher
performance without the preprocessing steps.
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In this paper, we refine our work in [10] by the following steps.

• This study aims to assess the effectiveness of the MiniRocket [11] time series classifier,
based on the MINImally RandOm Convolutional KErnel Transform, for real-time
prediction of solar flares with minimal data manipulation. MiniRocket, an efficient
variant of the ROCKET algorithm [12], attains high precision with lower computational
costs by employing random convolutional kernels to transform input time series. The
transformed features are then used to train a linear classifier. MiniRocket, being an
almost deterministic version of ROCKET, exhibits performs much faster on bigger
datasets while keeping an equivalent level of accuracy.

• In this study, we compare MiniRocket’s performance with support vector machine
(SVM), Long Short-Term Memory (LSTM), Canonical Interval Forest (CIF) [13],
and Multiple Representations Sequence Learner (Mr-SEQL) models.

• The evaluation metrics, TSS and HSS2 [14], are selected for comparison because they
are the most commonly used performance metrics for flare prediction with class
imbalance data. To address data overlapping, we implement the 20-partition pair
strategy proposed by [1].

2. Related Work

Theo, ref. [15], was one of the first expert systems to rely on human input for solar
flare prediction. It forecast various sorts of flares by combining sunspot and magnetic field
parameters. Theo’s rule-based flare prediction technique was adopted by National Oceanic
and Atmospheric Administration’s (NOAA’s) Space Environment Center (SEC) in 1987.
There are two primary types of data-driven flare prediction systems used today: nonlin-
ear statistical methods and linear statistical methods. They can be further divided into
line-of-sight magnetogram-based models and vector magnetogram-based models. Vector
magnetograms—which offer thorough full-disk magnetic field data—are usually thought
to be more useful for parameterizing active zones as they contain the full-disk magnetic
field data as mentioned in [16]. However, because to the lack of vector magnetograms,
solar physicists primarily relied on line-of-sight magnetic data for flare predictions until
NASA’s Solar Dynamics Observatory was launched in 2010.

The primary goal of linear statistical research is to determine the magnetic characteristics
of active regions (ARs) connected to solar flares, ref. [17] parameterized ARs using line-of-sight
magnetograms, and investigated the relationship between AR parameters and flare events.
Three physical properties were measured by analyzing multiple SOHO/MDI longitudinal
magnetograms: the number of singular points, the length of the neutral line, and the maximum
horizontal gradient. There was a high correlation seen between solar flare activity and
these measurements, which indicate the complexity and non-potentiality of the photospheric
magnetic field. According to their analysis, solar flare productivity increases with non-
potentiality and complexity. A similar study [18] used Solar Geophysical Data (SGD) flare
reports and line-of-sight Michelson Doppler Imager (MDI) magnetograms of 89 active regions
to study relationships between magnetic field characteristics and flare productivity. They
concentrated on the total magnetic energy, the length of strong-gradient magnetic neutral
lines (LGNL), and the mean value of spatial magnetic gradients at strong-gradient magnetic
neutral lines (NL). Their results showed strong positive relationships with both the probability
of more flares in the future and the overall flare productivity. Vector magnetograms were first
used by Leka et al. [19] to define AR parameters. They used discriminant analysis to identify
the photospheric magnetic characteristics that are essential for producing intense occurrences,
such as solar flares. Their findings demonstrated that, whereas individual parameters had
little discriminative power, combinations of several variables were able to distinguish between
locations that were flaring and those that were not flaring.

Nonlinear statistical models frequently use conventional machine learning classifiers
while utilizing different strategies. Several approaches have been explored in the context
of classification models: ref. [20] employed logistic regression, ref. [21] utilized a C4.5
decision tree, and [22] employed a relevance vector machine, while [23] used an artificial
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neural network. Moreover, ref. [24] used vector magnetograms as well as line-of-sight
magnetograms to evaluate the performance of three classifiers: k-NN, SVM, and Extremely
Randomized Tree.

The first work to apply machine learning techniques to HMI vector magnetograms is the
pioneering work by [25]. They employed a Support Vector Machine (SVM) classifier to forecast
M- and X-class solar flares using four years of data from the Helioseismic and Magnetic Imager
(HMI) at the Solar Dynamics Observatory. For flare forecasting, this novel technique made use
of a large dataset of vector magnetograms. A database of 2071 active regions and 1.5 million
active region patches of vector magnetic field data were used by the researchers to create a
catalog of flaring and non-flaring active regions. A feature selection technique was used to
identify the most effective features that would best distinguish flaring from non-flaring regions
after each active region was described using 25 parameters. A cost formula that minimized false
negatives was devised in order to address the problem of class imbalance.

In order to address solar flare prediction, ref. [26] framed it as a binary classification
problem, making the distinction between flaring and non-flaring active regions. They used
k-NN classification on univariate time series to create a prediction system after carefully
extracting time series samples of active region parameters. Their results showed that employ-
ing all active region characteristics at one time was less effective than applying a statistical
summary technique to the “total unsigned current helicity” metric. The problem was reduced
to a single-variable time series classification by the researchers after they identified the most
important parameter by examining the time series features of the AR parameters. By applying
a statistical summarizing method to the time series, they presented a novel strategy that
allowed the key AR parameter to represent flaring/non-flaring active regions in a vector space.
They obtained significant computational and temporal efficiencies by using the k-nearest
neighbors (k-NN) classifier in this reduced vector space. They also found that adding C-class
flares to the positive class did not improve classification performance.

Angryk and colleagues [27] published a comprehensive multivariate time series
(MVTS) dataset collected from solar photospheric vector magnetograms. The dataset
comprised 4098 MVTS entries with over 10,000 flare reports and 51 flare-predictive factors
that were collected from active regions between May 2010 and December 2018. It offered
a cleaned, integrated, and easily available dataset with numerous sources of verification
as a comprehensive resource for solar physicists and machine learning specialists. The
GOES flare catalog, SSW and XRT flares, and NOAA AR locations were used in the data
compilation process, to improve the quality and cleanliness of the dataset. The authors
recalculated the magnetic field parameters from specific region patches, and then they
transformed them into multivariate time series spanning the entire length of a given HARP
series. Additionally, they addressed missing values, location-based filtering, and account-
ing for empty SHARPs in order to purify the dataset. The dataset was categorized based
on flare intensity threshold criteria into target classes. Observation window, latency, and
prediction window ideas were used for customized slicing and labeling.

Ahmadzadeh and colleagues [1] discussed the challenges posed by the SWAN-SF dataset
introduced by [27]. They highlighted the extreme class imbalance ratio within the data and
the temporal coherence. In order to tackle these issues, the researchers first reduced the
dimensionality of the dataset by removing statistical elements from the time series. For
conducting their experiments, they employed SVM classifiers, and they used a combination of
data-level undersampling and oversampling strategies to address class imbalance. To lower
false positives and false negatives, they also adjusted the misclassification weighting value
at the classifier level. They employed training and testing data from separate partitions to
prevent data point overlap and preserve temporal coherence.

3. Dataset

The Space Weather Analytics for Solar Flares (SWAN-SF) benchmark dataset by [27]
serves as an example of a multivariate time series with the goal of achieving classification
and forecasting of solar flares in an unbiased manner. The MVTS instances of the SWAN-SF
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benchmark dataset are labeled by five different flare classes, namely GOES-based X, M, C,
and B, and a non-flaring class denoted by Q. Class Q includes flare-quiet events and GOES
A-class events. In this paper, as positive class events, we consider major flaring events
(M and X), and as negative class events, we consider minor events (Q, B, C). Considering
B- and C-class flares as non-flaring motivated by the experimental findings of multiple
previous studies [1,25,26,28,29]. Solar flares are classified logarithmically into A, B, C, M,
and X categories, with each category representing an increase in intensity starting from
10−8 W m−2 [1,27]. An X-class flare’s peak X-ray flux is roughly 100 times more than that
of a C-class flare and 10 times greater than that of an M-class flare. To give more detail,
each class is subdivided into nine further levels to provide more granularity. Detection
capabilities for flares vary with their intensity. High X-ray levels can render A and B-class
flares difficult or even impossible to detect reliably. Due to their severe geomagnetic effects,
M and X-class flares are of particular interest in space weather forecasting [30]. Their
significant potential for damage makes them critical targets for continuous monitoring
and analysis. This hierarchical and intensity-based classification system not only aids in
the systematic study of solar phenomena, but also prioritizes monitoring efforts toward
those flares most likely to affect space and terrestrial environments. The dataset has been
divided into five partitions with approximately equal numbers of X- and M-class flares in
each one to ensure temporal segmentation (Table 1).

Table 1. Event type statistics of each partition of the SWAN-SF dataset. Class Q represents flare-quiet
events and GOES A-class events.

Event Type
Partitions

P1 P2 P3 P4 P5

Q 60,130 73,368 34,762 43,294 62,688
B 5692 4978 685 846 5924
C 6416 8810 5639 5956 5763
M 1089 1329 1288 1012 971
X 165 72 136 153 19

Number of
instances 73,492 88,557 42,510 51,261 75,365

Time series data from solar photospheric magnetograms and NOAA’s record of active
area flares are included in the dataset. For magnetograms, it makes use of the HMI Active
Region Patches (HARP) [31] data package from the Solar Dynamics Observatory [32].
Magnetic field parameters are first obtained from the Space Weather HMI Active Region
Patches (SHARP) data product [7,33]. However, for improved validation, these parameters
are recalculated and supplemented with new variables, including some that were not in
SHARPs at first (as shown in Table 2 in [27]). Table 2 provides a reference to the 24 physical
magnetic field parameters that each sliding time series slice in the dataset represents. The
references in Table 2 indicate the initial use of these parameters for flare prediction using
machine learning algorithms [25]. These time series instances are logged at 12 min intervals
over a total of 12 h (60-time steps).
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Table 2. AR magnetic field parameters list.

Abbreviation Description Formula

ABSNJZH [19] Absolute value of the net current helicity Hcabs ∝ |∑ Bz · Jz|

EPSX [34] Sum of x-component of normalized Lorentz force δFx ∝ ∑ Bx Bz
∑ B2

EPSY [34] Sum of y-component of normalized Lorentz force δFy ∝ −∑ By Bz

∑ B2

EPSZ [34] Sum of z-component of normalized Lorentz force δFz ∝ ∑(B2
x+B2

y−B2
z)

∑ B2

MEANALP [35] Mean characteristic twist parameter, α αtotal ∝ ∑ Jz ·Bz
∑ B2

z

MEANGAM [19] Mean angle of field from radial γ = 1
N ∑ arctan

(
Bh
Bz

)
MEANGBH [19] Mean gradient of horizontal field |∇Bh| = 1

N ∑

√(
∂Bh
∂x

)2
+

(
∂Bh
∂y

)2

MEANGBT [19] Mean gradient of total field |∇Btot| = 1
N ∑

√(
∂B
∂x

)2
+

(
∂B
∂y

)2

MEANGBZ [19] Mean gradient of vertical field |∇Bz| = 1
N ∑

√(
∂Bz
∂x

)2
+

(
∂Bz
∂y

)2

MEANJZD [19] Mean vertical current density Jz ∝ 1
N ∑

(
∂By
∂x − ∂Bx

∂y

)
MEANJZH [19] Mean current helicity (Bz contribution) Hc ∝ 1

N ∑ Bz · Jz

MEANPOT [36] Mean photospheric magnetic free energy ρ ∝ 1
N ∑

(
BObs − BPot

)2

MEANSHR [36] Mean shear angle Γ = 1
N ∑ arccos

(
BObs ·BPot

|BObs ||BPot |

)
R_VALUE [37] Sum of flux near polarity inversion line Φ = Σ|BLoS|dA (within R mask)

SAVNCPP [19] Sum of the modulus of the net current per polarity Jzsum ∝ |∑B+
z JzdA|+ |∑B−

z JzdA|

SHRGT45 [19] Fraction of Area with shear >45◦ Area with shear > 45◦/ total area

TOTBSQ [34] Total magnitude of Lorentz force F ∝ ∑ B2

TOTFX [34] Sum of x-component of Lorentz force Fx ∝ −∑ BxBzdA

TOTFY [34] Sum of y-component of Lorentz force Fy ∝ ∑ ByBzdA

TOTFZ [34] Sum of z-component of Lorentz force Fz ∝ ∑
(

B2
x + B2

y − B2
z

)
dA

TOTPOT [19] Total photospheric magnetic free energy density ρtot ∝ ∑(BObs − BPot)2dA

TOTUSJH [19] Total unsigned current helicity Hctotal ∝ ∑ Bz · Jz

TOTUSJZ [19] Total unsigned vertical current Jztotal = ∑|Jz|dA

USFLUX [19] Total unsigned flux Φ = ∑|Bz|dA

During a specific prediction window, every solar active region exhibits a range of flare
classes or stays quiet. The representation of a solar event i as mvtsi, a multivariate time
series instance, and its class label, yi, which specifies the flare categories, encapsulate this
variability. The multivariate time series instance mvtsi, which is made up of N magnetic
field parameters, the multivariate time series instance mvtsi ∈ RT∗N encompasses multiple
time series with periodic observations over an interval of T. The time series for the j-th
parameter is represented as Pj ∈ RT , and the value at the t-th timestamp is represented as
x<t> ∈ RN . The active region’s state at the end of the observation period T and during the
subsequent prediction interval L determines the event’s classification. To determine the
state of a given timestamp, NOAA records of flare events are utilized.

When the instances of one or more data classes is significantly less than the majority
classes, the dataset is considered as highly imbalanced data. The minority classes consist
of data points from the minority group, while the data points from the other group are
referred to as the majority classes. Table 1 illustrates the substantial class imbalance ratio
present in the SWAN-SF benchmark dataset. Traditional machine learning classifiers tend to
favor the majority class, as highlighted by [38]. It becomes concerning especially in solar flare
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classification, where the focus lies on a minority of cases. Class imbalance ratio can significantly
impact various performance metrics, including accuracy, precision, and the F1 score. This
is primarily due to the metrics disregarding the number of misclassification instances. For
example, a traditional model that assigns all instances to the majority class may achieve high
accuracy fail to capture any meaningful information about the minority class. In the following
sections, we will discuss the TSS and HSS2 evaluation metrics, which are specifically designed
to assess model performance in scenarios with significant class imbalances.

4. Methodology

Although time series classification accuracy levels achieved by machine learning and
deep learning classifiers are outstanding, they are generally associated with considerable
computational complexity. Larger datasets exacerbate this problem even more, as they
can necessitate longer training times and render these techniques useless. In addition,
a lot of the existing methods tend to sacrifice a more comprehensive view in favor of
concentrating on certain data features like shape or frequency. Reference [12] presented
the RandOm Convolutional KErnel Transform (ROCKET) technique as a solution to these
problems. Using random convolutional kernels to extract important features and using
them to train a linear classifier, this novel approach leverages the power of convolutional
neural networks for time series classification. Reference [11] proposed a more sophisticated
variant of ROCKET with faster processing times and nearly deterministic performance,
called the MINImally RandOm Convolutional KErnel Transform (MiniRocket).

The ROCKET approach transforms time series data by applying a collection of random
convolutional kernels to each series. These kernels, similar to those in convolutional neural
networks, have characteristics including length, weights, bias, dilation, and padding
that are randomly allocated. The kernels are able to extract a wide range of patterns and
information at various frequencies and scales. Two types of pooling are used to each kernel’s
output: percentage of positive values (PPV) pooling and global max pooling. While PPV
pooling uses the formula ppv = 1/n ∑n−1

i=0 [zi > 0], where zi is the output of the convolution
operation, which is the convolution’s result to determine the proportion of positive outputs,
global max pooling extracts the maximum feature value from the output. By assessing the
significance of the patterns identified by the kernels, this PPV pooling positive output metric
greatly improves the method’s accuracy. Each kernel produces two features, resulting in
a total of 20,000 features per input time series when using 10,000 random convolutional
kernels. A linear classifier is then trained using these features.

PPV pooling is used by the ROCKET and MiniRocket algorithms to assess convolution
outputs. Table 3 provides more information on how MiniRocket improves computing
efficiency using a predetermined set of kernels with particular hyper-parameter settings.
Notable modifications include restricting the dilation hyper-parameter, matching the weight
hyper-parameter to a defined range, matching the bias hyper-parameter to random con-
volution outputs, fixing the kernel length to nine, and utilizing PPV pooling only, instead
of global max pooling and PPV. With these optimizations, MiniRocket can generate half
as many features as ROCKET with comparable precision. These enhancements lead to
MiniRocket’s outstanding computing efficiency. It essentially doubles the kernel utilization
without adding to the computational overhead by utilizing the mathematical properties of
fixed kernels and PPV pooling to compute PPV for both positive and negative weights at
the same time. Additionally, by replacing multiplicative processes with additive ones, it
minimizes processing demands and maximizes the reuse of convolution output. Addition-
ally, MiniRocket optimizes computation and output reuse by processing all kernels for each
dilation simultaneously. These enhancements greatly increase computational efficiency
without lowering the ROCKET classifier’s accuracy.
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Table 3. Difference between the ROCKET and MiniRocket kernels’ hyper-parameters.

Hyper-Parameters ROCKET MiniRocket

Length {7, 8, 11} 9
Weight N(0, 1) (−1, 2)

Bias U(−1, 1) From convolution output
Dilation Random Fixed
Padding Random Fixed

In our experiments using the SWAN-SF dataset, MiniRocket outperformed other
classifiers in terms of both computational efficiency and accuracy, making it a highly
effective model for time series classification tasks. In the next section, we will explore the
results of our experimentation in more detail, and present a brief summary of the other
classifiers we evaluated.

5. Experiments

In this section, we present an overview of the baseline models that we evaluated and
compare to the state-of-the-art MiniRocket (MR). The study was conducted by evaluating
the performance of each model under different data configurations and compare the results
with the MiniRocket (MR) algorithm. To ensure the reliability of the results, we employed
a 5-fold cross-validation approach. In this approach, one partition was used for training,
while the remaining four partitions were used for testing. For instance, partition 1 was
used for model training, whereas partitions 2, 3, 4, and 5 were each employed for separate
testing. There were a total of 20 distinct pairings of training and testing sets produced
by this method. We followed the methodology used by [1] to prevent data overlap and
address temporal coherence. The performance of the models was evaluated using the True
Skill Statistic (TSS) score and Heidke Skill Score (HSS2) metrics, which are the primary
metrics for evaluating flare prediction in datasets with class imbalances.

5.1. Performance Metrics: TSS Score and HSS2 Score

A valuable approach to evaluate the effectiveness of a classifier is to measure its
performance against a benchmark classifier using a skill score. This score is calculated by
taking the classifier’s prediction score and subtracting the standard forecast’s score value
from it. Then, this difference is divided by the difference between a perfect score and the
standard forecast. This computation helps in evaluating the classifier’s performance in
comparison to the baseline forecast and the ideal result. Developing such a skill score is
especially important in solar flare prediction, since non-flaring regions greatly outnumber
flaring ones. We used forecast verification metrics to assess how well different classifiers
performed in forecasting flares on the SWAN-SF dataset, with a particular emphasis on the
True Skill Statistic (TSS) and Heidke Skill Score (HSS2) [39].

TSS and HSS2 are calculated based on the confusion matrix of the model, which shows
the frequencies of the actual and predicted values. True Negatives (TNs) are instances in
which the model correctly classified negative examples. True Positives (TPs) are when
the model accurately classified positive examples. “FPs” refers to False Positives, which
happen when real negative examples are miss-labeled as positive. False Negatives (FNs)
are instances where real positive examples are miss-classified as negative. An example of a
confusion matrix for binary classification is shown in Table 4.

Table 4. Confusion matrix for binary classification.

Actual Positive Actual Negative

Predicted Positive True Positive False Positive
Predicted Negative False Negative True Negative
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The Heidke Skill Score (HSS) as defined by the Space Weather Prediction Center, also
known as HSS2, is used by [40]. This measure expresses how much better the forecast is
than a random one. The following formula is used to calculate HSS2:

HSS2 =
TP + TN − E

P + N − E
(1)

where E represents the expected number of correct predictions due to chance alone:

E =
(TP + FP)× (TP + FN) + (FP + TN)× (FN + TN)

P + N
(2)

HSS2 can be calculated from the True Positive (TP), True Negative (TN), False Neg-
ative (FN), and False Positive (FP) classification outcomes, as well as the total number of
Positive (P) and Negative (N) instances:

HSS2 =
2 × [(TP × TN)− (FN × FP)]

P × (FN + TN) + (TP + FP)× N
(3)

Although the class-imbalance ratio of the testing set may have an impact on HSS2,
TSS is suggested by [14] as a more suitable metric in these situations because it is thought
to be more equal and is known to be unbiased with regard to the class-imbalance ratio. The
TSS is defined as follows:

TSS =
TP × TN − FP × FN

P × N
=

TP
TP + FN

− FP
FP + TN

(4)

TSS, sometimes referred to as the Peirce skill score or the Hansen–Kuiper skill
score [41], measures the difference between the false alarm rate and recall. The score
goes from −1 to 1, a score of 1 indicates a perfect forecast, a score of 0 shows a ran-
dom or constant forecast, and a score of −1 indicates a forecast that is always incorrect.
TSS is highly considered for comparing the performance of different classifiers in solar
flare predictions because it takes into account both false negatives and false positives in a
balanced manner. Importantly, it remains unaffected by the imbalance in the testing set,
which makes it a very helpful indicator in situations where there is a class imbalance.

The True Skill Statistic (TSS)’s potential limitation is that it gives equal weight to False
Positive (FP) and False Negative (FN) outcomes, despite the fact that the results of these
misclassifications can differ greatly. For example, in the forecasting of solar flares, the
consequences of a False Negative—that is, failing to predict a flare that really happens—can
be more severe than those of a False Positive—that is, forecasting a flare that never happens.
This is especially important when preemptive actions are required, such spinning a satellite
to protect it from energetic particles. As a result, the expenses related to False Positives and
False Negatives differ. The Heidke Skill Score (HSS2) is sensitive to the class imbalance
in the testing set; as the imbalance increases, its value may approach zero, whereas TSS
remains unaffected by it.

5.2. Baseline Models

We used TSS and HSS2 scores to evaluate the performance of several time series
classifiers, including LSTM, SVM, Mr-SEQL, and CIF. After comparing the performance of
the aforementioned models, our analysis shows that MiniRocket outperforms the aforemen-
tioned classifiers by achieving the highest TSS score in binary classification and all-class
classification. This study highlights the effectiveness of MiniRocket as a powerful tool
for flare classification. In the following sections, we will provide a brief overview of each
classifier, then we will compare the results obtained.

5.2.1. Long Short-Term Memory (LSTM)

In this research, we utilized Long Short-Term Memory (LSTM) networks to learn Mul-
tivariate Time Series (MVTS) instances representations without without requiring statistical
characteristics to be hand-engineered. The LSTM network was trained by sequentially
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feeding magnetic field parameter vectors into LSTM cells and adjusting cell weights using
gradient descent and backpropagation. This approach successfully revealed underlying
patterns in the data, enabling trustworthy forecasts of flare occurrences by automated
feature extraction [42]. LSTM networks excel in processing and classifying time-series data
due to their ability to capture order dependence and long-term dependencies that regular
RNNs cannot. Deep LSTM networks are produced by stacking many LSTM layers together
to identify increasingly more intricate patterns in sequential data. This study’s use of LSTM
networks demonstrates both their wide range of application across several fields and its
ability to represent time series data.

5.2.2. Support Vector Machine (SVM)

The Support Vector Machine (SVM) classifier works by identifying a hyperplane in
N-dimensional space that can accurately classify input points. Finding an ideal hyper-
plane involves finding a plane with the greatest margin, which represents the maximum
distance between data instances of different classes. This margin is crucial, as it enables
effective generalization and improves the prediction accuracy. Hyperplanes act as decision
boundaries, separating data points. Hyperplanes size is determined by the number of
features in the data. Support vectors, which are the data points closest to the hyperplane,
greatly influence its placement and orientation. They play a critical role in optimizing the
classifier’s margin. The SVM classifier finds the best hyperplane by utilizing these support
vectors, and achieves high prediction accuracy [43].

The optimal hyperplane that intersects the decision boundary is pushed further toward
the domain of the minority class, in the class imbalance case in the flare dataset. The goal
of this adjustment is to minimize the overall number of incorrect classifications, which
leads to an increase in True Negatives (i.e., accurate classification of CBF-class flares) and a
decrease in True Positives (i.e., accurate classification of XM-class flares). When there is a
class imbalance, models have a tendency to be biased in favor of the dominant class, which
is problematic because flare-forecasting research is more concerned with minority incidents
than majority ones. Support Vectors and transformation functions (kernels) enable the
SVM classifier to learn nonlinear decision surfaces effectively, which has led to its rise in
popularity. To improve data transformation into new feature spaces and enable a more
precise instance separation, a variety of kernels can be applied. Like any other function, a
kernel requires one or more variables to be specified beforehand.

5.2.3. Canonical Interval Forest (CIF)

The time series forest (TSF) classifier is widely considered a powerful interval approach,
due to its excellent performance, rapid training, and prediction. But it has lagged behind
the latest developments in substitute methods. Initially, TSF used just three fundamental
summary statistics to summarize intervals. In order to make large time series analysis easier,
the ‘catch22’ feature set [44] was designed as a concise and practical set of 22-time series
features. Expanding on these developments, ref. [13] presented the Canonical Interval Forest
(CIF) classifier, which combines the strengths of TSF and catch22. The CIF classifier uses
the special advantages of both approaches to improve time series analysis performance
and accuracy.

5.2.4. Multiple Representations Sequence Learner (Mr-SEQL)

A robust univariate time series classifier called Mr-SEQL was introduced by [45]. It
uses features that are obtained from several symbolic representations of time series for train-
ing. These representations are employed with linear classification models
(logistic regression), such as Symbol Aggregation Approximation (SAX) and Symbol Fourier
Approximation (SFA). SEQL [46] is used by Mr-SEQL to extract features based on three
main concepts. First, Mr-SEQL combines numerous symbolic representations derived from
different parameters, like several SAX representations, as opposed to depending on a single
fixed representation. Second, it is robust to a broad spectrum of issues since it integrates
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many domain representations in time (like SAX) and frequency (like SFA). To successfully
explore the relevant symbolic-words space, Mr-SEQL enhances a symbolic sequence clas-
sifier (SEQL) and uses an effective greedy feature selection technique to identify optimal
features for each representation. Mr-SEQL is a time series classifier that is quite effective
and has several key features that make it suitable for a variety of applications.

5.3. Binary Classification

In the preliminary experiments, we applied a transformation of the original data
labels into binary labels with the goal of simplifying the classification process. The positive
class, denoted as flaring, has M and X class flares, while the negative class, referred to as
non-flaring, has Q, B, and C class flares.

We trained five different models, namely MiniRocket, CLF, Mr-SEQL, LSTM, and SVM,
and compared their performances in terms of TSS and HSS2 scores. We show the results
of the experiments in the line plots presented in Figures 1 and 2. These plots highlight the
obtained scores for TSS and HSS2, respectively.

Figure 1. TSS score comparison of 5 different models: MiniRocket (MR), SVM, CIF, Mr−SEQL, and
LSTM in binary classification setting.

Figure 2. HSS2 score comparison of 5 different models: MiniRocket (MR), SVM, CIF, Mr−SEQL, and
LSTM in binary classification setting.

Our analysis demonstrated that, on the SWAN-SF dataset, the MiniRocket classifier
outperformed the baselines classifiers, improving TSS and HSS2 scores by an average of
19.4% and 23.9%, respectively. Furthermore, the box plots illustrate the distribution of TSS
and HSS2 score data from various classifiers across 20 distinct partition pairs. These plots
offer insights into the variability and distribution of the data. A longer length in the box
plots signifies increased variability in the data, as observed with the SVM and MiniRocket
classifiers. Notably, the MiniRocket classifier exhibited the best performance, followed by
SVM, LSTM, CIF, and Mr-SEQL models.

5.4. Multi-Class: All Class Classification

In this section, we are working on classifying the five different classes, which are
Q, B, C, M, and X. The experimental setup stays the same: 20 distinct partition pair-
ings are used for training and testing, and the TSS and HSS2 scores are used to com-
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pare the performance of the selected models, MiniRocket and SVM. For a comparison of
TSS and HSS2 scores, see the line plots shown in Figures 3 and 4.

The analysis of the all-class classification showed that the MiniRocket classifier out-
performed the baselines classifiers with a 9.61% higher TSS score and 10.36% higher HSS2
score. Upon analyzing the box plots depicting TSS and HSS2 scores for multi-class classifi-
cation, it was evident that the MiniRocket model demonstrated superior performance once
more, with SVM, LSTM, CIF, and Mr-SEQL following suit in that order. The SVM model’s
box plot also exhibited the highest variability.

Figure 3. In a multi-class classification setting, TSS score comparison of five models: MiniRocket
(MR), SVM, CIF, Mr−SEQL, and LSTM.

Figure 4. In a multi-class classification setting, HSS2 score comparison of five models: MiniRocket
(MR), SVM, CIF, Mr−SEQL, and LSTM.

5.5. Analysis with the Exclusion of B- and C-Class Flares

B- and C-class flares would be excluded in this part of the experiment. This decision
was made following the research method conducted by [14], which indicated that the
inclusion of C-class flares may have a negative impact on performance metrics. In our
experiment, we noticed an improvement in the TSS score for all models after the B and
C-class flares were removed. This underscores the significance of this exclusion in achieving
optimal model performance.

After B and C-class flares were eliminated, the experiment was divided into two categories:
binary class classification (Figures 5 and 6) and all-class classification (Figures 7 and 8).

After B- and C-class flares were removed, the experiments results for binary classifi-
cation showed that MiniRocket performed remarkably well, increasing the TSS score by
30.06% and the HSS2 score by 30.55% compared to the baselines classifiers.

After the B- and C-class flares were removed, we conducted an analysis of the all-class
classifications and found out that MiniRocket again outperformed the aforementioned
classifiers by 18.94% in terms of HSS2 score and 20.13% in terms of TSS score. A notable
observation arises from the analysis of the box plots in the conducted experiments. It has
been deduced that the TSS and HSS2 scores for all classifiers experienced a surge when
B- and C-class flares were excluded, in contrast to the scenario where these classes were
included. This discovery greatly reinforces the findings of [14]. Moreover, the recurring
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observation showcased the superior performance of the MiniRocket classifier over other
classifiers. This trend was followed: by the SVM, LSTM, CIF, and Mr-SEQL models.

Figure 5. TSS score comparison of binary class classification after removing B and C−class flares.

Figure 6. HSS2 score comparison of binary class classification after removing B- and C-class flares.

Figure 7. TSS score comparison of all class classification after removing B and C−class flares.

Figure 8. HSS2 score comparison of all class classification after removing B and C−class flares.

6. Conclusions

In this study, we explored the use of the MiniRocket classifier for analyzing the SWAN-
SF dataset. We compared our model with multiple classifiers, such as
LSTM, Mr-SEQL, SVM, and CIF. We utilized the True Skill Statistic (TSS) score
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and Heidke Skill Score (HSS2) to evaluate the classification performance. The experi-
mental findings indicated that MiniRocket outperformed the baseline classifiers on the
SWAN-SF dataset, demonstrating a consistent average improvement of 20.92% in HSS2
score and 19.8% in TSS score across all experimental settings. This insight will help the solar
physicists to use the right algorithm to classify flaring and non-flaring instances. We also
found that after excluding B- and C-class flares, the trained models exhibited a significant
improvement, resulting in a substantial increase in TSS and HSS2 scores. The removal of
B- and C-class flares for maximizing flare prediction performance was also suggested by
the experimental findings of multiple previous studies [25,26]. These findings demonstrate
the potential of our approach to improve space weather forecasting accuracy. The power of
MiniRocket in handling MVTS data complexities is evident. It can greatly progress the goal
of classifying solar flares in real time. There is potential for these contributions to enhance
space weather forecasting [47].

For future research, we propose exploring a Transformers/Attention-based model inte-
grated with the SWAN-SF dataset. This integration could address long-range dependencies
and enable a comparative analysis against the benchmark MiniRocket classifier, further ad-
vancing our understanding and capabilities in solar physics and space weather prediction.
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